mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Reworked calibrate.py
- Fixed width and height swap in board size - Fixed defaults in command line hint - Fixed board visualization for Charuco case - Used matchImagePoints method to handle partially detected Charuco boards
This commit is contained in:
parent
bf06bc92aa
commit
85ea247cc6
@ -16,11 +16,13 @@ default values:
|
||||
-w: 4
|
||||
-h: 6
|
||||
-t: chessboard
|
||||
--square_size: 50
|
||||
--marker_size: 25
|
||||
--square_size: 10
|
||||
--marker_size: 5
|
||||
--aruco_dict: DICT_4X4_50
|
||||
--threads: 4
|
||||
<image mask> defaults to ../data/left*.jpg
|
||||
|
||||
NOTE: Chessboard size is defined in inner corners. Charuco board size is defined in units.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
@ -67,45 +69,38 @@ def main():
|
||||
marker_size = float(args.get('--marker_size'))
|
||||
aruco_dict_name = str(args.get('--aruco_dict'))
|
||||
|
||||
pattern_size = (height, width)
|
||||
pattern_size = (width, height)
|
||||
if pattern_type == 'chessboard':
|
||||
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
|
||||
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
|
||||
pattern_points *= square_size
|
||||
elif pattern_type == 'charucoboard':
|
||||
pattern_points = np.zeros((np.prod((height-1, width-1)), 3), np.float32)
|
||||
pattern_points[:, :2] = np.indices((height-1, width-1)).T.reshape(-1, 2)
|
||||
pattern_points *= square_size
|
||||
else:
|
||||
print("unknown pattern")
|
||||
return None
|
||||
|
||||
obj_points = []
|
||||
img_points = []
|
||||
h, w = cv.imread(img_names[0], cv.IMREAD_GRAYSCALE).shape[:2] # TODO: use imquery call to retrieve results
|
||||
|
||||
aruco_dicts = {
|
||||
'DICT_4X4_50':cv.aruco.DICT_4X4_50,
|
||||
'DICT_4X4_100':cv.aruco.DICT_4X4_100,
|
||||
'DICT_4X4_250':cv.aruco.DICT_4X4_250,
|
||||
'DICT_4X4_1000':cv.aruco.DICT_4X4_1000,
|
||||
'DICT_5X5_50':cv.aruco.DICT_5X5_50,
|
||||
'DICT_5X5_100':cv.aruco.DICT_5X5_100,
|
||||
'DICT_5X5_250':cv.aruco.DICT_5X5_250,
|
||||
'DICT_5X5_1000':cv.aruco.DICT_5X5_1000,
|
||||
'DICT_6X6_50':cv.aruco.DICT_6X6_50,
|
||||
'DICT_6X6_100':cv.aruco.DICT_6X6_100,
|
||||
'DICT_6X6_250':cv.aruco.DICT_6X6_250,
|
||||
'DICT_6X6_1000':cv.aruco.DICT_6X6_1000,
|
||||
'DICT_7X7_50':cv.aruco.DICT_7X7_50,
|
||||
'DICT_7X7_100':cv.aruco.DICT_7X7_100,
|
||||
'DICT_7X7_250':cv.aruco.DICT_7X7_250,
|
||||
'DICT_7X7_1000':cv.aruco.DICT_7X7_1000,
|
||||
'DICT_ARUCO_ORIGINAL':cv.aruco.DICT_ARUCO_ORIGINAL,
|
||||
'DICT_APRILTAG_16h5':cv.aruco.DICT_APRILTAG_16h5,
|
||||
'DICT_APRILTAG_25h9':cv.aruco.DICT_APRILTAG_25h9,
|
||||
'DICT_APRILTAG_36h10':cv.aruco.DICT_APRILTAG_36h10,
|
||||
'DICT_APRILTAG_36h11':cv.aruco.DICT_APRILTAG_36h11
|
||||
'DICT_4X4_50': cv.aruco.DICT_4X4_50,
|
||||
'DICT_4X4_100': cv.aruco.DICT_4X4_100,
|
||||
'DICT_4X4_250': cv.aruco.DICT_4X4_250,
|
||||
'DICT_4X4_1000': cv.aruco.DICT_4X4_1000,
|
||||
'DICT_5X5_50': cv.aruco.DICT_5X5_50,
|
||||
'DICT_5X5_100': cv.aruco.DICT_5X5_100,
|
||||
'DICT_5X5_250': cv.aruco.DICT_5X5_250,
|
||||
'DICT_5X5_1000': cv.aruco.DICT_5X5_1000,
|
||||
'DICT_6X6_50': cv.aruco.DICT_6X6_50,
|
||||
'DICT_6X6_100': cv.aruco.DICT_6X6_100,
|
||||
'DICT_6X6_250': cv.aruco.DICT_6X6_250,
|
||||
'DICT_6X6_1000': cv.aruco.DICT_6X6_1000,
|
||||
'DICT_7X7_50': cv.aruco.DICT_7X7_50,
|
||||
'DICT_7X7_100': cv.aruco.DICT_7X7_100,
|
||||
'DICT_7X7_250': cv.aruco.DICT_7X7_250,
|
||||
'DICT_7X7_1000': cv.aruco.DICT_7X7_1000,
|
||||
'DICT_ARUCO_ORIGINAL': cv.aruco.DICT_ARUCO_ORIGINAL,
|
||||
'DICT_APRILTAG_16h5': cv.aruco.DICT_APRILTAG_16h5,
|
||||
'DICT_APRILTAG_25h9': cv.aruco.DICT_APRILTAG_25h9,
|
||||
'DICT_APRILTAG_36h10': cv.aruco.DICT_APRILTAG_36h10,
|
||||
'DICT_APRILTAG_36h11': cv.aruco.DICT_APRILTAG_36h11
|
||||
}
|
||||
|
||||
if (aruco_dict_name not in set(aruco_dicts.keys())):
|
||||
@ -130,19 +125,27 @@ def main():
|
||||
if found:
|
||||
term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1)
|
||||
cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
|
||||
frame_img_points = corners.reshape(-1, 2)
|
||||
frame_obj_points = pattern_points
|
||||
elif pattern_type == 'charucoboard':
|
||||
corners, _charucoIds, _markerCorners_svg, _markerIds_svg = charuco_detector.detectBoard(img)
|
||||
if (len(corners) == (height-1)*(width-1)):
|
||||
corners, charucoIds, _, _ = charuco_detector.detectBoard(img)
|
||||
if (len(corners) > 0):
|
||||
frame_obj_points, frame_img_points = board.matchImagePoints(corners, charucoIds)
|
||||
found = True
|
||||
else:
|
||||
found = False
|
||||
else:
|
||||
print("unknown pattern type", pattern_type)
|
||||
return None
|
||||
|
||||
if debug_dir:
|
||||
vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR)
|
||||
cv.drawChessboardCorners(vis, pattern_size, corners, found)
|
||||
if pattern_type == 'chessboard':
|
||||
cv.drawChessboardCorners(vis, pattern_size, corners, found)
|
||||
elif pattern_type == 'charucoboard':
|
||||
cv.aruco.drawDetectedCornersCharuco(vis, corners, charucoIds=charucoIds)
|
||||
_path, name, _ext = splitfn(fn)
|
||||
outfile = os.path.join(debug_dir, name + '_chess.png')
|
||||
outfile = os.path.join(debug_dir, name + '_board.png')
|
||||
cv.imwrite(outfile, vis)
|
||||
|
||||
if not found:
|
||||
@ -150,7 +153,7 @@ def main():
|
||||
return None
|
||||
|
||||
print(' %s... OK' % fn)
|
||||
return (corners.reshape(-1, 2), pattern_points)
|
||||
return (frame_img_points, frame_obj_points)
|
||||
|
||||
threads_num = int(args.get('--threads'))
|
||||
if threads_num <= 1:
|
||||
@ -177,7 +180,7 @@ def main():
|
||||
print('')
|
||||
for fn in img_names if debug_dir else []:
|
||||
_path, name, _ext = splitfn(fn)
|
||||
img_found = os.path.join(debug_dir, name + '_chess.png')
|
||||
img_found = os.path.join(debug_dir, name + '_board.png')
|
||||
outfile = os.path.join(debug_dir, name + '_undistorted.png')
|
||||
|
||||
img = cv.imread(img_found)
|
||||
|
Loading…
Reference in New Issue
Block a user