mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
Merge pull request #25208 from Abdurrahheem:ash/0D-fullyConnected-test
Fully connected 0D test. #25208 This PR introduces parametrized `0/1D` input support test for `Fullyconnected` layer. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
282c762ead
commit
869016d8b1
@ -167,10 +167,11 @@ public:
|
||||
cAxis = normalize_axis(axis, inputsTmp[0]);
|
||||
}
|
||||
|
||||
MatShape outShape(cAxis + 1);
|
||||
MatShape outShape((!inputs[0].empty()) ? cAxis + 1 : cAxis);
|
||||
for (int i = 0; i < cAxis; ++i)
|
||||
outShape[i] = inputsTmp[0][i];
|
||||
outShape.back() = numOutput;
|
||||
if (!inputs[0].empty())
|
||||
outShape.back() = numOutput;
|
||||
|
||||
outputs.resize(1, outShape);
|
||||
return false;
|
||||
|
@ -567,4 +567,40 @@ INSTANTIATE_TEST_CASE_P(/*nothing*/, Layer_Slice_Test,
|
||||
std::vector<int>({1, 4})
|
||||
));
|
||||
|
||||
typedef testing::TestWithParam<tuple<std::vector<int>>> Layer_FullyConnected_Test;
|
||||
TEST_P(Layer_FullyConnected_Test, Accuracy_01D)
|
||||
{
|
||||
LayerParams lp;
|
||||
lp.type = "InnerProduct";
|
||||
lp.name = "InnerProductLayer";
|
||||
lp.set("num_output", 1);
|
||||
lp.set("bias_term", false);
|
||||
lp.set("axis", 0);
|
||||
|
||||
std::vector<int> input_shape = get<0>(GetParam());
|
||||
|
||||
RNG& rng = TS::ptr()->get_rng();
|
||||
float inp_value = rng.uniform(0.0, 10.0);
|
||||
Mat weights(std::vector<int>{total(input_shape), 1}, CV_32F, inp_value);
|
||||
lp.blobs.push_back(weights);
|
||||
|
||||
Ptr<Layer> layer = LayerFactory::createLayerInstance("InnerProduct", lp);
|
||||
|
||||
Mat input(input_shape.size(), input_shape.data(), CV_32F);
|
||||
randn(input, 0, 1);
|
||||
Mat output_ref = input.reshape(1, 1) * weights;
|
||||
output_ref.dims = 1;
|
||||
|
||||
std::vector<Mat> inputs{input};
|
||||
std::vector<Mat> outputs;
|
||||
runLayer(layer, inputs, outputs);
|
||||
normAssert(output_ref, outputs[0]);
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P(/*nothting*/, Layer_FullyConnected_Test,
|
||||
testing::Values(
|
||||
std::vector<int>({}),
|
||||
std::vector<int>({1}),
|
||||
std::vector<int>({4})
|
||||
));
|
||||
|
||||
}}
|
||||
|
Loading…
Reference in New Issue
Block a user