feature pool generation:

- use random from tr1 extension
    - extend cv::Boost
This commit is contained in:
marina.kolpakova 2012-12-06 12:19:35 +04:00
parent 948365b1c8
commit 86973f8ede
5 changed files with 245 additions and 43 deletions

View File

@ -48,6 +48,9 @@
namespace sft
{
using cv::Mat;
struct ICF;
typedef std::vector<ICF> Icfvector;
}
#endif

View File

@ -44,18 +44,63 @@
#define __SFT_OCTAVE_HPP__
#include <opencv2/ml/ml.hpp>
#include <sft/common.hpp>
namespace sft
{
struct ICF
{
ICF(int x, int y, int w, int h, int ch) : bb(cv::Rect(x, y, w, h)), channel(ch) {}
bool operator ==(ICF b)
{
return bb == b.bb && channel == b.channel;
}
bool operator !=(ICF b)
{
return bb != b.bb || channel != b.channel;
}
private:
cv::Rect bb;
int channel;
};
class FeaturePool
{
public:
FeaturePool(cv::Size model, int nfeatures);
~FeaturePool();
private:
void fill(int desired);
cv::Size model;
int nfeatures;
Mat integrals;
Mat responces;
Icfvector pool;
static const unsigned int seed = 0;
enum { N_CHANNELS = 10 };
};
// used for traning single octave scale
class Octave : public cv::Boost
class Octave : cv::Boost
{
public:
Octave();
~Octave();
virtual ~Octave();
virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
private:
CvBoostParams params;
};
}

View File

@ -0,0 +1,75 @@
#ifndef __SFT_RANDOM_HPP__
#define __SFT_RANDOM_HPP__
#if defined(_MSC_VER) && _MSC_VER >= 1600
# include <random>
namespace sft {
struct Random
{
typedef std::mt19937 engine;
typedef std::uniform_int<int> uniform;
};
}
#elif (__GNUC__) && __GNUC__ > 3 && __GNUC_MINOR__ > 1
# if defined (__cplusplus) && __cplusplus > 201100L
# include <random>
namespace sft {
struct Random
{
typedef std::mt19937 engine;
typedef std::uniform_int<int> uniform;
};
}
# else
# include <tr1/random>
namespace sft {
struct Random
{
typedef std::tr1::mt19937 engine;
typedef std::tr1::uniform_int<int> uniform;
};
}
# endif
#else
#include <opencv2/core/core.hpp>
namespace rnd {
typedef cv::RNG engine;
template<typename T>
struct uniform_int
{
uniform_int(const int _min, const int _max) : min(_min), max(_max) {}
T operator() (engine& eng, const int bound) const
{
return (T)eng.uniform(min, bound);
}
T operator() (engine& eng) const
{
return (T)eng.uniform(min, max);
}
private:
int min;
int max;
};
}
namespace sft {
struct Random
{
typedef rnd::engine engine;
typedef rnd::uniform_int<int> uniform;
};
}
#endif
#endif

View File

@ -41,7 +41,84 @@
//M*/
#include <sft/octave.hpp>
#include <sft/random.hpp>
#if defined VISUALIZE_GENERATION
# include <opencv2/highgui/highgui.hpp>
# define show(a, b) \
do { \
cv::imshow(a,b); \
cv::waitkey(0); \
} while(0)
#else
# define show(a, b)
#endif
// ============ Octave ============ //
sft::Octave::Octave(){}
sft::Octave::~Octave(){}
sft::Octave::~Octave(){}
bool sft::Octave::train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx,
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
{
bool update = false;
return cv::Boost::train(trainData, CV_COL_SAMPLE, responses, varIdx, sampleIdx, varType, missingDataMask, params,
update);
}
// ========= FeaturePool ========= //
sft::FeaturePool::FeaturePool(cv::Size m, int n) : model(m), nfeatures(n)
{
CV_Assert(m != cv::Size() && n > 0);
fill(nfeatures);
}
sft::FeaturePool::~FeaturePool(){}
void sft::FeaturePool::fill(int desired)
{
int mw = model.width;
int mh = model.height;
int maxPoolSize = (mw -1) * mw / 2 * (mh - 1) * mh / 2 * N_CHANNELS;
nfeatures = std::min(desired, maxPoolSize);
pool.reserve(nfeatures);
sft::Random::engine eng(seed);
sft::Random::engine eng_ch(seed);
sft::Random::uniform chRand(0, N_CHANNELS - 1);
sft::Random::uniform xRand(0, model.width - 2);
sft::Random::uniform yRand(0, model.height - 2);
sft::Random::uniform wRand(1, model.width - 1);
sft::Random::uniform hRand(1, model.height - 1);
while (pool.size() < size_t(nfeatures))
{
int x = xRand(eng);
int y = yRand(eng);
int w = 1 + wRand(eng, model.width - x - 1);
int h = 1 + hRand(eng, model.height - y - 1);
CV_Assert(w > 0);
CV_Assert(h > 0);
CV_Assert(w + x < model.width);
CV_Assert(h + y < model.height);
int ch = chRand(eng_ch);
sft::ICF f(x, y, w, h, ch);
if (std::find(pool.begin(), pool.end(),f) == pool.end())
pool.push_back(f);
}
}

View File

@ -52,63 +52,65 @@ int main(int argc, char** argv)
int npositives = 10;
int nnegatives = 10;
int nsamples = npositives + nnegatives;
cv::Size model(64, 128);
sft::Octave boost;
cv::Mat train_data(nfeatures, nsamples, CV_32FC1);
// cv::RNG rng;
sft::FeaturePool pool(model, nfeatures);
// for (int y = 0; y < nfeatures; ++y)
// for (int x = 0; x < nsamples; ++x)
// train_data.at<float>(y, x) = rng.uniform(0.f, 1.f);
cv::RNG rng;
// int tflag = CV_COL_SAMPLE;
// Mat responses(nsamples, 1, CV_32FC1);
// for (int y = 0; y < nsamples; ++y)
// responses.at<float>(y, 0) = (y < npositives) ? 1.f : 0.f;
for (int y = 0; y < nfeatures; ++y)
for (int x = 0; x < nsamples; ++x)
train_data.at<float>(y, x) = rng.uniform(0.f, 1.f);
int tflag = CV_COL_SAMPLE;
cv::Mat responses(nsamples, 1, CV_32FC1);
for (int y = 0; y < nsamples; ++y)
responses.at<float>(y, 0) = (y < npositives) ? 1.f : 0.f;
// Mat var_idx(1, nfeatures, CV_32SC1);
// for (int x = 0; x < nfeatures; ++x)
// var_idx.at<int>(0, x) = x;
cv::Mat var_idx(1, nfeatures, CV_32SC1);
for (int x = 0; x < nfeatures; ++x)
var_idx.at<int>(0, x) = x;
// // Mat sample_idx;
// Mat sample_idx(1, nsamples, CV_32SC1);
// for (int x = 0; x < nsamples; ++x)
// sample_idx.at<int>(0, x) = x;
// Mat sample_idx;
cv::Mat sample_idx(1, nsamples, CV_32SC1);
for (int x = 0; x < nsamples; ++x)
sample_idx.at<int>(0, x) = x;
// Mat var_type(1, nfeatures + 1, CV_8UC1);
// for (int x = 0; x < nfeatures; ++x)
// var_type.at<uchar>(0, x) = CV_VAR_ORDERED;
cv::Mat var_type(1, nfeatures + 1, CV_8UC1);
for (int x = 0; x < nfeatures; ++x)
var_type.at<uchar>(0, x) = CV_VAR_ORDERED;
// var_type.at<uchar>(0, nfeatures) = CV_VAR_CATEGORICAL;
var_type.at<uchar>(0, nfeatures) = CV_VAR_CATEGORICAL;
// Mat missing_mask;
cv::Mat missing_mask;
// CvBoostParams params;
// {
// params.max_categories = 10;
// params.max_depth = 2;
// params.min_sample_count = 2;
// params.cv_folds = 0;
// params.truncate_pruned_tree = false;
CvBoostParams params;
{
params.max_categories = 10;
params.max_depth = 2;
params.min_sample_count = 2;
params.cv_folds = 0;
params.truncate_pruned_tree = false;
// /// ??????????????????
// params.regression_accuracy = 0.01;
// params.use_surrogates = false;
// params.use_1se_rule = false;
/// ??????????????????
params.regression_accuracy = 0.01;
params.use_surrogates = false;
params.use_1se_rule = false;
// ///////// boost params
// params.boost_type = CvBoost::GENTLE;
// params.weak_count = 1;
// params.split_criteria = CvBoost::SQERR;
// params.weight_trim_rate = 0.95;
// }
///////// boost params
params.boost_type = CvBoost::GENTLE;
params.weak_count = 1;
params.split_criteria = CvBoost::SQERR;
params.weight_trim_rate = 0.95;
}
// bool update = false;
bool update = false;
// boost.train(train_data, tflag, responses,
// var_idx, sample_idx, var_type, missing_mask, params, update);
boost.train(train_data, responses, var_idx, sample_idx, var_type, missing_mask);
// CvFileStorage* fs = cvOpenFileStorage( "/home/kellan/train_res.xml", 0, CV_STORAGE_WRITE );
// boost.write(fs, "test_res");