mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
Merge pull request #1365 from bitwangyaoyao:2.4_bilateral
This commit is contained in:
commit
84435ba741
@ -412,6 +412,28 @@ http://www.dai.ed.ac.uk/CVonline/LOCAL\_COPIES/MANDUCHI1/Bilateral\_Filtering.ht
|
||||
This filter does not work inplace.
|
||||
|
||||
|
||||
adaptiveBilateralFilter
|
||||
-----------------------
|
||||
Applies the adaptive bilateral filter to an image.
|
||||
|
||||
.. ocv:function:: void adaptiveBilateralFilter( InputArray src, OutputArray dst, Size ksize, double sigmaSpace, Point anchor=Point(-1, -1), int borderType=BORDER_DEFAULT )
|
||||
|
||||
.. ocv:pyfunction:: cv2.adaptiveBilateralFilter(src, ksize, sigmaSpace[, dst[, anchor[, borderType]]]) -> dst
|
||||
|
||||
:param src: Source 8-bit, 1-channel or 3-channel image.
|
||||
|
||||
:param dst: Destination image of the same size and type as ``src`` .
|
||||
|
||||
:param ksize: filter kernel size.
|
||||
|
||||
:param sigmaSpace: Filter sigma in the coordinate space. It has similar meaning with ``sigmaSpace`` in ``bilateralFilter``.
|
||||
|
||||
:param anchor: anchor point; default value ``Point(-1,-1)`` means that the anchor is at the kernel center. Only default value is supported now.
|
||||
|
||||
:param borderType: border mode used to extrapolate pixels outside of the image.
|
||||
|
||||
The function applies adaptive bilateral filtering to the input image. This filter is similar to ``bilateralFilter``, in that dissimilarity from and distance to the center pixel is punished. Instead of using ``sigmaColor``, we employ the variance of pixel values in the neighbourhood.
|
||||
|
||||
|
||||
|
||||
blur
|
||||
|
@ -398,6 +398,10 @@ CV_EXPORTS_W void GaussianBlur( InputArray src,
|
||||
CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
|
||||
double sigmaColor, double sigmaSpace,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
//! smooths the image using adaptive bilateral filter
|
||||
CV_EXPORTS_W void adaptiveBilateralFilter( InputArray src, OutputArray dst, Size ksize,
|
||||
double sigmaSpace, Point anchor=Point(-1, -1),
|
||||
int borderType=BORDER_DEFAULT );
|
||||
//! smooths the image using the box filter. Each pixel is processed in O(1) time
|
||||
CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
|
||||
Size ksize, Point anchor=Point(-1,-1),
|
||||
|
@ -2272,6 +2272,236 @@ void cv::bilateralFilter( InputArray _src, OutputArray _dst, int d,
|
||||
"Bilateral filtering is only implemented for 8u and 32f images" );
|
||||
}
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
Adaptive Bilateral Filtering
|
||||
\****************************************************************************************/
|
||||
|
||||
namespace cv
|
||||
{
|
||||
#define CALCVAR 1
|
||||
#define FIXED_WEIGHT 0
|
||||
|
||||
class adaptiveBilateralFilter_8u_Invoker :
|
||||
public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
adaptiveBilateralFilter_8u_Invoker(Mat& _dest, const Mat& _temp, Size _ksize, double _sigma_space, Point _anchor) :
|
||||
temp(&_temp), dest(&_dest), ksize(_ksize), sigma_space(_sigma_space), anchor(_anchor)
|
||||
{
|
||||
if( sigma_space <= 0 )
|
||||
sigma_space = 1;
|
||||
CV_Assert((ksize.width & 1) && (ksize.height & 1));
|
||||
space_weight.resize(ksize.width * ksize.height);
|
||||
double sigma2 = sigma_space * sigma_space;
|
||||
int idx = 0;
|
||||
int w = ksize.width / 2;
|
||||
int h = ksize.height / 2;
|
||||
for(int y=-h; y<=h; y++)
|
||||
for(int x=-w; x<=w; x++)
|
||||
{
|
||||
space_weight[idx++] = (float)(sigma2 / (sigma2 + x * x + y * y));
|
||||
}
|
||||
}
|
||||
virtual void operator()(const Range& range) const
|
||||
{
|
||||
int cn = dest->channels();
|
||||
int anX = anchor.x;
|
||||
|
||||
const uchar *tptr;
|
||||
|
||||
for(int i = range.start;i < range.end; i++)
|
||||
{
|
||||
int startY = i;
|
||||
if(cn == 1)
|
||||
{
|
||||
float var;
|
||||
int currVal;
|
||||
int sumVal = 0;
|
||||
int sumValSqr = 0;
|
||||
int currValCenter;
|
||||
int currWRTCenter;
|
||||
float weight;
|
||||
float totalWeight = 0.;
|
||||
float tmpSum = 0.;
|
||||
|
||||
for(int j = 0;j < dest->cols *cn; j+=cn)
|
||||
{
|
||||
sumVal = 0;
|
||||
sumValSqr= 0;
|
||||
totalWeight = 0.;
|
||||
tmpSum = 0.;
|
||||
|
||||
// Top row: don't sum the very last element
|
||||
int startLMJ = 0;
|
||||
int endLMJ = ksize.width - 1;
|
||||
int howManyAll = (anX *2 +1)*(ksize.width );
|
||||
#if CALCVAR
|
||||
for(int x = startLMJ; x< endLMJ; x++)
|
||||
{
|
||||
tptr = temp->ptr(startY + x) +j;
|
||||
for(int y=-anX; y<=anX; y++)
|
||||
{
|
||||
currVal = tptr[cn*(y+anX)];
|
||||
sumVal += currVal;
|
||||
sumValSqr += (currVal *currVal);
|
||||
}
|
||||
}
|
||||
var = ( (sumValSqr * howManyAll)- sumVal * sumVal ) / ( (float)(howManyAll*howManyAll));
|
||||
#else
|
||||
var = 900.0;
|
||||
#endif
|
||||
startLMJ = 0;
|
||||
endLMJ = ksize.width;
|
||||
tptr = temp->ptr(startY + (startLMJ+ endLMJ)/2);
|
||||
currValCenter =tptr[j+cn*anX];
|
||||
for(int x = startLMJ; x< endLMJ; x++)
|
||||
{
|
||||
tptr = temp->ptr(startY + x) +j;
|
||||
for(int y=-anX; y<=anX; y++)
|
||||
{
|
||||
#if FIXED_WEIGHT
|
||||
weight = 1.0;
|
||||
#else
|
||||
currVal = tptr[cn*(y+anX)];
|
||||
currWRTCenter = currVal - currValCenter;
|
||||
|
||||
weight = var / ( var + (currWRTCenter * currWRTCenter) ) * space_weight[x*ksize.width+y+anX];;
|
||||
#endif
|
||||
tmpSum += ((float)tptr[cn*(y+anX)] * weight);
|
||||
totalWeight += weight;
|
||||
}
|
||||
}
|
||||
tmpSum /= totalWeight;
|
||||
|
||||
dest->at<uchar>(startY ,j)= static_cast<uchar>(tmpSum);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(cn == 3);
|
||||
float var_b, var_g, var_r;
|
||||
int currVal_b, currVal_g, currVal_r;
|
||||
int sumVal_b= 0, sumVal_g= 0, sumVal_r= 0;
|
||||
int sumValSqr_b= 0, sumValSqr_g= 0, sumValSqr_r= 0;
|
||||
int currValCenter_b= 0, currValCenter_g= 0, currValCenter_r= 0;
|
||||
int currWRTCenter_b, currWRTCenter_g, currWRTCenter_r;
|
||||
float weight_b, weight_g, weight_r;
|
||||
float totalWeight_b= 0., totalWeight_g= 0., totalWeight_r= 0.;
|
||||
float tmpSum_b = 0., tmpSum_g= 0., tmpSum_r = 0.;
|
||||
|
||||
for(int j = 0;j < dest->cols *cn; j+=cn)
|
||||
{
|
||||
sumVal_b= 0, sumVal_g= 0, sumVal_r= 0;
|
||||
sumValSqr_b= 0, sumValSqr_g= 0, sumValSqr_r= 0;
|
||||
totalWeight_b= 0., totalWeight_g= 0., totalWeight_r= 0.;
|
||||
tmpSum_b = 0., tmpSum_g= 0., tmpSum_r = 0.;
|
||||
|
||||
// Top row: don't sum the very last element
|
||||
int startLMJ = 0;
|
||||
int endLMJ = ksize.width - 1;
|
||||
int howManyAll = (anX *2 +1)*(ksize.width);
|
||||
#if CALCVAR
|
||||
for(int x = startLMJ; x< endLMJ; x++)
|
||||
{
|
||||
tptr = temp->ptr(startY + x) +j;
|
||||
for(int y=-anX; y<=anX; y++)
|
||||
{
|
||||
currVal_b = tptr[cn*(y+anX)], currVal_g = tptr[cn*(y+anX)+1], currVal_r =tptr[cn*(y+anX)+2];
|
||||
sumVal_b += currVal_b;
|
||||
sumVal_g += currVal_g;
|
||||
sumVal_r += currVal_r;
|
||||
sumValSqr_b += (currVal_b *currVal_b);
|
||||
sumValSqr_g += (currVal_g *currVal_g);
|
||||
sumValSqr_r += (currVal_r *currVal_r);
|
||||
}
|
||||
}
|
||||
var_b = ( (sumValSqr_b * howManyAll)- sumVal_b * sumVal_b ) / ( (float)(howManyAll*howManyAll));
|
||||
var_g = ( (sumValSqr_g * howManyAll)- sumVal_g * sumVal_g ) / ( (float)(howManyAll*howManyAll));
|
||||
var_r = ( (sumValSqr_r * howManyAll)- sumVal_r * sumVal_r ) / ( (float)(howManyAll*howManyAll));
|
||||
#else
|
||||
var_b = 900.0; var_g = 900.0;var_r = 900.0;
|
||||
#endif
|
||||
startLMJ = 0;
|
||||
endLMJ = ksize.width;
|
||||
tptr = temp->ptr(startY + (startLMJ+ endLMJ)/2) + j;
|
||||
currValCenter_b =tptr[cn*anX], currValCenter_g =tptr[cn*anX+1], currValCenter_r =tptr[cn*anX+2];
|
||||
for(int x = startLMJ; x< endLMJ; x++)
|
||||
{
|
||||
tptr = temp->ptr(startY + x) +j;
|
||||
for(int y=-anX; y<=anX; y++)
|
||||
{
|
||||
#if FIXED_WEIGHT
|
||||
weight_b = 1.0;
|
||||
weight_g = 1.0;
|
||||
weight_r = 1.0;
|
||||
#else
|
||||
currVal_b = tptr[cn*(y+anX)];currVal_g=tptr[cn*(y+anX)+1];currVal_r=tptr[cn*(y+anX)+2];
|
||||
currWRTCenter_b = currVal_b - currValCenter_b;
|
||||
currWRTCenter_g = currVal_g - currValCenter_g;
|
||||
currWRTCenter_r = currVal_r - currValCenter_r;
|
||||
|
||||
float cur_spw = space_weight[x*ksize.width+y+anX];
|
||||
weight_b = var_b / ( var_b + (currWRTCenter_b * currWRTCenter_b) ) * cur_spw;
|
||||
weight_g = var_g / ( var_g + (currWRTCenter_g * currWRTCenter_g) ) * cur_spw;
|
||||
weight_r = var_r / ( var_r + (currWRTCenter_r * currWRTCenter_r) ) * cur_spw;
|
||||
#endif
|
||||
tmpSum_b += ((float)tptr[cn*(y+anX)] * weight_b);
|
||||
tmpSum_g += ((float)tptr[cn*(y+anX)+1] * weight_g);
|
||||
tmpSum_r += ((float)tptr[cn*(y+anX)+2] * weight_r);
|
||||
totalWeight_b += weight_b, totalWeight_g += weight_g, totalWeight_r += weight_r;
|
||||
}
|
||||
}
|
||||
tmpSum_b /= totalWeight_b;
|
||||
tmpSum_g /= totalWeight_g;
|
||||
tmpSum_r /= totalWeight_r;
|
||||
|
||||
dest->at<uchar>(startY,j )= static_cast<uchar>(tmpSum_b);
|
||||
dest->at<uchar>(startY,j+1)= static_cast<uchar>(tmpSum_g);
|
||||
dest->at<uchar>(startY,j+2)= static_cast<uchar>(tmpSum_r);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
private:
|
||||
const Mat *temp;
|
||||
Mat *dest;
|
||||
Size ksize;
|
||||
double sigma_space;
|
||||
Point anchor;
|
||||
vector<float> space_weight;
|
||||
};
|
||||
static void adaptiveBilateralFilter_8u( const Mat& src, Mat& dst, Size ksize, double sigmaSpace, Point anchor, int borderType )
|
||||
{
|
||||
Size size = src.size();
|
||||
|
||||
CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) &&
|
||||
src.type() == dst.type() && src.size() == dst.size() &&
|
||||
src.data != dst.data );
|
||||
Mat temp;
|
||||
copyMakeBorder(src, temp, anchor.x, anchor.y, anchor.x, anchor.y, borderType);
|
||||
|
||||
adaptiveBilateralFilter_8u_Invoker body(dst, temp, ksize, sigmaSpace, anchor);
|
||||
parallel_for_(Range(0, size.height), body, dst.total()/(double)(1<<16));
|
||||
}
|
||||
}
|
||||
void cv::adaptiveBilateralFilter( InputArray _src, OutputArray _dst, Size ksize,
|
||||
double sigmaSpace, Point anchor, int borderType )
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
_dst.create(src.size(), src.type());
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3);
|
||||
|
||||
anchor = normalizeAnchor(anchor,ksize);
|
||||
if( src.depth() == CV_8U )
|
||||
adaptiveBilateralFilter_8u( src, dst, ksize, sigmaSpace, anchor, borderType );
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"Adaptive Bilateral filtering is only implemented for 8u images" );
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_IMPL void
|
||||
|
@ -127,7 +127,7 @@ ocl::bilateralFilter
|
||||
--------------------
|
||||
Returns void
|
||||
|
||||
.. ocv:function:: void ocl::bilateralFilter(const oclMat &src, oclMat &dst, int d, double sigmaColor, double sigmaSpave, int borderType=BORDER_DEFAULT)
|
||||
.. ocv:function:: void ocl::bilateralFilter(const oclMat &src, oclMat &dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT)
|
||||
|
||||
:param src: The source image
|
||||
|
||||
|
@ -520,7 +520,15 @@ namespace cv
|
||||
|
||||
//! bilateralFilter
|
||||
// supports 8UC1 8UC4
|
||||
CV_EXPORTS void bilateralFilter(const oclMat& src, oclMat& dst, int d, double sigmaColor, double sigmaSpave, int borderType=BORDER_DEFAULT);
|
||||
CV_EXPORTS void bilateralFilter(const oclMat& src, oclMat& dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT);
|
||||
|
||||
//! Applies an adaptive bilateral filter to the input image
|
||||
// This is not truly a bilateral filter. Instead of using user provided fixed parameters,
|
||||
// the function calculates a constant at each window based on local standard deviation,
|
||||
// and use this constant to do filtering.
|
||||
// supports 8UC1 8UC3
|
||||
CV_EXPORTS void adaptiveBilateralFilter(const oclMat& src, oclMat& dst, Size ksize, double sigmaSpace, Point anchor = Point(-1, -1), int borderType=BORDER_DEFAULT);
|
||||
|
||||
//! computes exponent of each matrix element (b = e**a)
|
||||
// supports only CV_32FC1 type
|
||||
CV_EXPORTS void exp(const oclMat &a, oclMat &b);
|
||||
|
@ -321,3 +321,82 @@ PERF_TEST_P(filter2DFixture, filter2D,
|
||||
else
|
||||
OCL_PERF_ELSE
|
||||
}
|
||||
|
||||
///////////// Bilateral////////////////////////
|
||||
|
||||
typedef Size_MatType BilateralFixture;
|
||||
|
||||
PERF_TEST_P(BilateralFixture, Bilateral,
|
||||
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
|
||||
OCL_PERF_ENUM(CV_8UC1, CV_8UC3)))
|
||||
{
|
||||
const Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params), d = 7;
|
||||
double sigmacolor = 50.0, sigmaspace = 50.0;
|
||||
|
||||
Mat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
if (srcSize == OCL_SIZE_4000 && type == CV_8UC3)
|
||||
declare.time(8);
|
||||
|
||||
if (RUN_OCL_IMPL)
|
||||
{
|
||||
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
|
||||
|
||||
OCL_TEST_CYCLE() cv::ocl::bilateralFilter(oclSrc, oclDst, d, sigmacolor, sigmaspace);
|
||||
|
||||
oclDst.download(dst);
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
else if (RUN_PLAIN_IMPL)
|
||||
{
|
||||
TEST_CYCLE() cv::bilateralFilter(src, dst, d, sigmacolor, sigmaspace);
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
else
|
||||
OCL_PERF_ELSE
|
||||
}
|
||||
|
||||
///////////// adaptiveBilateral////////////////////////
|
||||
|
||||
typedef Size_MatType adaptiveBilateralFixture;
|
||||
|
||||
PERF_TEST_P(adaptiveBilateralFixture, adaptiveBilateral,
|
||||
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
|
||||
OCL_PERF_ENUM(CV_8UC1, CV_8UC3)))
|
||||
{
|
||||
const Size_MatType_t params = GetParam();
|
||||
const Size srcSize = get<0>(params);
|
||||
const int type = get<1>(params);
|
||||
double sigmaspace = 10.0;
|
||||
Size ksize(9,9);
|
||||
|
||||
Mat src(srcSize, type), dst(srcSize, type);
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
if (srcSize == OCL_SIZE_4000)
|
||||
declare.time(15);
|
||||
|
||||
if (RUN_OCL_IMPL)
|
||||
{
|
||||
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
|
||||
|
||||
OCL_TEST_CYCLE() cv::ocl::adaptiveBilateralFilter(oclSrc, oclDst, ksize, sigmaspace);
|
||||
|
||||
oclDst.download(dst);
|
||||
|
||||
SANITY_CHECK(dst, 1.);
|
||||
}
|
||||
else if (RUN_PLAIN_IMPL)
|
||||
{
|
||||
TEST_CYCLE() cv::adaptiveBilateralFilter(src, dst, ksize, sigmaspace);
|
||||
|
||||
SANITY_CHECK(dst);
|
||||
}
|
||||
else
|
||||
OCL_PERF_ELSE
|
||||
}
|
||||
|
@ -64,6 +64,7 @@ extern const char *filter_sep_row;
|
||||
extern const char *filter_sep_col;
|
||||
extern const char *filtering_laplacian;
|
||||
extern const char *filtering_morph;
|
||||
extern const char *filtering_adaptive_bilateral;
|
||||
}
|
||||
}
|
||||
|
||||
@ -1616,3 +1617,100 @@ void cv::ocl::GaussianBlur(const oclMat &src, oclMat &dst, Size ksize, double si
|
||||
Ptr<FilterEngine_GPU> f = createGaussianFilter_GPU(src.type(), ksize, sigma1, sigma2, bordertype);
|
||||
f->apply(src, dst);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Adaptive Bilateral Filter
|
||||
|
||||
void cv::ocl::adaptiveBilateralFilter(const oclMat& src, oclMat& dst, Size ksize, double sigmaSpace, Point anchor, int borderType)
|
||||
{
|
||||
CV_Assert((ksize.width & 1) && (ksize.height & 1)); // ksize must be odd
|
||||
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3); // source must be 8bit RGB image
|
||||
if( sigmaSpace <= 0 )
|
||||
sigmaSpace = 1;
|
||||
Mat lut(Size(ksize.width, ksize.height), CV_32FC1);
|
||||
double sigma2 = sigmaSpace * sigmaSpace;
|
||||
int idx = 0;
|
||||
int w = ksize.width / 2;
|
||||
int h = ksize.height / 2;
|
||||
for(int y=-h; y<=h; y++)
|
||||
for(int x=-w; x<=w; x++)
|
||||
{
|
||||
lut.at<float>(idx++) = sigma2 / (sigma2 + x * x + y * y);
|
||||
}
|
||||
oclMat dlut(lut);
|
||||
int depth = src.depth();
|
||||
int cn = src.oclchannels();
|
||||
|
||||
normalizeAnchor(anchor, ksize);
|
||||
const static String kernelName = "edgeEnhancingFilter";
|
||||
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
char btype[30];
|
||||
switch(borderType)
|
||||
{
|
||||
case BORDER_CONSTANT:
|
||||
sprintf(btype, "BORDER_CONSTANT");
|
||||
break;
|
||||
case BORDER_REPLICATE:
|
||||
sprintf(btype, "BORDER_REPLICATE");
|
||||
break;
|
||||
case BORDER_REFLECT:
|
||||
sprintf(btype, "BORDER_REFLECT");
|
||||
break;
|
||||
case BORDER_WRAP:
|
||||
sprintf(btype, "BORDER_WRAP");
|
||||
break;
|
||||
case BORDER_REFLECT101:
|
||||
sprintf(btype, "BORDER_REFLECT_101");
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "This border type is not supported");
|
||||
break;
|
||||
}
|
||||
|
||||
//the following constants may be adjusted for performance concerns
|
||||
const static size_t blockSizeX = 64, blockSizeY = 1, EXTRA = ksize.height - 1;
|
||||
|
||||
//Normalize the result by default
|
||||
const float alpha = ksize.height * ksize.width;
|
||||
|
||||
const size_t gSize = blockSizeX - ksize.width / 2 * 2;
|
||||
const size_t globalSizeX = (src.cols) % gSize == 0 ?
|
||||
src.cols / gSize * blockSizeX :
|
||||
(src.cols / gSize + 1) * blockSizeX;
|
||||
const size_t rows_per_thread = 1 + EXTRA;
|
||||
const size_t globalSizeY = ((src.rows + rows_per_thread - 1) / rows_per_thread) % blockSizeY == 0 ?
|
||||
((src.rows + rows_per_thread - 1) / rows_per_thread) :
|
||||
(((src.rows + rows_per_thread - 1) / rows_per_thread) / blockSizeY + 1) * blockSizeY;
|
||||
|
||||
size_t globalThreads[3] = { globalSizeX, globalSizeY, 1};
|
||||
size_t localThreads[3] = { blockSizeX, blockSizeY, 1};
|
||||
|
||||
char build_options[250];
|
||||
|
||||
//LDATATYPESIZE is sizeof local data store. This is to exemplify effect of LDS on kernel performance
|
||||
sprintf(build_options,
|
||||
"-D VAR_PER_CHANNEL=1 -D CALCVAR=1 -D FIXED_WEIGHT=0 -D EXTRA=%d"
|
||||
" -D THREADS=%d -D anX=%d -D anY=%d -D ksX=%d -D ksY=%d -D %s",
|
||||
static_cast<int>(EXTRA), static_cast<int>(blockSizeX), anchor.x, anchor.y, ksize.width, ksize.height, btype);
|
||||
|
||||
std::vector<pair<size_t , const void *> > args;
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), &src.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), &dst.data));
|
||||
args.push_back(std::make_pair(sizeof(cl_float), (void *)&alpha));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.offset));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.wholerows));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.wholecols));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.offset));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.rows));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.cols));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), &dlut.data));
|
||||
int lut_step = dlut.step1();
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&lut_step));
|
||||
|
||||
openCLExecuteKernel(Context::getContext(), &filtering_adaptive_bilateral, kernelName,
|
||||
globalThreads, localThreads, args, cn, depth, build_options);
|
||||
}
|
424
modules/ocl/src/opencl/filtering_adaptive_bilateral.cl
Normal file
424
modules/ocl/src/opencl/filtering_adaptive_bilateral.cl
Normal file
@ -0,0 +1,424 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2013, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Harris Gasparakis, harris.gasparakis@amd.com
|
||||
// Xiaopeng Fu, fuxiaopeng2222@163.com
|
||||
// Yao Wang, bitwangyaoyao@gmail.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
|
||||
#ifdef BORDER_REPLICATE
|
||||
//BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh
|
||||
#define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? (l_edge) : (i))
|
||||
#define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? (r_edge)-1 : (addr))
|
||||
#define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? (t_edge) :(i))
|
||||
#define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? (b_edge)-1 :(addr))
|
||||
#endif
|
||||
|
||||
#ifdef BORDER_REFLECT
|
||||
//BORDER_REFLECT: fedcba|abcdefgh|hgfedcb
|
||||
#define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? -(i)-1 : (i))
|
||||
#define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? -(i)-1+((r_edge)<<1) : (addr))
|
||||
#define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? -(i)-1 : (i))
|
||||
#define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? -(i)-1+((b_edge)<<1) : (addr))
|
||||
#endif
|
||||
|
||||
#ifdef BORDER_REFLECT_101
|
||||
//BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba
|
||||
#define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? -(i) : (i))
|
||||
#define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? -(i)-2+((r_edge)<<1) : (addr))
|
||||
#define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? -(i) : (i))
|
||||
#define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? -(i)-2+((b_edge)<<1) : (addr))
|
||||
#endif
|
||||
|
||||
//blur function does not support BORDER_WRAP
|
||||
#ifdef BORDER_WRAP
|
||||
//BORDER_WRAP: cdefgh|abcdefgh|abcdefg
|
||||
#define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? (i)+(r_edge) : (i))
|
||||
#define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? (i)-(r_edge) : (addr))
|
||||
#define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? (i)+(b_edge) : (i))
|
||||
#define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? (i)-(b_edge) : (addr))
|
||||
#endif
|
||||
|
||||
__kernel void
|
||||
edgeEnhancingFilter_C4_D0(
|
||||
__global const uchar4 * restrict src,
|
||||
__global uchar4 *dst,
|
||||
float alpha,
|
||||
int src_offset,
|
||||
int src_whole_rows,
|
||||
int src_whole_cols,
|
||||
int src_step,
|
||||
int dst_offset,
|
||||
int dst_rows,
|
||||
int dst_cols,
|
||||
int dst_step,
|
||||
__global const float* lut,
|
||||
int lut_step)
|
||||
{
|
||||
int col = get_local_id(0);
|
||||
const int gX = get_group_id(0);
|
||||
const int gY = get_group_id(1);
|
||||
|
||||
int src_x_off = (src_offset % src_step) >> 2;
|
||||
int src_y_off = src_offset / src_step;
|
||||
int dst_x_off = (dst_offset % dst_step) >> 2;
|
||||
int dst_y_off = dst_offset / dst_step;
|
||||
|
||||
int startX = gX * (THREADS-ksX+1) - anX + src_x_off;
|
||||
int startY = (gY * (1+EXTRA)) - anY + src_y_off;
|
||||
|
||||
int dst_startX = gX * (THREADS-ksX+1) + dst_x_off;
|
||||
int dst_startY = (gY * (1+EXTRA)) + dst_y_off;
|
||||
|
||||
int posX = dst_startX - dst_x_off + col;
|
||||
int posY = (gY * (1+EXTRA)) ;
|
||||
|
||||
__local uchar4 data[ksY+EXTRA][THREADS];
|
||||
|
||||
float4 tmp_sum[1+EXTRA];
|
||||
for(int tmpint = 0; tmpint < 1+EXTRA; tmpint++)
|
||||
{
|
||||
tmp_sum[tmpint] = (float4)(0,0,0,0);
|
||||
}
|
||||
|
||||
#ifdef BORDER_CONSTANT
|
||||
bool con;
|
||||
uchar4 ss;
|
||||
for(int j = 0; j < ksY+EXTRA; j++)
|
||||
{
|
||||
con = (startX+col >= 0 && startX+col < src_whole_cols && startY+j >= 0 && startY+j < src_whole_rows);
|
||||
|
||||
int cur_col = clamp(startX + col, 0, src_whole_cols);
|
||||
if(con)
|
||||
{
|
||||
ss = src[(startY+j)*(src_step>>2) + cur_col];
|
||||
}
|
||||
|
||||
data[j][col] = con ? ss : (uchar4)0;
|
||||
}
|
||||
#else
|
||||
for(int j= 0; j < ksY+EXTRA; j++)
|
||||
{
|
||||
int selected_row;
|
||||
int selected_col;
|
||||
selected_row = ADDR_H(startY+j, 0, src_whole_rows);
|
||||
selected_row = ADDR_B(startY+j, src_whole_rows, selected_row);
|
||||
|
||||
selected_col = ADDR_L(startX+col, 0, src_whole_cols);
|
||||
selected_col = ADDR_R(startX+col, src_whole_cols, selected_col);
|
||||
|
||||
data[j][col] = src[selected_row * (src_step>>2) + selected_col];
|
||||
}
|
||||
#endif
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
float4 var[1+EXTRA];
|
||||
|
||||
#if VAR_PER_CHANNEL
|
||||
float4 weight;
|
||||
float4 totalWeight = (float4)(0,0,0,0);
|
||||
#else
|
||||
float weight;
|
||||
float totalWeight = 0;
|
||||
#endif
|
||||
|
||||
int4 currValCenter;
|
||||
int4 currWRTCenter;
|
||||
|
||||
int4 sumVal = 0;
|
||||
int4 sumValSqr = 0;
|
||||
|
||||
if(col < (THREADS-(ksX-1)))
|
||||
{
|
||||
int4 currVal;
|
||||
|
||||
int howManyAll = (2*anX+1)*(ksY);
|
||||
|
||||
//find variance of all data
|
||||
int startLMj;
|
||||
int endLMj ;
|
||||
#if CALCVAR
|
||||
// Top row: don't sum the very last element
|
||||
for(int extraCnt = 0; extraCnt <=EXTRA; extraCnt++)
|
||||
{
|
||||
startLMj = extraCnt;
|
||||
endLMj = ksY+extraCnt-1;
|
||||
sumVal =0;
|
||||
sumValSqr=0;
|
||||
for(int j = startLMj; j < endLMj; j++)
|
||||
{
|
||||
for(int i=-anX; i<=anX; i++)
|
||||
{
|
||||
currVal = convert_int4(data[j][col+anX+i]) ;
|
||||
|
||||
sumVal += currVal;
|
||||
sumValSqr += mul24(currVal, currVal);
|
||||
}
|
||||
}
|
||||
var[extraCnt] = convert_float4( ( (sumValSqr * howManyAll)- mul24(sumVal , sumVal) ) ) / ( (float)(howManyAll*howManyAll) ) ;
|
||||
#else
|
||||
var[extraCnt] = (float4)(900.0, 900.0, 900.0, 0.0);
|
||||
#endif
|
||||
}
|
||||
|
||||
for(int extraCnt = 0; extraCnt <= EXTRA; extraCnt++)
|
||||
{
|
||||
|
||||
// top row: include the very first element, even on first time
|
||||
startLMj = extraCnt;
|
||||
// go all the way, unless this is the last local mem chunk,
|
||||
// then stay within limits - 1
|
||||
endLMj = extraCnt + ksY;
|
||||
|
||||
// Top row: don't sum the very last element
|
||||
currValCenter = convert_int4( data[ (startLMj + endLMj)/2][col+anX] );
|
||||
|
||||
for(int j = startLMj, lut_j = 0; j < endLMj; j++, lut_j++)
|
||||
{
|
||||
for(int i=-anX; i<=anX; i++)
|
||||
{
|
||||
#if FIXED_WEIGHT
|
||||
#if VAR_PER_CHANNEL
|
||||
weight.x = 1.0f;
|
||||
weight.y = 1.0f;
|
||||
weight.z = 1.0f;
|
||||
weight.w = 1.0f;
|
||||
#else
|
||||
weight = 1.0f;
|
||||
#endif
|
||||
#else
|
||||
currVal = convert_int4(data[j][col+anX+i]) ;
|
||||
currWRTCenter = currVal-currValCenter;
|
||||
|
||||
#if VAR_PER_CHANNEL
|
||||
weight = var[extraCnt] / (var[extraCnt] + convert_float4(currWRTCenter * currWRTCenter)) * (float4)(lut[lut_j*lut_step+anX+i]);
|
||||
//weight.x = var[extraCnt].x / ( var[extraCnt].x + (float) mul24(currWRTCenter.x , currWRTCenter.x) ) ;
|
||||
//weight.y = var[extraCnt].y / ( var[extraCnt].y + (float) mul24(currWRTCenter.y , currWRTCenter.y) ) ;
|
||||
//weight.z = var[extraCnt].z / ( var[extraCnt].z + (float) mul24(currWRTCenter.z , currWRTCenter.z) ) ;
|
||||
//weight.w = 0;
|
||||
#else
|
||||
weight = 1.0f/(1.0f+( mul24(currWRTCenter.x, currWRTCenter.x) + mul24(currWRTCenter.y, currWRTCenter.y) + mul24(currWRTCenter.z, currWRTCenter.z))/(var.x+var.y+var.z));
|
||||
#endif
|
||||
#endif
|
||||
tmp_sum[extraCnt] += convert_float4(data[j][col+anX+i]) * weight;
|
||||
totalWeight += weight;
|
||||
}
|
||||
}
|
||||
|
||||
tmp_sum[extraCnt] /= totalWeight;
|
||||
|
||||
if(posX >= 0 && posX < dst_cols && (posY+extraCnt) >= 0 && (posY+extraCnt) < dst_rows)
|
||||
{
|
||||
dst[(dst_startY+extraCnt) * (dst_step>>2)+ dst_startX + col] = convert_uchar4(tmp_sum[extraCnt]);
|
||||
}
|
||||
|
||||
#if VAR_PER_CHANNEL
|
||||
totalWeight = (float4)(0,0,0,0);
|
||||
#else
|
||||
totalWeight = 0;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__kernel void
|
||||
edgeEnhancingFilter_C1_D0(
|
||||
__global const uchar * restrict src,
|
||||
__global uchar *dst,
|
||||
float alpha,
|
||||
int src_offset,
|
||||
int src_whole_rows,
|
||||
int src_whole_cols,
|
||||
int src_step,
|
||||
int dst_offset,
|
||||
int dst_rows,
|
||||
int dst_cols,
|
||||
int dst_step,
|
||||
__global const float * lut,
|
||||
int lut_step)
|
||||
{
|
||||
int col = get_local_id(0);
|
||||
const int gX = get_group_id(0);
|
||||
const int gY = get_group_id(1);
|
||||
|
||||
int src_x_off = (src_offset % src_step);
|
||||
int src_y_off = src_offset / src_step;
|
||||
int dst_x_off = (dst_offset % dst_step);
|
||||
int dst_y_off = dst_offset / dst_step;
|
||||
|
||||
int startX = gX * (THREADS-ksX+1) - anX + src_x_off;
|
||||
int startY = (gY * (1+EXTRA)) - anY + src_y_off;
|
||||
|
||||
int dst_startX = gX * (THREADS-ksX+1) + dst_x_off;
|
||||
int dst_startY = (gY * (1+EXTRA)) + dst_y_off;
|
||||
|
||||
int posX = dst_startX - dst_x_off + col;
|
||||
int posY = (gY * (1+EXTRA)) ;
|
||||
|
||||
__local uchar data[ksY+EXTRA][THREADS];
|
||||
|
||||
float tmp_sum[1+EXTRA];
|
||||
for(int tmpint = 0; tmpint < 1+EXTRA; tmpint++)
|
||||
{
|
||||
tmp_sum[tmpint] = (float)(0);
|
||||
}
|
||||
|
||||
#ifdef BORDER_CONSTANT
|
||||
bool con;
|
||||
uchar ss;
|
||||
for(int j = 0; j < ksY+EXTRA; j++)
|
||||
{
|
||||
con = (startX+col >= 0 && startX+col < src_whole_cols && startY+j >= 0 && startY+j < src_whole_rows);
|
||||
|
||||
int cur_col = clamp(startX + col, 0, src_whole_cols);
|
||||
if(con)
|
||||
{
|
||||
ss = src[(startY+j)*(src_step) + cur_col];
|
||||
}
|
||||
|
||||
data[j][col] = con ? ss : 0;
|
||||
}
|
||||
#else
|
||||
for(int j= 0; j < ksY+EXTRA; j++)
|
||||
{
|
||||
int selected_row;
|
||||
int selected_col;
|
||||
selected_row = ADDR_H(startY+j, 0, src_whole_rows);
|
||||
selected_row = ADDR_B(startY+j, src_whole_rows, selected_row);
|
||||
|
||||
selected_col = ADDR_L(startX+col, 0, src_whole_cols);
|
||||
selected_col = ADDR_R(startX+col, src_whole_cols, selected_col);
|
||||
|
||||
data[j][col] = src[selected_row * (src_step) + selected_col];
|
||||
}
|
||||
#endif
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
float var[1+EXTRA];
|
||||
|
||||
float weight;
|
||||
float totalWeight = 0;
|
||||
|
||||
int currValCenter;
|
||||
int currWRTCenter;
|
||||
|
||||
int sumVal = 0;
|
||||
int sumValSqr = 0;
|
||||
|
||||
if(col < (THREADS-(ksX-1)))
|
||||
{
|
||||
int currVal;
|
||||
|
||||
int howManyAll = (2*anX+1)*(ksY);
|
||||
|
||||
//find variance of all data
|
||||
int startLMj;
|
||||
int endLMj;
|
||||
#if CALCVAR
|
||||
// Top row: don't sum the very last element
|
||||
for(int extraCnt=0; extraCnt<=EXTRA; extraCnt++)
|
||||
{
|
||||
startLMj = extraCnt;
|
||||
endLMj = ksY+extraCnt-1;
|
||||
sumVal = 0;
|
||||
sumValSqr =0;
|
||||
for(int j = startLMj; j < endLMj; j++)
|
||||
{
|
||||
for(int i=-anX; i<=anX; i++)
|
||||
{
|
||||
currVal = (uint)(data[j][col+anX+i]) ;
|
||||
|
||||
sumVal += currVal;
|
||||
sumValSqr += mul24(currVal, currVal);
|
||||
}
|
||||
}
|
||||
var[extraCnt] = (float)( ( (sumValSqr * howManyAll)- mul24(sumVal , sumVal) ) ) / ( (float)(howManyAll*howManyAll) ) ;
|
||||
#else
|
||||
var[extraCnt] = (float)(900.0);
|
||||
#endif
|
||||
}
|
||||
|
||||
for(int extraCnt = 0; extraCnt <= EXTRA; extraCnt++)
|
||||
{
|
||||
|
||||
// top row: include the very first element, even on first time
|
||||
startLMj = extraCnt;
|
||||
// go all the way, unless this is the last local mem chunk,
|
||||
// then stay within limits - 1
|
||||
endLMj = extraCnt + ksY;
|
||||
|
||||
// Top row: don't sum the very last element
|
||||
currValCenter = (int)( data[ (startLMj + endLMj)/2][col+anX] );
|
||||
|
||||
for(int j = startLMj, lut_j = 0; j < endLMj; j++, lut_j++)
|
||||
{
|
||||
for(int i=-anX; i<=anX; i++)
|
||||
{
|
||||
#if FIXED_WEIGHT
|
||||
weight = 1.0f;
|
||||
#else
|
||||
currVal = (int)(data[j][col+anX+i]) ;
|
||||
currWRTCenter = currVal-currValCenter;
|
||||
|
||||
weight = var[extraCnt] / (var[extraCnt] + (float)mul24(currWRTCenter,currWRTCenter)) * lut[lut_j*lut_step+anX+i] ;
|
||||
#endif
|
||||
tmp_sum[extraCnt] += (float)(data[j][col+anX+i] * weight);
|
||||
totalWeight += weight;
|
||||
}
|
||||
}
|
||||
|
||||
tmp_sum[extraCnt] /= totalWeight;
|
||||
|
||||
|
||||
if(posX >= 0 && posX < dst_cols && (posY+extraCnt) >= 0 && (posY+extraCnt) < dst_rows)
|
||||
{
|
||||
dst[(dst_startY+extraCnt) * (dst_step)+ dst_startX + col] = (uchar)(tmp_sum[extraCnt]);
|
||||
}
|
||||
|
||||
totalWeight = 0;
|
||||
}
|
||||
}
|
||||
}
|
@ -353,6 +353,69 @@ TEST_P(Filter2D, Mat)
|
||||
Near(1);
|
||||
}
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Bilateral
|
||||
struct Bilateral : FilterTestBase
|
||||
{
|
||||
int type;
|
||||
cv::Size ksize;
|
||||
int bordertype;
|
||||
double sigmacolor, sigmaspace;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
type = GET_PARAM(0);
|
||||
ksize = GET_PARAM(1);
|
||||
bordertype = GET_PARAM(3);
|
||||
Init(type);
|
||||
cv::RNG &rng = TS::ptr()->get_rng();
|
||||
sigmacolor = rng.uniform(20, 100);
|
||||
sigmaspace = rng.uniform(10, 40);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Bilateral, Mat)
|
||||
{
|
||||
for(int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
random_roi();
|
||||
cv::bilateralFilter(mat1_roi, dst_roi, ksize.width, sigmacolor, sigmaspace, bordertype);
|
||||
cv::ocl::bilateralFilter(gmat1, gdst, ksize.width, sigmacolor, sigmaspace, bordertype);
|
||||
Near(1);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// AdaptiveBilateral
|
||||
struct AdaptiveBilateral : FilterTestBase
|
||||
{
|
||||
int type;
|
||||
cv::Size ksize;
|
||||
int bordertype;
|
||||
Point anchor;
|
||||
virtual void SetUp()
|
||||
{
|
||||
type = GET_PARAM(0);
|
||||
ksize = GET_PARAM(1);
|
||||
bordertype = GET_PARAM(3);
|
||||
Init(type);
|
||||
anchor = Point(-1,-1);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(AdaptiveBilateral, Mat)
|
||||
{
|
||||
for(int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
random_roi();
|
||||
cv::adaptiveBilateralFilter(mat1_roi, dst_roi, ksize, 5, anchor, bordertype);
|
||||
cv::ocl::adaptiveBilateralFilter(gmat1, gdst, ksize, 5, anchor, bordertype);
|
||||
Near(1);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filter, Blur, Combine(
|
||||
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC4),
|
||||
Values(cv::Size(3, 3), cv::Size(5, 5), cv::Size(7, 7)),
|
||||
@ -400,4 +463,17 @@ INSTANTIATE_TEST_CASE_P(Filter, Filter2D, testing::Combine(
|
||||
Values(Size(0, 0)), //not use
|
||||
Values((MatType)cv::BORDER_CONSTANT, (MatType)cv::BORDER_REFLECT101, (MatType)cv::BORDER_REPLICATE, (MatType)cv::BORDER_REFLECT)));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filter, Bilateral, Combine(
|
||||
Values(CV_8UC1, CV_8UC3),
|
||||
Values(Size(5, 5), Size(9, 9)),
|
||||
Values(Size(0, 0)), //not use
|
||||
Values((MatType)cv::BORDER_CONSTANT, (MatType)cv::BORDER_REPLICATE,
|
||||
(MatType)cv::BORDER_REFLECT, (MatType)cv::BORDER_WRAP, (MatType)cv::BORDER_REFLECT_101)));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Filter, AdaptiveBilateral, Combine(
|
||||
Values(CV_8UC1, CV_8UC3),
|
||||
Values(Size(5, 5), Size(9, 9)),
|
||||
Values(Size(0, 0)), //not use
|
||||
Values((MatType)cv::BORDER_CONSTANT, (MatType)cv::BORDER_REPLICATE,
|
||||
(MatType)cv::BORDER_REFLECT, (MatType)cv::BORDER_REFLECT_101)));
|
||||
#endif // HAVE_OPENCL
|
||||
|
@ -475,56 +475,6 @@ TEST_P(equalizeHist, Mat)
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
////////////////////////////////bilateralFilter////////////////////////////////////////////
|
||||
|
||||
struct bilateralFilter : ImgprocTestBase {};
|
||||
|
||||
TEST_P(bilateralFilter, Mat)
|
||||
{
|
||||
double sigmacolor = 50.0;
|
||||
int radius = 9;
|
||||
int d = 2 * radius + 1;
|
||||
double sigmaspace = 20.0;
|
||||
int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE, cv::BORDER_REFLECT, cv::BORDER_WRAP, cv::BORDER_REFLECT_101};
|
||||
//const char *borderstr[] = {"BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101"};
|
||||
|
||||
if (mat1.depth() != CV_8U || mat1.type() != dst.type())
|
||||
{
|
||||
cout << "Unsupported type" << endl;
|
||||
EXPECT_DOUBLE_EQ(0.0, 0.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
for(size_t i = 0; i < sizeof(bordertype) / sizeof(int); i++)
|
||||
for(int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
random_roi();
|
||||
if(((bordertype[i] != cv::BORDER_CONSTANT) && (bordertype[i] != cv::BORDER_REPLICATE) && (mat1_roi.cols <= radius)) || (mat1_roi.cols <= radius) || (mat1_roi.rows <= radius) || (mat1_roi.rows <= radius))
|
||||
{
|
||||
continue;
|
||||
}
|
||||
//if((dstx>=radius) && (dsty >= radius) && (dstx+cldst_roi.cols+radius <=cldst_roi.wholecols) && (dsty+cldst_roi.rows+radius <= cldst_roi.wholerows))
|
||||
//{
|
||||
// dst_roi.adjustROI(radius, radius, radius, radius);
|
||||
// cldst_roi.adjustROI(radius, radius, radius, radius);
|
||||
//}
|
||||
//else
|
||||
//{
|
||||
// continue;
|
||||
//}
|
||||
|
||||
cv::bilateralFilter(mat1_roi, dst_roi, d, sigmacolor, sigmaspace, bordertype[i] | cv::BORDER_ISOLATED);
|
||||
cv::ocl::bilateralFilter(clmat1_roi, cldst_roi, d, sigmacolor, sigmaspace, bordertype[i] | cv::BORDER_ISOLATED);
|
||||
Near(1.);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////copyMakeBorder////////////////////////////////////////////
|
||||
|
||||
struct CopyMakeBorder : ImgprocTestBase {};
|
||||
@ -1618,21 +1568,6 @@ INSTANTIATE_TEST_CASE_P(ImgprocTestBase, equalizeHist, Combine(
|
||||
NULL_TYPE,
|
||||
Values(false))); // Values(false) is the reserved parameter
|
||||
|
||||
//INSTANTIATE_TEST_CASE_P(ImgprocTestBase, bilateralFilter, Combine(
|
||||
// ONE_TYPE(CV_8UC1),
|
||||
// NULL_TYPE,
|
||||
// ONE_TYPE(CV_8UC1),
|
||||
// NULL_TYPE,
|
||||
// NULL_TYPE,
|
||||
// Values(false))); // Values(false) is the reserved parameter
|
||||
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, bilateralFilter, Combine(
|
||||
Values(CV_8UC1, CV_8UC3),
|
||||
NULL_TYPE,
|
||||
Values(CV_8UC1, CV_8UC3),
|
||||
NULL_TYPE,
|
||||
NULL_TYPE,
|
||||
Values(false))); // Values(false) is the reserved parameter
|
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, CopyMakeBorder, Combine(
|
||||
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4),
|
||||
|
51
samples/ocl/adaptive_bilateral_filter.cpp
Normal file
51
samples/ocl/adaptive_bilateral_filter.cpp
Normal file
@ -0,0 +1,51 @@
|
||||
// This sample shows the difference of adaptive bilateral filter and bilateral filter.
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/ocl/ocl.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
|
||||
int main( int argc, const char** argv )
|
||||
{
|
||||
const char* keys =
|
||||
"{ i | input | | specify input image }"
|
||||
"{ k | ksize | 5 | specify kernel size }";
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
string src_path = cmd.get<string>("i");
|
||||
int ks = cmd.get<int>("k");
|
||||
const char * winName[] = {"input", "adaptive bilateral CPU", "adaptive bilateral OpenCL", "bilateralFilter OpenCL"};
|
||||
|
||||
Mat src = imread(src_path);
|
||||
Mat abFilterCPU;
|
||||
if(src.empty()){
|
||||
//cout << "error read image: " << src_path << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
std::vector<ocl::Info> infos;
|
||||
ocl::getDevice(infos);
|
||||
|
||||
ocl::oclMat dsrc(src), dABFilter, dBFilter;
|
||||
|
||||
Size ksize(ks, ks);
|
||||
adaptiveBilateralFilter(src,abFilterCPU, ksize, 10);
|
||||
ocl::adaptiveBilateralFilter(dsrc, dABFilter, ksize, 10);
|
||||
ocl::bilateralFilter(dsrc, dBFilter, ks, 30, 9);
|
||||
|
||||
Mat abFilter = dABFilter;
|
||||
Mat bFilter = dBFilter;
|
||||
imshow(winName[0], src);
|
||||
|
||||
imshow(winName[1], abFilterCPU);
|
||||
|
||||
imshow(winName[2], abFilter);
|
||||
|
||||
imshow(winName[3], bFilter);
|
||||
|
||||
waitKey();
|
||||
return 0;
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user