MobileNet-SSD from TensorFlow 1.3 and Inception-V2-SSD using Inference Engine backend

This commit is contained in:
Dmitry Kurtaev 2018-02-07 11:28:45 +03:00
parent 090ee46f4a
commit 7fe97376c2
10 changed files with 188 additions and 73 deletions

View File

@ -15,23 +15,25 @@ macro(ie_fail)
return()
endmacro()
if(NOT INF_ENGINE_ROOT_DIR OR NOT EXISTS "${INF_ENGINE_ROOT_DIR}/inference_engine/include/inference_engine.hpp")
if(NOT INF_ENGINE_ROOT_DIR OR NOT EXISTS "${INF_ENGINE_ROOT_DIR}/include/inference_engine.hpp")
set(ie_root_paths "${INF_ENGINE_ROOT_DIR}")
if(DEFINED ENV{INTEL_CVSDK_DIR})
list(APPEND ie_root_paths "$ENV{INTEL_CVSDK_DIR}")
list(APPEND ie_root_paths "$ENV{INTEL_CVSDK_DIR}/inference_engine")
endif()
if(DEFINED INTEL_CVSDK_DIR)
list(APPEND ie_root_paths "${INTEL_CVSDK_DIR}")
list(APPEND ie_root_paths "${INTEL_CVSDK_DIR}/inference_engine")
endif()
if(WITH_INF_ENGINE AND NOT ie_root_paths)
list(APPEND ie_root_paths "/opt/intel/deeplearning_deploymenttoolkit/deployment_tools")
list(APPEND ie_root_paths "/opt/intel/deeplearning_deploymenttoolkit/deployment_tools/inference_engine")
endif()
find_path(INF_ENGINE_ROOT_DIR inference_engine/include/inference_engine.hpp PATHS ${ie_root_paths})
find_path(INF_ENGINE_ROOT_DIR include/inference_engine.hpp PATHS ${ie_root_paths})
endif()
set(INF_ENGINE_INCLUDE_DIRS "${INF_ENGINE_ROOT_DIR}/inference_engine/include" CACHE PATH "Path to Inference Engine include directory")
set(INF_ENGINE_INCLUDE_DIRS "${INF_ENGINE_ROOT_DIR}/include" CACHE PATH "Path to Inference Engine include directory")
if(NOT INF_ENGINE_ROOT_DIR
OR NOT EXISTS "${INF_ENGINE_ROOT_DIR}"
@ -42,12 +44,21 @@ if(NOT INF_ENGINE_ROOT_DIR
endif()
set(INF_ENGINE_LIBRARIES "")
foreach(lib inference_engine mklml_intel iomp5)
set(ie_lib_list inference_engine)
if(UNIX)
list(APPEND ie_lib_list mklml_intel iomp5)
endif()
foreach(lib ${ie_lib_list})
find_library(${lib}
NAMES ${lib}
# For inference_engine
HINTS ${IE_PLUGINS_PATH}
HINTS "$ENV{IE_PLUGINS_PATH}"
HINTS ${INF_ENGINE_ROOT_DIR}/external/mklml_lnx/lib
# For mklml_intel, iomp5
HINTS ${INTEL_CVSDK_DIR}/external/mklml_lnx/lib
HINTS ${INTEL_CVSDK_DIR}/inference_engine/external/mklml_lnx/lib
)
if(NOT ${lib})
ie_fail()

View File

@ -157,13 +157,16 @@ PERF_TEST_P_(DNNTestNetwork, OpenFace)
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe)
{
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException("");
processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", "",
Mat(cv::Size(300, 300), CV_32FC3), "detection_out", "caffe");
}
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_TensorFlow)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException("");
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL ||
backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
processNet("dnn/ssd_mobilenet_v1_coco.pb", "ssd_mobilenet_v1_coco.pbtxt", "",
Mat(cv::Size(300, 300), CV_32FC3), "", "tensorflow");
}
@ -207,6 +210,13 @@ PERF_TEST_P_(DNNTestNetwork, opencv_face_detector)
Mat(cv::Size(300, 300), CV_32FC3), "", "caffe");
}
PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
{
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException("");
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "ssd_inception_v2_coco_2017_11_17.pbtxt", "",
Mat(cv::Size(300, 300), CV_32FC3), "", "tensorflow");
}
const tuple<DNNBackend, DNNTarget> testCases[] = {
#ifdef HAVE_HALIDE
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),

View File

@ -298,15 +298,16 @@ public:
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&)
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs)
{
#ifdef HAVE_INF_ENGINE
InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]);
InferenceEngine::LayerParams lp;
lp.name = name;
lp.type = "Concat";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::ConcatLayer> ieLayer(new InferenceEngine::ConcatLayer(lp));
ieLayer->_axis = axis;
ieLayer->_axis = clamp(axis, input->dims.size());
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();

View File

@ -193,7 +193,7 @@ public:
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && !_locPredTransposed;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,

View File

@ -114,7 +114,7 @@ public:
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide() ||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && this->type != "Sigmoid";
}
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node)
@ -397,8 +397,11 @@ struct ReLU6Functor
#ifdef HAVE_INF_ENGINE
InferenceEngine::CNNLayerPtr initInfEngine(InferenceEngine::LayerParams& lp)
{
CV_Error(Error::StsNotImplemented, "ReLU6");
return InferenceEngine::CNNLayerPtr();
lp.type = "Clamp";
std::shared_ptr<InferenceEngine::ClampLayer> ieLayer(new InferenceEngine::ClampLayer(lp));
ieLayer->min_value = minValue;
ieLayer->max_value = maxValue;
return ieLayer;
}
#endif // HAVE_INF_ENGINE

View File

@ -239,7 +239,7 @@ public:
ieLayer->_stride_y = stride.height;
ieLayer->_padding_x = pad.width;
ieLayer->_padding_y = pad.height;
ieLayer->_exclude_pad = false;
ieLayer->_exclude_pad = type == AVE && padMode == "SAME";
ieLayer->params["rounding-type"] = ceilMode ? "ceil" : "floor";
if (type == MAX)
ieLayer->_type = InferenceEngine::PoolingLayer::PoolType::MAX;

View File

@ -252,7 +252,8 @@ public:
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() &&
_scales.empty() && !_explicitSizes;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,

View File

@ -10,6 +10,7 @@ Implementation of shift layer, which adds up const values to blob.
*/
#include "../precomp.hpp"
#include "op_inf_engine.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace cv
@ -26,6 +27,12 @@ public:
CV_Assert(blobs.size() == 1);
}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
@ -83,6 +90,52 @@ public:
}
}
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node)
{
switch (node->backendId)
{
case DNN_BACKEND_INFERENCE_ENGINE:
{
#ifdef HAVE_INF_ENGINE
auto base = node.dynamicCast<InfEngineBackendNode>();
auto conv = std::dynamic_pointer_cast<InferenceEngine::ConvolutionLayer>(base->layer);
if (conv)
{
fuseConvWeights(conv, Mat(), blobs[0]);
return base;
}
#endif // HAVE_INF_ENGINE
break;
}
}
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&)
{
#ifdef HAVE_INF_ENGINE
// Inference Engine has no layer just for biases. Create a linear
// transformation layer with ones weights.
InferenceEngine::LayerParams lp;
lp.name = name;
lp.type = "ScaleShift";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp));
auto weights = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
{blobs[0].total()});
weights->allocate();
std::vector<float> ones(blobs[0].total(), 1);
weights->set(ones);
ieLayer->_weights = weights;
ieLayer->_biases = wrapToInfEngineBlob(blobs[0]);
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{

View File

@ -54,7 +54,8 @@ static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std:
std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
std::reverse(reversedShape.begin(), reversedShape.end());
return InferenceEngine::DataPtr(
new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32)
new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32,
InferenceEngine::Layout::ANY)
);
}
@ -122,37 +123,6 @@ void InfEngineBackendNet::getOutputsInfo(InferenceEngine::OutputsDataMap &output
// Returns input references that aren't connected to internal outputs.
void InfEngineBackendNet::getInputsInfo(InferenceEngine::InputsDataMap &inputs_) noexcept
{
if (inputs.empty())
{
std::map<std::string, InferenceEngine::DataPtr> internalOutputs;
for (const auto& l : layers)
{
for (const InferenceEngine::DataWeakPtr& ptr : l->insData)
{
InferenceEngine::DataPtr inp(ptr);
if (internalOutputs.find(inp->name) == internalOutputs.end())
{
InferenceEngine::InputInfo::Ptr inpInfo(new InferenceEngine::InputInfo());
inpInfo->setInputData(inp);
if (inputs.find(inp->name) == inputs.end())
inputs[inp->name] = inpInfo;
}
}
for (const InferenceEngine::DataPtr& out : l->outData)
{
// TODO: Replace to uniquness assertion.
if (internalOutputs.find(out->name) == internalOutputs.end())
internalOutputs[out->name] = out;
}
}
CV_Assert(layers.empty() || !inputs.empty());
}
inpBlobs.clear();
for (const auto& it : inputs)
{
CV_Assert(allBlobs.find(it.first) != allBlobs.end());
inpBlobs[it.first] = allBlobs[it.first];
}
inputs_ = inputs;
}
@ -239,7 +209,31 @@ size_t InfEngineBackendNet::getBatchSize() const noexcept
void InfEngineBackendNet::initEngine()
{
CV_Assert(!isInitialized());
CV_Assert(!isInitialized(), !layers.empty());
// Collect all external input blobs.
std::map<std::string, InferenceEngine::DataPtr> internalOutputs;
for (const auto& l : layers)
{
for (const InferenceEngine::DataWeakPtr& ptr : l->insData)
{
InferenceEngine::DataPtr inp(ptr);
if (internalOutputs.find(inp->name) == internalOutputs.end())
{
InferenceEngine::InputInfo::Ptr inpInfo(new InferenceEngine::InputInfo());
inpInfo->setInputData(inp);
if (inputs.find(inp->name) == inputs.end())
inputs[inp->name] = inpInfo;
}
}
for (const InferenceEngine::DataPtr& out : l->outData)
{
// TODO: Replace to uniquness assertion.
if (internalOutputs.find(out->name) == internalOutputs.end())
internalOutputs[out->name] = out;
}
}
CV_Assert(!inputs.empty());
// Add all unconnected blobs to output blobs.
InferenceEngine::OutputsDataMap unconnectedOuts;
@ -258,13 +252,21 @@ void InfEngineBackendNet::initEngine()
unconnectedOuts.erase(InferenceEngine::DataPtr(inp)->name);
}
}
CV_Assert(layers.empty() || !unconnectedOuts.empty());
CV_Assert(!unconnectedOuts.empty());
for (auto it = unconnectedOuts.begin(); it != unconnectedOuts.end(); ++it)
{
outputs[it->first] = it->second;
}
// Set up input blobs.
inpBlobs.clear();
for (const auto& it : inputs)
{
CV_Assert(allBlobs.find(it.first) != allBlobs.end());
inpBlobs[it.first] = allBlobs[it.first];
}
// Set up output blobs.
outBlobs.clear();
for (const auto& it : outputs)
@ -273,7 +275,11 @@ void InfEngineBackendNet::initEngine()
outBlobs[it.first] = allBlobs[it.first];
}
#ifdef _WIN32
engine = InferenceEngine::InferenceEnginePluginPtr("MKLDNNPlugin.dll");
#else
engine = InferenceEngine::InferenceEnginePluginPtr("libMKLDNNPlugin.so");
#endif // _WIN32
InferenceEngine::ResponseDesc resp;
InferenceEngine::StatusCode status = engine->LoadNetwork(*this, &resp);
if (status != InferenceEngine::StatusCode::OK)
@ -305,7 +311,8 @@ void InfEngineBackendNet::forward()
static inline Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
{
// NOTE: Inference Engine sizes are reversed.
std::vector<int> size(blob->dims().begin(), blob->dims().end());
std::vector<size_t> dims = blob->dims();
std::vector<int> size(dims.begin(), dims.end());
std::reverse(size.begin(), size.end());
return Mat(size, CV_32F, (void*)blob->buffer());
}
@ -313,28 +320,32 @@ static inline Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
void fuseConvWeights(const std::shared_ptr<InferenceEngine::ConvolutionLayer>& conv,
const Mat& w, const Mat& b)
{
// Get convolution's weights. Clone the data because Inference Engine can host it
// and conv->_weights->allocate() below will deallocate it.
Mat originWeights = infEngineBlobToMat(conv->_weights).clone();
// Create new weights blob.
conv->_weights = InferenceEngine::make_shared_blob<float>(
InferenceEngine::Precision::FP32, conv->_weights->dims());
conv->_weights->allocate();
// Convolution weights have OIHW data layout.
// (conv(I) + b1 ) * w + b2
// w*conv(I) + b1 * w + b2
Mat fusedWeights = infEngineBlobToMat(conv->_weights);
const int numChannels = fusedWeights.size[0];
// Mat weights = blobs[0].reshape(1, 1);
// Mat bias = hasBias ? blobs[1].reshape(1, 1) : Mat();
CV_Assert(numChannels == w.total());
CV_Assert(b.empty() || numChannels == b.total());
for (int i = 0; i < numChannels; ++i)
CV_Assert(!w.empty() || !b.empty());
if (!w.empty())
{
cv::multiply(slice(originWeights, i), w.at<float>(i), slice(fusedWeights, i));
// Get convolution's weights. Clone the data because Inference Engine can host it
// and conv->_weights->allocate() below will deallocate it.
Mat originWeights = infEngineBlobToMat(conv->_weights).clone();
// Create new weights blob.
conv->_weights = InferenceEngine::make_shared_blob<float>(
InferenceEngine::Precision::FP32, conv->_weights->dims());
conv->_weights->allocate();
// Convolution weights have OIHW data layout.
// (conv(I) + b1 ) * w + b2
// w*conv(I) + b1 * w + b2
Mat fusedWeights = infEngineBlobToMat(conv->_weights);
const int numChannels = fusedWeights.size[0];
// Mat weights = blobs[0].reshape(1, 1);
// Mat bias = hasBias ? blobs[1].reshape(1, 1) : Mat();
CV_Assert(numChannels == w.total());
CV_Assert(b.empty() || numChannels == b.total());
for (int i = 0; i < numChannels; ++i)
{
cv::multiply(slice(originWeights, i), w.at<float>(i), slice(fusedWeights, i));
}
}
if (conv->_biases)
{
@ -345,8 +356,10 @@ void fuseConvWeights(const std::shared_ptr<InferenceEngine::ConvolutionLayer>& c
InferenceEngine::Precision::FP32, conv->_biases->dims());
conv->_biases->allocate();
Mat fusedBiases = infEngineBlobToMat(conv->_biases);
originBiases.copyTo(fusedBiases);
cv::multiply(w.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), originBiases, fusedBiases);
if (!w.empty())
cv::multiply(w.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), fusedBiases, fusedBiases);
if (!b.empty())
cv::add(fusedBiases, b.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), fusedBiases);
}

View File

@ -162,8 +162,9 @@ TEST_P(DNNTestNetwork, ENet)
2e-5, 0.15);
}
TEST_P(DNNTestNetwork, MobileNetSSD)
TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe)
{
if (backend == DNN_BACKEND_HALIDE) throw SkipTestException("");
Mat sample = imread(findDataFile("dnn/street.png", false));
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
@ -171,6 +172,17 @@ TEST_P(DNNTestNetwork, MobileNetSSD)
inp, "detection_out", "caffe");
}
TEST_P(DNNTestNetwork, MobileNet_SSD_TensorFlow)
{
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL ||
backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
Mat sample = imread(findDataFile("dnn/street.png", false));
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
processNet("dnn/ssd_mobilenet_v1_coco.pb", "dnn/ssd_mobilenet_v1_coco.pbtxt",
inp, "detection_out", "tensorflow");
}
TEST_P(DNNTestNetwork, SSD_VGG16)
{
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL ||
@ -221,6 +233,17 @@ TEST_P(DNNTestNetwork, opencv_face_detector)
inp, "detection_out", "caffe");
}
TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
{
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL ||
backend == DNN_BACKEND_HALIDE)
throw SkipTestException("");
Mat sample = imread(findDataFile("dnn/street.png", false));
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt",
inp, "detection_out", "tensorflow");
}
const tuple<DNNBackend, DNNTarget> testCases[] = {
#ifdef HAVE_HALIDE
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),