Merge pull request #976 from PeterMinin:num_detections

This commit is contained in:
Roman Donchenko 2013-06-14 11:23:59 +04:00 committed by OpenCV Buildbot
commit 83fa4d38a4
3 changed files with 96 additions and 37 deletions

View File

@ -189,6 +189,7 @@ CascadeClassifier::detectMultiScale
Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
.. ocv:function:: void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects, double scaleFactor=1.1, int minNeighbors=3, int flags=0, Size minSize=Size(), Size maxSize=Size())
.. ocv:function:: void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects, vector<int>& numDetections, double scaleFactor=1.1, int minNeighbors=3, int flags=0, Size minSize=Size(), Size maxSize=Size())
.. ocv:pyfunction:: cv2.CascadeClassifier.detectMultiScale(image[, scaleFactor[, minNeighbors[, flags[, minSize[, maxSize]]]]]) -> objects
.. ocv:pyfunction:: cv2.CascadeClassifier.detectMultiScale(image[, scaleFactor[, minNeighbors[, flags[, minSize[, maxSize[, outputRejectLevels]]]]]]) -> objects, rejectLevels, levelWeights
@ -201,6 +202,8 @@ Detects objects of different sizes in the input image. The detected objects are
:param objects: Vector of rectangles where each rectangle contains the detected object, the rectangles may be partially outside the original image.
:param numDetections: Vector of detection numbers for the corresponding objects. An object's number of detections is the number of neighboring positively classified rectangles that were joined together to form the object.
:param scaleFactor: Parameter specifying how much the image size is reduced at each image scale.
:param minNeighbors: Parameter specifying how many neighbors each candidate rectangle should have to retain it.

View File

@ -149,6 +149,14 @@ public:
Size minSize = Size(),
Size maxSize = Size() );
CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT std::vector<Rect>& objects,
CV_OUT std::vector<int>& numDetections,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size() );
CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT std::vector<Rect>& objects,
CV_OUT std::vector<int>& rejectLevels,
@ -168,7 +176,12 @@ public:
protected:
virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
int stripSize, int yStep, double factor, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights, bool outputRejectLevels = false);
std::vector<int>& rejectLevels, std::vector<double>& levelWeights, bool outputRejectLevels = false );
virtual void detectMultiScaleNoGrouping( const Mat& image, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
double scaleFactor, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels = false );
protected:
enum { BOOST = 0

View File

@ -1022,6 +1022,7 @@ public:
};
struct getRect { Rect operator ()(const CvAvgComp& e) const { return e.rect; } };
struct getNeighbors { int operator ()(const CvAvgComp& e) const { return e.neighbors; } };
bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
@ -1086,39 +1087,33 @@ bool CascadeClassifier::setImage(const Mat& image)
return featureEvaluator->setImage(image, data.origWinSize);
}
void CascadeClassifier::detectMultiScale( const Mat& image, std::vector<Rect>& objects,
std::vector<int>& rejectLevels,
std::vector<double>& levelWeights,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels )
static void detectMultiScaleOldFormat( const Mat& image, Ptr<CvHaarClassifierCascade> oldCascade,
std::vector<Rect>& objects,
std::vector<int>& rejectLevels,
std::vector<double>& levelWeights,
std::vector<CvAvgComp>& vecAvgComp,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels = false )
{
const double GROUP_EPS = 0.2;
MemStorage storage(cvCreateMemStorage(0));
CvMat _image = image;
CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
objects.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
}
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );
void CascadeClassifier::detectMultiScaleNoGrouping( const Mat& image, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights,
double scaleFactor, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels )
{
candidates.clear();
if( empty() )
return;
if( isOldFormatCascade() )
{
MemStorage storage(cvCreateMemStorage(0));
CvMat _image = image;
CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
std::vector<CvAvgComp> vecAvgComp;
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
objects.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect());
return;
}
objects.clear();
if (!maskGenerator.empty()) {
if (!maskGenerator.empty())
maskGenerator->initializeMask(image);
}
if( maxObjectSize.height == 0 || maxObjectSize.width == 0 )
maxObjectSize = image.size();
@ -1132,7 +1127,6 @@ void CascadeClassifier::detectMultiScale( const Mat& image, std::vector<Rect>& o
}
Mat imageBuffer(image.rows + 1, image.cols + 1, CV_8U);
std::vector<Rect> candidates;
for( double factor = 1; ; factor *= scaleFactor )
{
@ -1173,18 +1167,39 @@ void CascadeClassifier::detectMultiScale( const Mat& image, std::vector<Rect>& o
rejectLevels, levelWeights, outputRejectLevels ) )
break;
}
}
void CascadeClassifier::detectMultiScale( const Mat& image, std::vector<Rect>& objects,
std::vector<int>& rejectLevels,
std::vector<double>& levelWeights,
double scaleFactor, int minNeighbors,
int flags, Size minObjectSize, Size maxObjectSize,
bool outputRejectLevels )
{
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );
objects.resize(candidates.size());
std::copy(candidates.begin(), candidates.end(), objects.begin());
if( empty() )
return;
if( outputRejectLevels )
if( isOldFormatCascade() )
{
groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );
std::vector<CvAvgComp> fakeVecAvgComp;
detectMultiScaleOldFormat( image, oldCascade, objects, rejectLevels, levelWeights, fakeVecAvgComp, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels );
}
else
{
groupRectangles( objects, minNeighbors, GROUP_EPS );
detectMultiScaleNoGrouping( image, objects, rejectLevels, levelWeights, scaleFactor, minObjectSize, maxObjectSize,
outputRejectLevels );
const double GROUP_EPS = 0.2;
if( outputRejectLevels )
{
groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS );
}
else
{
groupRectangles( objects, minNeighbors, GROUP_EPS );
}
}
}
@ -1195,7 +1210,35 @@ void CascadeClassifier::detectMultiScale( const Mat& image, std::vector<Rect>& o
std::vector<int> fakeLevels;
std::vector<double> fakeWeights;
detectMultiScale( image, objects, fakeLevels, fakeWeights, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize, false );
minNeighbors, flags, minObjectSize, maxObjectSize );
}
void CascadeClassifier::detectMultiScale( const Mat& image, std::vector<Rect>& objects,
std::vector<int>& numDetections, double scaleFactor,
int minNeighbors, int flags, Size minObjectSize,
Size maxObjectSize )
{
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );
if( empty() )
return;
std::vector<int> fakeLevels;
std::vector<double> fakeWeights;
if( isOldFormatCascade() )
{
std::vector<CvAvgComp> vecAvgComp;
detectMultiScaleOldFormat( image, oldCascade, objects, fakeLevels, fakeWeights, vecAvgComp, scaleFactor,
minNeighbors, flags, minObjectSize, maxObjectSize );
numDetections.resize(vecAvgComp.size());
std::transform(vecAvgComp.begin(), vecAvgComp.end(), numDetections.begin(), getNeighbors());
}
else
{
detectMultiScaleNoGrouping( image, objects, fakeLevels, fakeWeights, scaleFactor, minObjectSize, maxObjectSize );
const double GROUP_EPS = 0.2;
groupRectangles( objects, numDetections, minNeighbors, GROUP_EPS );
}
}
bool CascadeClassifier::Data::read(const FileNode &root)