mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
Merge pull request #1049 from pengx17:2.4_superres_ocl
This commit is contained in:
commit
886c009da6
@ -4,4 +4,4 @@ endif()
|
||||
|
||||
set(the_description "Super Resolution")
|
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4127 -Wundef)
|
||||
ocv_define_module(superres opencv_imgproc opencv_video OPTIONAL opencv_gpu opencv_highgui)
|
||||
ocv_define_module(superres opencv_imgproc opencv_video OPTIONAL opencv_gpu opencv_highgui opencv_ocl)
|
||||
|
@ -63,10 +63,12 @@ namespace cv
|
||||
|
||||
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_DualTVL1();
|
||||
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_DualTVL1_GPU();
|
||||
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_DualTVL1_OCL();
|
||||
|
||||
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_Brox_GPU();
|
||||
|
||||
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_PyrLK_GPU();
|
||||
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_PyrLK_OCL();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -92,6 +92,7 @@ namespace cv
|
||||
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow.
|
||||
CV_EXPORTS Ptr<SuperResolution> createSuperResolution_BTVL1();
|
||||
CV_EXPORTS Ptr<SuperResolution> createSuperResolution_BTVL1_GPU();
|
||||
CV_EXPORTS Ptr<SuperResolution> createSuperResolution_BTVL1_OCL();
|
||||
}
|
||||
}
|
||||
|
||||
|
146
modules/superres/perf/perf_superres_ocl.cpp
Normal file
146
modules/superres/perf/perf_superres_ocl.cpp
Normal file
@ -0,0 +1,146 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
#include "opencv2/ocl/ocl.hpp"
|
||||
using namespace std;
|
||||
using namespace testing;
|
||||
using namespace perf;
|
||||
using namespace cv;
|
||||
using namespace cv::superres;
|
||||
|
||||
namespace
|
||||
{
|
||||
class OneFrameSource_OCL : public FrameSource
|
||||
{
|
||||
public:
|
||||
explicit OneFrameSource_OCL(const ocl::oclMat& frame) : frame_(frame) {}
|
||||
|
||||
void nextFrame(OutputArray frame)
|
||||
{
|
||||
ocl::getOclMatRef(frame) = frame_;
|
||||
}
|
||||
void reset()
|
||||
{
|
||||
}
|
||||
|
||||
private:
|
||||
ocl::oclMat frame_;
|
||||
};
|
||||
|
||||
|
||||
class ZeroOpticalFlowOCL : public DenseOpticalFlowExt
|
||||
{
|
||||
public:
|
||||
void calc(InputArray frame0, InputArray, OutputArray flow1, OutputArray flow2)
|
||||
{
|
||||
ocl::oclMat& frame0_ = ocl::getOclMatRef(frame0);
|
||||
ocl::oclMat& flow1_ = ocl::getOclMatRef(flow1);
|
||||
ocl::oclMat& flow2_ = ocl::getOclMatRef(flow2);
|
||||
|
||||
cv::Size size = frame0_.size();
|
||||
|
||||
if(!flow2.needed())
|
||||
{
|
||||
flow1_.create(size, CV_32FC2);
|
||||
flow1_.setTo(Scalar::all(0));
|
||||
}
|
||||
else
|
||||
{
|
||||
flow1_.create(size, CV_32FC1);
|
||||
flow2_.create(size, CV_32FC1);
|
||||
|
||||
flow1_.setTo(Scalar::all(0));
|
||||
flow2_.setTo(Scalar::all(0));
|
||||
}
|
||||
}
|
||||
|
||||
void collectGarbage()
|
||||
{
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
PERF_TEST_P(Size_MatType, SuperResolution_BTVL1_OCL,
|
||||
Combine(Values(szSmall64, szSmall128),
|
||||
Values(MatType(CV_8UC1), MatType(CV_8UC3))))
|
||||
{
|
||||
std::vector<cv::ocl::Info>info;
|
||||
cv::ocl::getDevice(info);
|
||||
|
||||
declare.time(5 * 60);
|
||||
|
||||
const Size size = get<0>(GetParam());
|
||||
const int type = get<1>(GetParam());
|
||||
|
||||
Mat frame(size, type);
|
||||
declare.in(frame, WARMUP_RNG);
|
||||
|
||||
ocl::oclMat frame_ocl;
|
||||
frame_ocl.upload(frame);
|
||||
|
||||
|
||||
const int scale = 2;
|
||||
const int iterations = 50;
|
||||
const int temporalAreaRadius = 1;
|
||||
Ptr<DenseOpticalFlowExt> opticalFlowOcl(new ZeroOpticalFlowOCL);
|
||||
|
||||
Ptr<SuperResolution> superRes_ocl = createSuperResolution_BTVL1_OCL();
|
||||
|
||||
superRes_ocl->set("scale", scale);
|
||||
superRes_ocl->set("iterations", iterations);
|
||||
superRes_ocl->set("temporalAreaRadius", temporalAreaRadius);
|
||||
superRes_ocl->set("opticalFlow", opticalFlowOcl);
|
||||
|
||||
superRes_ocl->setInput(new OneFrameSource_OCL(frame_ocl));
|
||||
|
||||
ocl::oclMat dst_ocl;
|
||||
superRes_ocl->nextFrame(dst_ocl);
|
||||
|
||||
TEST_CYCLE_N(10) superRes_ocl->nextFrame(dst_ocl);
|
||||
frame_ocl.release();
|
||||
CPU_SANITY_CHECK(dst_ocl);
|
||||
}
|
||||
#endif
|
748
modules/superres/src/btv_l1_ocl.cpp
Normal file
748
modules/superres/src/btv_l1_ocl.cpp
Normal file
@ -0,0 +1,748 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
// S. Farsiu , D. Robinson, M. Elad, P. Milanfar. Fast and robust multiframe super resolution.
|
||||
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow.
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#if !defined(HAVE_OPENCL) || !defined(HAVE_OPENCV_OCL)
|
||||
|
||||
cv::Ptr<cv::superres::SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL()
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform");
|
||||
return Ptr<SuperResolution>();
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
using namespace cv::superres;
|
||||
using namespace cv::superres::detail;
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace ocl
|
||||
{
|
||||
extern const char* superres_btvl1;
|
||||
|
||||
float* btvWeights_ = NULL;
|
||||
size_t btvWeights_size = 0;
|
||||
}
|
||||
}
|
||||
|
||||
namespace btv_l1_device_ocl
|
||||
{
|
||||
void buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY,
|
||||
const oclMat& backwardMotionX, const oclMat& bacwardMotionY,
|
||||
oclMat& forwardMapX, oclMat& forwardMapY,
|
||||
oclMat& backwardMapX, oclMat& backwardMapY);
|
||||
|
||||
void upscale(const oclMat& src, oclMat& dst, int scale);
|
||||
|
||||
float diffSign(float a, float b);
|
||||
|
||||
Point3f diffSign(Point3f a, Point3f b);
|
||||
|
||||
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst);
|
||||
|
||||
void calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize);
|
||||
}
|
||||
|
||||
void btv_l1_device_ocl::buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY,
|
||||
const oclMat& backwardMotionX, const oclMat& backwardMotionY,
|
||||
oclMat& forwardMapX, oclMat& forwardMapY,
|
||||
oclMat& backwardMapX, oclMat& backwardMapY)
|
||||
{
|
||||
Context* clCxt = Context::getContext();
|
||||
|
||||
size_t local_thread[] = {32, 8, 1};
|
||||
size_t global_thread[] = {forwardMapX.cols, forwardMapX.rows, 1};
|
||||
|
||||
int forwardMotionX_step = (int)(forwardMotionX.step/forwardMotionX.elemSize());
|
||||
int forwardMotionY_step = (int)(forwardMotionY.step/forwardMotionY.elemSize());
|
||||
int backwardMotionX_step = (int)(backwardMotionX.step/backwardMotionX.elemSize());
|
||||
int backwardMotionY_step = (int)(backwardMotionY.step/backwardMotionY.elemSize());
|
||||
int forwardMapX_step = (int)(forwardMapX.step/forwardMapX.elemSize());
|
||||
int forwardMapY_step = (int)(forwardMapY.step/forwardMapY.elemSize());
|
||||
int backwardMapX_step = (int)(backwardMapX.step/backwardMapX.elemSize());
|
||||
int backwardMapY_step = (int)(backwardMapY.step/backwardMapY.elemSize());
|
||||
|
||||
String kernel_name = "buildMotionMapsKernel";
|
||||
vector< pair<size_t, const void*> > args;
|
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionX.data));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionY.data));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionX.data));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionY.data));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapX.data));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapY.data));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapX.data));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapY.data));
|
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX.rows));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY.cols));
|
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionX_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionY_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapX_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapY_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapX_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapY_step));
|
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
|
||||
}
|
||||
|
||||
void btv_l1_device_ocl::upscale(const oclMat& src, oclMat& dst, int scale)
|
||||
{
|
||||
Context* clCxt = Context::getContext();
|
||||
|
||||
size_t local_thread[] = {32, 8, 1};
|
||||
size_t global_thread[] = {src.cols, src.rows, 1};
|
||||
|
||||
int src_step = (int)(src.step/src.elemSize());
|
||||
int dst_step = (int)(dst.step/dst.elemSize());
|
||||
|
||||
String kernel_name = "upscaleKernel";
|
||||
vector< pair<size_t, const void*> > args;
|
||||
|
||||
int cn = src.oclchannels();
|
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src.data));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst.data));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&scale));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&cn));
|
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
|
||||
|
||||
}
|
||||
|
||||
float btv_l1_device_ocl::diffSign(float a, float b)
|
||||
{
|
||||
return a > b ? 1.0f : a < b ? -1.0f : 0.0f;
|
||||
}
|
||||
|
||||
Point3f btv_l1_device_ocl::diffSign(Point3f a, Point3f b)
|
||||
{
|
||||
return Point3f(
|
||||
a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f,
|
||||
a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f,
|
||||
a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f
|
||||
);
|
||||
}
|
||||
|
||||
void btv_l1_device_ocl::diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst)
|
||||
{
|
||||
Context* clCxt = Context::getContext();
|
||||
|
||||
oclMat src1_ = src1.reshape(1);
|
||||
oclMat src2_ = src2.reshape(1);
|
||||
oclMat dst_ = dst.reshape(1);
|
||||
|
||||
int src1_step = (int)(src1_.step/src1_.elemSize());
|
||||
int src2_step = (int)(src2_.step/src2_.elemSize());
|
||||
int dst_step = (int)(dst_.step/dst_.elemSize());
|
||||
|
||||
size_t local_thread[] = {32, 8, 1};
|
||||
size_t global_thread[] = {src1_.cols, src1_.rows, 1};
|
||||
|
||||
String kernel_name = "diffSignKernel";
|
||||
vector< pair<size_t, const void*> > args;
|
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src1_.data));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src2_.data));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data));
|
||||
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.rows));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.cols));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src2_step));
|
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
|
||||
}
|
||||
|
||||
void btv_l1_device_ocl::calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize)
|
||||
{
|
||||
Context* clCxt = Context::getContext();
|
||||
|
||||
oclMat src_ = src.reshape(1);
|
||||
oclMat dst_ = dst.reshape(1);
|
||||
|
||||
size_t local_thread[] = {32, 8, 1};
|
||||
size_t global_thread[] = {src.cols, src.rows, 1};
|
||||
|
||||
int src_step = (int)(src_.step/src_.elemSize());
|
||||
int dst_step = (int)(dst_.step/dst_.elemSize());
|
||||
|
||||
String kernel_name = "calcBtvRegularizationKernel";
|
||||
vector< pair<size_t, const void*> > args;
|
||||
|
||||
int cn = src.oclchannels();
|
||||
|
||||
cl_mem c_btvRegWeights;
|
||||
size_t count = btvWeights_size * sizeof(float);
|
||||
c_btvRegWeights = openCLCreateBuffer(clCxt, CL_MEM_READ_ONLY, count);
|
||||
int cl_safe_check = clEnqueueWriteBuffer((cl_command_queue)clCxt->oclCommandQueue(), c_btvRegWeights, 1, 0, count, btvWeights_, 0, NULL, NULL);
|
||||
CV_Assert(cl_safe_check == CL_SUCCESS);
|
||||
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&src_.data));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&ksize));
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&cn));
|
||||
args.push_back(make_pair(sizeof(cl_mem), (void*)&c_btvRegWeights));
|
||||
|
||||
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
|
||||
cl_safe_check = clReleaseMemObject(c_btvRegWeights);
|
||||
CV_Assert(cl_safe_check == CL_SUCCESS);
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
void calcRelativeMotions(const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions,
|
||||
vector<pair<oclMat, oclMat> >& relForwardMotions, vector<pair<oclMat, oclMat> >& relBackwardMotions,
|
||||
int baseIdx, Size size)
|
||||
{
|
||||
const int count = static_cast<int>(forwardMotions.size());
|
||||
|
||||
relForwardMotions.resize(count);
|
||||
relForwardMotions[baseIdx].first.create(size, CV_32FC1);
|
||||
relForwardMotions[baseIdx].first.setTo(Scalar::all(0));
|
||||
relForwardMotions[baseIdx].second.create(size, CV_32FC1);
|
||||
relForwardMotions[baseIdx].second.setTo(Scalar::all(0));
|
||||
|
||||
relBackwardMotions.resize(count);
|
||||
relBackwardMotions[baseIdx].first.create(size, CV_32FC1);
|
||||
relBackwardMotions[baseIdx].first.setTo(Scalar::all(0));
|
||||
relBackwardMotions[baseIdx].second.create(size, CV_32FC1);
|
||||
relBackwardMotions[baseIdx].second.setTo(Scalar::all(0));
|
||||
|
||||
for (int i = baseIdx - 1; i >= 0; --i)
|
||||
{
|
||||
ocl::add(relForwardMotions[i + 1].first, forwardMotions[i].first, relForwardMotions[i].first);
|
||||
ocl::add(relForwardMotions[i + 1].second, forwardMotions[i].second, relForwardMotions[i].second);
|
||||
|
||||
ocl::add(relBackwardMotions[i + 1].first, backwardMotions[i + 1].first, relBackwardMotions[i].first);
|
||||
ocl::add(relBackwardMotions[i + 1].second, backwardMotions[i + 1].second, relBackwardMotions[i].second);
|
||||
}
|
||||
|
||||
for (int i = baseIdx + 1; i < count; ++i)
|
||||
{
|
||||
ocl::add(relForwardMotions[i - 1].first, backwardMotions[i].first, relForwardMotions[i].first);
|
||||
ocl::add(relForwardMotions[i - 1].second, backwardMotions[i].second, relForwardMotions[i].second);
|
||||
|
||||
ocl::add(relBackwardMotions[i - 1].first, forwardMotions[i - 1].first, relBackwardMotions[i].first);
|
||||
ocl::add(relBackwardMotions[i - 1].second, forwardMotions[i - 1].second, relBackwardMotions[i].second);
|
||||
}
|
||||
}
|
||||
|
||||
void upscaleMotions(const vector<pair<oclMat, oclMat> >& lowResMotions, vector<pair<oclMat, oclMat> >& highResMotions, int scale)
|
||||
{
|
||||
highResMotions.resize(lowResMotions.size());
|
||||
|
||||
for (size_t i = 0; i < lowResMotions.size(); ++i)
|
||||
{
|
||||
ocl::resize(lowResMotions[i].first, highResMotions[i].first, Size(), scale, scale, INTER_LINEAR);
|
||||
ocl::resize(lowResMotions[i].second, highResMotions[i].second, Size(), scale, scale, INTER_LINEAR);
|
||||
|
||||
ocl::multiply(scale, highResMotions[i].first, highResMotions[i].first);
|
||||
ocl::multiply(scale, highResMotions[i].second, highResMotions[i].second);
|
||||
}
|
||||
}
|
||||
|
||||
void buildMotionMaps(const pair<oclMat, oclMat>& forwardMotion, const pair<oclMat, oclMat>& backwardMotion,
|
||||
pair<oclMat, oclMat>& forwardMap, pair<oclMat, oclMat>& backwardMap)
|
||||
{
|
||||
forwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
|
||||
forwardMap.second.create(forwardMotion.first.size(), CV_32FC1);
|
||||
|
||||
backwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
|
||||
backwardMap.second.create(forwardMotion.first.size(), CV_32FC1);
|
||||
|
||||
btv_l1_device_ocl::buildMotionMaps(forwardMotion.first, forwardMotion.second,
|
||||
backwardMotion.first, backwardMotion.second,
|
||||
forwardMap.first, forwardMap.second,
|
||||
backwardMap.first, backwardMap.second);
|
||||
}
|
||||
|
||||
void upscale(const oclMat& src, oclMat& dst, int scale)
|
||||
{
|
||||
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );
|
||||
|
||||
dst.create(src.rows * scale, src.cols * scale, src.type());
|
||||
dst.setTo(Scalar::all(0));
|
||||
|
||||
btv_l1_device_ocl::upscale(src, dst, scale);
|
||||
}
|
||||
|
||||
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst)
|
||||
{
|
||||
dst.create(src1.size(), src1.type());
|
||||
|
||||
btv_l1_device_ocl::diffSign(src1, src2, dst);
|
||||
}
|
||||
|
||||
void calcBtvWeights(int btvKernelSize, double alpha, vector<float>& btvWeights)
|
||||
{
|
||||
const size_t size = btvKernelSize * btvKernelSize;
|
||||
|
||||
btvWeights.resize(size);
|
||||
|
||||
const int ksize = (btvKernelSize - 1) / 2;
|
||||
const float alpha_f = static_cast<float>(alpha);
|
||||
|
||||
for (int m = 0, ind = 0; m <= ksize; ++m)
|
||||
{
|
||||
for (int l = ksize; l + m >= 0; --l, ++ind)
|
||||
btvWeights[ind] = pow(alpha_f, std::abs(m) + std::abs(l));
|
||||
}
|
||||
|
||||
btvWeights_ = &btvWeights[0];
|
||||
btvWeights_size = size;
|
||||
}
|
||||
|
||||
void calcBtvRegularization(const oclMat& src, oclMat& dst, int btvKernelSize)
|
||||
{
|
||||
dst.create(src.size(), src.type());
|
||||
dst.setTo(Scalar::all(0));
|
||||
|
||||
const int ksize = (btvKernelSize - 1) / 2;
|
||||
|
||||
btv_l1_device_ocl::calcBtvRegularization(src, dst, ksize);
|
||||
}
|
||||
|
||||
class BTVL1_OCL_Base
|
||||
{
|
||||
public:
|
||||
BTVL1_OCL_Base();
|
||||
|
||||
void process(const vector<oclMat>& src, oclMat& dst,
|
||||
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions,
|
||||
int baseIdx);
|
||||
|
||||
void collectGarbage();
|
||||
|
||||
protected:
|
||||
int scale_;
|
||||
int iterations_;
|
||||
double lambda_;
|
||||
double tau_;
|
||||
double alpha_;
|
||||
int btvKernelSize_;
|
||||
int blurKernelSize_;
|
||||
double blurSigma_;
|
||||
Ptr<DenseOpticalFlowExt> opticalFlow_;
|
||||
|
||||
private:
|
||||
vector<Ptr<cv::ocl::FilterEngine_GPU> > filters_;
|
||||
int curBlurKernelSize_;
|
||||
double curBlurSigma_;
|
||||
int curSrcType_;
|
||||
|
||||
vector<float> btvWeights_;
|
||||
int curBtvKernelSize_;
|
||||
double curAlpha_;
|
||||
|
||||
vector<pair<oclMat, oclMat> > lowResForwardMotions_;
|
||||
vector<pair<oclMat, oclMat> > lowResBackwardMotions_;
|
||||
|
||||
vector<pair<oclMat, oclMat> > highResForwardMotions_;
|
||||
vector<pair<oclMat, oclMat> > highResBackwardMotions_;
|
||||
|
||||
vector<pair<oclMat, oclMat> > forwardMaps_;
|
||||
vector<pair<oclMat, oclMat> > backwardMaps_;
|
||||
|
||||
oclMat highRes_;
|
||||
|
||||
vector<oclMat> diffTerms_;
|
||||
vector<oclMat> a_, b_, c_;
|
||||
oclMat regTerm_;
|
||||
};
|
||||
|
||||
BTVL1_OCL_Base::BTVL1_OCL_Base()
|
||||
{
|
||||
scale_ = 4;
|
||||
iterations_ = 180;
|
||||
lambda_ = 0.03;
|
||||
tau_ = 1.3;
|
||||
alpha_ = 0.7;
|
||||
btvKernelSize_ = 7;
|
||||
blurKernelSize_ = 5;
|
||||
blurSigma_ = 0.0;
|
||||
opticalFlow_ = createOptFlow_DualTVL1_OCL();
|
||||
|
||||
curBlurKernelSize_ = -1;
|
||||
curBlurSigma_ = -1.0;
|
||||
curSrcType_ = -1;
|
||||
|
||||
curBtvKernelSize_ = -1;
|
||||
curAlpha_ = -1.0;
|
||||
}
|
||||
|
||||
void BTVL1_OCL_Base::process(const vector<oclMat>& src, oclMat& dst,
|
||||
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions,
|
||||
int baseIdx)
|
||||
{
|
||||
CV_Assert( scale_ > 1 );
|
||||
CV_Assert( iterations_ > 0 );
|
||||
CV_Assert( tau_ > 0.0 );
|
||||
CV_Assert( alpha_ > 0.0 );
|
||||
CV_Assert( btvKernelSize_ > 0 && btvKernelSize_ <= 16 );
|
||||
CV_Assert( blurKernelSize_ > 0 );
|
||||
CV_Assert( blurSigma_ >= 0.0 );
|
||||
|
||||
// update blur filter and btv weights
|
||||
|
||||
if (filters_.size() != src.size() || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_)
|
||||
{
|
||||
filters_.resize(src.size());
|
||||
for (size_t i = 0; i < src.size(); ++i)
|
||||
filters_[i] = cv::ocl::createGaussianFilter_GPU(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_);
|
||||
curBlurKernelSize_ = blurKernelSize_;
|
||||
curBlurSigma_ = blurSigma_;
|
||||
curSrcType_ = src[0].type();
|
||||
}
|
||||
|
||||
if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_)
|
||||
{
|
||||
calcBtvWeights(btvKernelSize_, alpha_, btvWeights_);
|
||||
curBtvKernelSize_ = btvKernelSize_;
|
||||
curAlpha_ = alpha_;
|
||||
}
|
||||
|
||||
// calc motions between input frames
|
||||
|
||||
calcRelativeMotions(forwardMotions, backwardMotions,
|
||||
lowResForwardMotions_, lowResBackwardMotions_,
|
||||
baseIdx, src[0].size());
|
||||
|
||||
upscaleMotions(lowResForwardMotions_, highResForwardMotions_, scale_);
|
||||
upscaleMotions(lowResBackwardMotions_, highResBackwardMotions_, scale_);
|
||||
|
||||
forwardMaps_.resize(highResForwardMotions_.size());
|
||||
backwardMaps_.resize(highResForwardMotions_.size());
|
||||
for (size_t i = 0; i < highResForwardMotions_.size(); ++i)
|
||||
{
|
||||
buildMotionMaps(highResForwardMotions_[i], highResBackwardMotions_[i], forwardMaps_[i], backwardMaps_[i]);
|
||||
}
|
||||
// initial estimation
|
||||
|
||||
const Size lowResSize = src[0].size();
|
||||
const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_);
|
||||
|
||||
ocl::resize(src[baseIdx], highRes_, highResSize, 0, 0, INTER_LINEAR);
|
||||
|
||||
// iterations
|
||||
|
||||
diffTerms_.resize(src.size());
|
||||
a_.resize(src.size());
|
||||
b_.resize(src.size());
|
||||
c_.resize(src.size());
|
||||
|
||||
for (int i = 0; i < iterations_; ++i)
|
||||
{
|
||||
for (size_t k = 0; k < src.size(); ++k)
|
||||
{
|
||||
diffTerms_[k].create(highRes_.size(), highRes_.type());
|
||||
a_[k].create(highRes_.size(), highRes_.type());
|
||||
b_[k].create(highRes_.size(), highRes_.type());
|
||||
c_[k].create(lowResSize, highRes_.type());
|
||||
|
||||
// a = M * Ih
|
||||
ocl::remap(highRes_, a_[k], backwardMaps_[k].first, backwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar());
|
||||
// b = HM * Ih
|
||||
filters_[k]->apply(a_[k], b_[k], Rect(0,0,-1,-1));
|
||||
// c = DHF * Ih
|
||||
ocl::resize(b_[k], c_[k], lowResSize, 0, 0, INTER_NEAREST);
|
||||
|
||||
diffSign(src[k], c_[k], c_[k]);
|
||||
|
||||
// a = Dt * diff
|
||||
upscale(c_[k], a_[k], scale_);
|
||||
// b = HtDt * diff
|
||||
filters_[k]->apply(a_[k], b_[k], Rect(0,0,-1,-1));
|
||||
// diffTerm = MtHtDt * diff
|
||||
ocl::remap(b_[k], diffTerms_[k], forwardMaps_[k].first, forwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar());
|
||||
}
|
||||
|
||||
if (lambda_ > 0)
|
||||
{
|
||||
calcBtvRegularization(highRes_, regTerm_, btvKernelSize_);
|
||||
ocl::addWeighted(highRes_, 1.0, regTerm_, -tau_ * lambda_, 0.0, highRes_);
|
||||
}
|
||||
|
||||
for (size_t k = 0; k < src.size(); ++k)
|
||||
{
|
||||
ocl::addWeighted(highRes_, 1.0, diffTerms_[k], tau_, 0.0, highRes_);
|
||||
}
|
||||
}
|
||||
|
||||
Rect inner(btvKernelSize_, btvKernelSize_, highRes_.cols - 2 * btvKernelSize_, highRes_.rows - 2 * btvKernelSize_);
|
||||
highRes_(inner).copyTo(dst);
|
||||
}
|
||||
|
||||
void BTVL1_OCL_Base::collectGarbage()
|
||||
{
|
||||
filters_.clear();
|
||||
|
||||
lowResForwardMotions_.clear();
|
||||
lowResBackwardMotions_.clear();
|
||||
|
||||
highResForwardMotions_.clear();
|
||||
highResBackwardMotions_.clear();
|
||||
|
||||
forwardMaps_.clear();
|
||||
backwardMaps_.clear();
|
||||
|
||||
highRes_.release();
|
||||
|
||||
diffTerms_.clear();
|
||||
a_.clear();
|
||||
b_.clear();
|
||||
c_.clear();
|
||||
regTerm_.release();
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
|
||||
class BTVL1_OCL : public SuperResolution, private BTVL1_OCL_Base
|
||||
{
|
||||
public:
|
||||
AlgorithmInfo* info() const;
|
||||
|
||||
BTVL1_OCL();
|
||||
|
||||
void collectGarbage();
|
||||
|
||||
protected:
|
||||
void initImpl(Ptr<FrameSource>& frameSource);
|
||||
void processImpl(Ptr<FrameSource>& frameSource, OutputArray output);
|
||||
|
||||
private:
|
||||
int temporalAreaRadius_;
|
||||
|
||||
void readNextFrame(Ptr<FrameSource>& frameSource);
|
||||
void processFrame(int idx);
|
||||
|
||||
oclMat curFrame_;
|
||||
oclMat prevFrame_;
|
||||
|
||||
vector<oclMat> frames_;
|
||||
vector<pair<oclMat, oclMat> > forwardMotions_;
|
||||
vector<pair<oclMat, oclMat> > backwardMotions_;
|
||||
vector<oclMat> outputs_;
|
||||
|
||||
int storePos_;
|
||||
int procPos_;
|
||||
int outPos_;
|
||||
|
||||
vector<oclMat> srcFrames_;
|
||||
vector<pair<oclMat, oclMat> > srcForwardMotions_;
|
||||
vector<pair<oclMat, oclMat> > srcBackwardMotions_;
|
||||
oclMat finalOutput_;
|
||||
};
|
||||
|
||||
CV_INIT_ALGORITHM(BTVL1_OCL, "SuperResolution.BTVL1_OCL",
|
||||
obj.info()->addParam(obj, "scale", obj.scale_, false, 0, 0, "Scale factor.");
|
||||
obj.info()->addParam(obj, "iterations", obj.iterations_, false, 0, 0, "Iteration count.");
|
||||
obj.info()->addParam(obj, "tau", obj.tau_, false, 0, 0, "Asymptotic value of steepest descent method.");
|
||||
obj.info()->addParam(obj, "lambda", obj.lambda_, false, 0, 0, "Weight parameter to balance data term and smoothness term.");
|
||||
obj.info()->addParam(obj, "alpha", obj.alpha_, false, 0, 0, "Parameter of spacial distribution in Bilateral-TV.");
|
||||
obj.info()->addParam(obj, "btvKernelSize", obj.btvKernelSize_, false, 0, 0, "Kernel size of Bilateral-TV filter.");
|
||||
obj.info()->addParam(obj, "blurKernelSize", obj.blurKernelSize_, false, 0, 0, "Gaussian blur kernel size.");
|
||||
obj.info()->addParam(obj, "blurSigma", obj.blurSigma_, false, 0, 0, "Gaussian blur sigma.");
|
||||
obj.info()->addParam(obj, "temporalAreaRadius", obj.temporalAreaRadius_, false, 0, 0, "Radius of the temporal search area.");
|
||||
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm."));
|
||||
|
||||
BTVL1_OCL::BTVL1_OCL()
|
||||
{
|
||||
temporalAreaRadius_ = 4;
|
||||
}
|
||||
|
||||
void BTVL1_OCL::collectGarbage()
|
||||
{
|
||||
curFrame_.release();
|
||||
prevFrame_.release();
|
||||
|
||||
frames_.clear();
|
||||
forwardMotions_.clear();
|
||||
backwardMotions_.clear();
|
||||
outputs_.clear();
|
||||
|
||||
srcFrames_.clear();
|
||||
srcForwardMotions_.clear();
|
||||
srcBackwardMotions_.clear();
|
||||
finalOutput_.release();
|
||||
|
||||
SuperResolution::collectGarbage();
|
||||
BTVL1_OCL_Base::collectGarbage();
|
||||
}
|
||||
|
||||
void BTVL1_OCL::initImpl(Ptr<FrameSource>& frameSource)
|
||||
{
|
||||
const int cacheSize = 2 * temporalAreaRadius_ + 1;
|
||||
|
||||
frames_.resize(cacheSize);
|
||||
forwardMotions_.resize(cacheSize);
|
||||
backwardMotions_.resize(cacheSize);
|
||||
outputs_.resize(cacheSize);
|
||||
|
||||
storePos_ = -1;
|
||||
|
||||
for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t)
|
||||
readNextFrame(frameSource);
|
||||
|
||||
for (int i = 0; i <= temporalAreaRadius_; ++i)
|
||||
processFrame(i);
|
||||
|
||||
procPos_ = temporalAreaRadius_;
|
||||
outPos_ = -1;
|
||||
}
|
||||
|
||||
void BTVL1_OCL::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output)
|
||||
{
|
||||
if (outPos_ >= storePos_)
|
||||
{
|
||||
if(_output.kind() == _InputArray::OCL_MAT)
|
||||
{
|
||||
getOclMatRef(_output).release();
|
||||
}
|
||||
else
|
||||
{
|
||||
_output.release();
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
readNextFrame(frameSource);
|
||||
|
||||
if (procPos_ < storePos_)
|
||||
{
|
||||
++procPos_;
|
||||
processFrame(procPos_);
|
||||
}
|
||||
|
||||
++outPos_;
|
||||
const oclMat& curOutput = at(outPos_, outputs_);
|
||||
|
||||
if (_output.kind() == _InputArray::OCL_MAT)
|
||||
curOutput.convertTo(getOclMatRef(_output), CV_8U);
|
||||
else
|
||||
{
|
||||
curOutput.convertTo(finalOutput_, CV_8U);
|
||||
arrCopy(finalOutput_, _output);
|
||||
}
|
||||
}
|
||||
|
||||
void BTVL1_OCL::readNextFrame(Ptr<FrameSource>& frameSource)
|
||||
{
|
||||
curFrame_.release();
|
||||
frameSource->nextFrame(curFrame_);
|
||||
|
||||
if (curFrame_.empty())
|
||||
return;
|
||||
|
||||
++storePos_;
|
||||
curFrame_.convertTo(at(storePos_, frames_), CV_32F);
|
||||
|
||||
if (storePos_ > 0)
|
||||
{
|
||||
pair<oclMat, oclMat>& forwardMotion = at(storePos_ - 1, forwardMotions_);
|
||||
pair<oclMat, oclMat>& backwardMotion = at(storePos_, backwardMotions_);
|
||||
|
||||
opticalFlow_->calc(prevFrame_, curFrame_, forwardMotion.first, forwardMotion.second);
|
||||
opticalFlow_->calc(curFrame_, prevFrame_, backwardMotion.first, backwardMotion.second);
|
||||
}
|
||||
|
||||
curFrame_.copyTo(prevFrame_);
|
||||
}
|
||||
|
||||
void BTVL1_OCL::processFrame(int idx)
|
||||
{
|
||||
const int startIdx = max(idx - temporalAreaRadius_, 0);
|
||||
const int procIdx = idx;
|
||||
const int endIdx = min(startIdx + 2 * temporalAreaRadius_, storePos_);
|
||||
|
||||
const int count = endIdx - startIdx + 1;
|
||||
|
||||
srcFrames_.resize(count);
|
||||
srcForwardMotions_.resize(count);
|
||||
srcBackwardMotions_.resize(count);
|
||||
|
||||
int baseIdx = -1;
|
||||
|
||||
for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k)
|
||||
{
|
||||
if (i == procIdx)
|
||||
baseIdx = k;
|
||||
|
||||
srcFrames_[k] = at(i, frames_);
|
||||
|
||||
if (i < endIdx)
|
||||
srcForwardMotions_[k] = at(i, forwardMotions_);
|
||||
if (i > startIdx)
|
||||
srcBackwardMotions_[k] = at(i, backwardMotions_);
|
||||
}
|
||||
|
||||
process(srcFrames_, at(idx, outputs_), srcForwardMotions_, srcBackwardMotions_, baseIdx);
|
||||
}
|
||||
}
|
||||
|
||||
Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL()
|
||||
{
|
||||
return new BTVL1_OCL;
|
||||
}
|
||||
#endif
|
@ -119,11 +119,23 @@ namespace
|
||||
{
|
||||
vc_ >> _frame.getMatRef();
|
||||
}
|
||||
else
|
||||
else if(_frame.kind() == _InputArray::GPU_MAT)
|
||||
{
|
||||
vc_ >> frame_;
|
||||
arrCopy(frame_, _frame);
|
||||
}
|
||||
else if(_frame.kind() == _InputArray::OCL_MAT)
|
||||
{
|
||||
vc_ >> frame_;
|
||||
if(!frame_.empty())
|
||||
{
|
||||
arrCopy(frame_, _frame);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
//should never get here
|
||||
}
|
||||
}
|
||||
|
||||
class VideoFrameSource : public CaptureFrameSource
|
||||
|
@ -125,30 +125,59 @@ namespace
|
||||
{
|
||||
src.getGpuMat().copyTo(dst.getGpuMatRef());
|
||||
}
|
||||
#ifdef HAVE_OPENCV_OCL
|
||||
void ocl2mat(InputArray src, OutputArray dst)
|
||||
{
|
||||
dst.getMatRef() = (Mat)ocl::getOclMatRef(src);
|
||||
}
|
||||
void mat2ocl(InputArray src, OutputArray dst)
|
||||
{
|
||||
Mat m = src.getMat();
|
||||
ocl::getOclMatRef(dst) = (ocl::oclMat)m;
|
||||
}
|
||||
void ocl2ocl(InputArray src, OutputArray dst)
|
||||
{
|
||||
ocl::getOclMatRef(src).copyTo(ocl::getOclMatRef(dst));
|
||||
}
|
||||
#else
|
||||
void ocl2mat(InputArray, OutputArray)
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform");;
|
||||
}
|
||||
void mat2ocl(InputArray, OutputArray)
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform");;
|
||||
}
|
||||
void ocl2ocl(InputArray, OutputArray)
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, "The called functionality is disabled for current build or platform");
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void cv::superres::arrCopy(InputArray src, OutputArray dst)
|
||||
{
|
||||
typedef void (*func_t)(InputArray src, OutputArray dst);
|
||||
static const func_t funcs[10][10] =
|
||||
static const func_t funcs[11][11] =
|
||||
{
|
||||
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu},
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu},
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu},
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu},
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu},
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu},
|
||||
{0, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr},
|
||||
{0, tex2arr, tex2arr, tex2arr, tex2arr, tex2arr, tex2arr, tex2arr, tex2arr, tex2arr},
|
||||
{0, gpu2mat, gpu2mat, gpu2mat, gpu2mat, gpu2mat, gpu2mat, arr2buf, arr2tex, gpu2gpu}
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu, mat2ocl},
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu, mat2ocl},
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu, mat2ocl},
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu, mat2ocl},
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu, mat2ocl},
|
||||
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, arr2tex, mat2gpu, mat2ocl},
|
||||
{0, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, 0 },
|
||||
{0, tex2arr, tex2arr, tex2arr, tex2arr, tex2arr, tex2arr, tex2arr, tex2arr, tex2arr, 0 },
|
||||
{0, gpu2mat, gpu2mat, gpu2mat, gpu2mat, gpu2mat, gpu2mat, arr2buf, arr2tex, gpu2gpu, 0 },
|
||||
{0, ocl2mat, ocl2mat, ocl2mat, ocl2mat, ocl2mat, ocl2mat, 0, 0, 0, ocl2ocl}
|
||||
};
|
||||
|
||||
const int src_kind = src.kind() >> _InputArray::KIND_SHIFT;
|
||||
const int dst_kind = dst.kind() >> _InputArray::KIND_SHIFT;
|
||||
|
||||
CV_DbgAssert( src_kind >= 0 && src_kind < 10 );
|
||||
CV_DbgAssert( dst_kind >= 0 && dst_kind < 10 );
|
||||
CV_DbgAssert( src_kind >= 0 && src_kind < 11 );
|
||||
CV_DbgAssert( dst_kind >= 0 && dst_kind < 11 );
|
||||
|
||||
const func_t func = funcs[src_kind][dst_kind];
|
||||
CV_DbgAssert( func != 0 );
|
||||
@ -190,7 +219,6 @@ namespace
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void convertToDepth(InputArray src, OutputArray dst, int depth)
|
||||
{
|
||||
CV_Assert( src.depth() <= CV_64F );
|
||||
@ -271,3 +299,70 @@ GpuMat cv::superres::convertToType(const GpuMat& src, int type, GpuMat& buf0, Gp
|
||||
convertToDepth(buf0, buf1, depth);
|
||||
return buf1;
|
||||
}
|
||||
#ifdef HAVE_OPENCV_OCL
|
||||
namespace
|
||||
{
|
||||
// TODO(pengx17): remove these overloaded functions until IntputArray fully supports oclMat
|
||||
void convertToCn(const ocl::oclMat& src, ocl::oclMat& dst, int cn)
|
||||
{
|
||||
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );
|
||||
CV_Assert( cn == 1 || cn == 3 || cn == 4 );
|
||||
|
||||
static const int codes[5][5] =
|
||||
{
|
||||
{-1, -1, -1, -1, -1},
|
||||
{-1, -1, -1, COLOR_GRAY2BGR, COLOR_GRAY2BGRA},
|
||||
{-1, -1, -1, -1, -1},
|
||||
{-1, COLOR_BGR2GRAY, -1, -1, COLOR_BGR2BGRA},
|
||||
{-1, COLOR_BGRA2GRAY, -1, COLOR_BGRA2BGR, -1},
|
||||
};
|
||||
|
||||
const int code = codes[src.channels()][cn];
|
||||
CV_DbgAssert( code >= 0 );
|
||||
|
||||
ocl::cvtColor(src, dst, code, cn);
|
||||
}
|
||||
void convertToDepth(const ocl::oclMat& src, ocl::oclMat& dst, int depth)
|
||||
{
|
||||
CV_Assert( src.depth() <= CV_64F );
|
||||
CV_Assert( depth == CV_8U || depth == CV_32F );
|
||||
|
||||
static const double maxVals[] =
|
||||
{
|
||||
std::numeric_limits<uchar>::max(),
|
||||
std::numeric_limits<schar>::max(),
|
||||
std::numeric_limits<ushort>::max(),
|
||||
std::numeric_limits<short>::max(),
|
||||
std::numeric_limits<int>::max(),
|
||||
1.0,
|
||||
1.0,
|
||||
};
|
||||
const double scale = maxVals[depth] / maxVals[src.depth()];
|
||||
src.convertTo(dst, depth, scale);
|
||||
}
|
||||
}
|
||||
ocl::oclMat cv::superres::convertToType(const ocl::oclMat& src, int type, ocl::oclMat& buf0, ocl::oclMat& buf1)
|
||||
{
|
||||
if (src.type() == type)
|
||||
return src;
|
||||
|
||||
const int depth = CV_MAT_DEPTH(type);
|
||||
const int cn = CV_MAT_CN(type);
|
||||
|
||||
if (src.depth() == depth)
|
||||
{
|
||||
convertToCn(src, buf0, cn);
|
||||
return buf0;
|
||||
}
|
||||
|
||||
if (src.channels() == cn)
|
||||
{
|
||||
convertToDepth(src, buf1, depth);
|
||||
return buf1;
|
||||
}
|
||||
|
||||
convertToCn(src, buf0, cn);
|
||||
convertToDepth(buf0, buf1, depth);
|
||||
return buf1;
|
||||
}
|
||||
#endif
|
||||
|
@ -45,6 +45,9 @@
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/core/gpumat.hpp"
|
||||
#ifdef HAVE_OPENCV_OCL
|
||||
#include "opencv2/ocl/ocl.hpp"
|
||||
#endif
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@ -57,6 +60,10 @@ namespace cv
|
||||
|
||||
CV_EXPORTS Mat convertToType(const Mat& src, int type, Mat& buf0, Mat& buf1);
|
||||
CV_EXPORTS gpu::GpuMat convertToType(const gpu::GpuMat& src, int type, gpu::GpuMat& buf0, gpu::GpuMat& buf1);
|
||||
|
||||
#ifdef HAVE_OPENCV_OCL
|
||||
CV_EXPORTS ocl::oclMat convertToType(const ocl::oclMat& src, int type, ocl::oclMat& buf0, ocl::oclMat& buf1);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
261
modules/superres/src/opencl/superres_btvl1.cl
Normal file
261
modules/superres/src/opencl/superres_btvl1.cl
Normal file
@ -0,0 +1,261 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
__kernel void buildMotionMapsKernel(__global float* forwardMotionX,
|
||||
__global float* forwardMotionY,
|
||||
__global float* backwardMotionX,
|
||||
__global float* backwardMotionY,
|
||||
__global float* forwardMapX,
|
||||
__global float* forwardMapY,
|
||||
__global float* backwardMapX,
|
||||
__global float* backwardMapY,
|
||||
int forwardMotionX_row,
|
||||
int forwardMotionX_col,
|
||||
int forwardMotionX_step,
|
||||
int forwardMotionY_step,
|
||||
int backwardMotionX_step,
|
||||
int backwardMotionY_step,
|
||||
int forwardMapX_step,
|
||||
int forwardMapY_step,
|
||||
int backwardMapX_step,
|
||||
int backwardMapY_step
|
||||
)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if(x < forwardMotionX_col && y < forwardMotionX_row)
|
||||
{
|
||||
float fx = forwardMotionX[y * forwardMotionX_step + x];
|
||||
float fy = forwardMotionY[y * forwardMotionY_step + x];
|
||||
|
||||
float bx = backwardMotionX[y * backwardMotionX_step + x];
|
||||
float by = backwardMotionY[y * backwardMotionY_step + x];
|
||||
|
||||
forwardMapX[y * forwardMapX_step + x] = x + bx;
|
||||
forwardMapY[y * forwardMapY_step + x] = y + by;
|
||||
|
||||
backwardMapX[y * backwardMapX_step + x] = x + fx;
|
||||
backwardMapY[y * backwardMapY_step + x] = y + fy;
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void upscaleKernel(__global float* src,
|
||||
__global float* dst,
|
||||
int src_step,
|
||||
int dst_step,
|
||||
int src_row,
|
||||
int src_col,
|
||||
int scale,
|
||||
int channels
|
||||
)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if(x < src_col && y < src_row)
|
||||
{
|
||||
if(channels == 1)
|
||||
{
|
||||
dst[y * scale * dst_step + x * scale] = src[y * src_step + x];
|
||||
}else if(channels == 3)
|
||||
{
|
||||
dst[y * channels * scale * dst_step + 3 * x * scale + 0] = src[y * channels * src_step + 3 * x + 0];
|
||||
dst[y * channels * scale * dst_step + 3 * x * scale + 1] = src[y * channels * src_step + 3 * x + 1];
|
||||
dst[y * channels * scale * dst_step + 3 * x * scale + 2] = src[y * channels * src_step + 3 * x + 2];
|
||||
}else
|
||||
{
|
||||
dst[y * channels * scale * dst_step + 4 * x * scale + 0] = src[y * channels * src_step + 4 * x + 0];
|
||||
dst[y * channels * scale * dst_step + 4 * x * scale + 1] = src[y * channels * src_step + 4 * x + 1];
|
||||
dst[y * channels * scale * dst_step + 4 * x * scale + 2] = src[y * channels * src_step + 4 * x + 2];
|
||||
dst[y * channels * scale * dst_step + 4 * x * scale + 3] = src[y * channels * src_step + 4 * x + 3];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float diffSign(float a, float b)
|
||||
{
|
||||
return a > b ? 1.0f : a < b ? -1.0f : 0.0f;
|
||||
}
|
||||
|
||||
float3 diffSign3(float3 a, float3 b)
|
||||
{
|
||||
float3 pos;
|
||||
pos.x = a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f;
|
||||
pos.y = a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f;
|
||||
pos.z = a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f;
|
||||
return pos;
|
||||
}
|
||||
|
||||
float4 diffSign4(float4 a, float4 b)
|
||||
{
|
||||
float4 pos;
|
||||
pos.x = a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f;
|
||||
pos.y = a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f;
|
||||
pos.z = a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f;
|
||||
pos.w = 0.0f;
|
||||
return pos;
|
||||
}
|
||||
|
||||
__kernel void diffSignKernel(__global float* src1,
|
||||
__global float* src2,
|
||||
__global float* dst,
|
||||
int src1_row,
|
||||
int src1_col,
|
||||
int dst_step,
|
||||
int src1_step,
|
||||
int src2_step)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if(x < src1_col && y < src1_row)
|
||||
{
|
||||
dst[y * dst_step + x] = diffSign(src1[y * src1_step + x], src2[y * src2_step + x]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
__kernel void calcBtvRegularizationKernel(__global float* src,
|
||||
__global float* dst,
|
||||
int src_step,
|
||||
int dst_step,
|
||||
int src_row,
|
||||
int src_col,
|
||||
int ksize,
|
||||
int channels,
|
||||
__global float* c_btvRegWeights
|
||||
)
|
||||
{
|
||||
int x = get_global_id(0) + ksize;
|
||||
int y = get_global_id(1) + ksize;
|
||||
|
||||
if ((y < src_row - ksize) && (x < src_col - ksize))
|
||||
{
|
||||
if(channels == 1)
|
||||
{
|
||||
const float srcVal = src[y * src_step + x];
|
||||
float dstVal = 0.0f;
|
||||
|
||||
for (int m = 0, count = 0; m <= ksize; ++m)
|
||||
{
|
||||
for (int l = ksize; l + m >= 0; --l, ++count)
|
||||
dstVal = dstVal + c_btvRegWeights[count] * (diffSign(srcVal, src[(y + m) * src_step + (x + l)]) - diffSign(src[(y - m) * src_step + (x - l)], srcVal));
|
||||
}
|
||||
dst[y * dst_step + x] = dstVal;
|
||||
}else if(channels == 3)
|
||||
{
|
||||
float3 srcVal;
|
||||
srcVal.x = src[y * src_step + 3 * x + 0];
|
||||
srcVal.y = src[y * src_step + 3 * x + 1];
|
||||
srcVal.z = src[y * src_step + 3 * x + 2];
|
||||
|
||||
float3 dstVal;
|
||||
dstVal.x = 0.0f;
|
||||
dstVal.y = 0.0f;
|
||||
dstVal.z = 0.0f;
|
||||
|
||||
for (int m = 0, count = 0; m <= ksize; ++m)
|
||||
{
|
||||
for (int l = ksize; l + m >= 0; --l, ++count)
|
||||
{
|
||||
float3 src1;
|
||||
src1.x = src[(y + m) * src_step + 3 * (x + l) + 0];
|
||||
src1.y = src[(y + m) * src_step + 3 * (x + l) + 1];
|
||||
src1.z = src[(y + m) * src_step + 3 * (x + l) + 2];
|
||||
|
||||
float3 src2;
|
||||
src2.x = src[(y - m) * src_step + 3 * (x - l) + 0];
|
||||
src2.y = src[(y - m) * src_step + 3 * (x - l) + 1];
|
||||
src2.z = src[(y - m) * src_step + 3 * (x - l) + 2];
|
||||
|
||||
dstVal = dstVal + c_btvRegWeights[count] * (diffSign3(srcVal, src1) - diffSign3(src2, srcVal));
|
||||
}
|
||||
}
|
||||
dst[y * dst_step + 3 * x + 0] = dstVal.x;
|
||||
dst[y * dst_step + 3 * x + 1] = dstVal.y;
|
||||
dst[y * dst_step + 3 * x + 2] = dstVal.z;
|
||||
}else
|
||||
{
|
||||
float4 srcVal;
|
||||
srcVal.x = src[y * src_step + 4 * x + 0];//r type =float
|
||||
srcVal.y = src[y * src_step + 4 * x + 1];//g
|
||||
srcVal.z = src[y * src_step + 4 * x + 2];//b
|
||||
srcVal.w = src[y * src_step + 4 * x + 3];//a
|
||||
|
||||
float4 dstVal;
|
||||
dstVal.x = 0.0f;
|
||||
dstVal.y = 0.0f;
|
||||
dstVal.z = 0.0f;
|
||||
dstVal.w = 0.0f;
|
||||
|
||||
for (int m = 0, count = 0; m <= ksize; ++m)
|
||||
{
|
||||
for (int l = ksize; l + m >= 0; --l, ++count)
|
||||
{
|
||||
float4 src1;
|
||||
src1.x = src[(y + m) * src_step + 4 * (x + l) + 0];
|
||||
src1.y = src[(y + m) * src_step + 4 * (x + l) + 1];
|
||||
src1.z = src[(y + m) * src_step + 4 * (x + l) + 2];
|
||||
src1.w = src[(y + m) * src_step + 4 * (x + l) + 3];
|
||||
|
||||
float4 src2;
|
||||
src2.x = src[(y - m) * src_step + 4 * (x - l) + 0];
|
||||
src2.y = src[(y - m) * src_step + 4 * (x - l) + 1];
|
||||
src2.z = src[(y - m) * src_step + 4 * (x - l) + 2];
|
||||
src2.w = src[(y - m) * src_step + 4 * (x - l) + 3];
|
||||
|
||||
dstVal = dstVal + c_btvRegWeights[count] * (diffSign4(srcVal, src1) - diffSign4(src2, srcVal));
|
||||
|
||||
}
|
||||
}
|
||||
dst[y * dst_step + 4 * x + 0] = dstVal.x;
|
||||
dst[y * dst_step + 4 * x + 1] = dstVal.y;
|
||||
dst[y * dst_step + 4 * x + 2] = dstVal.z;
|
||||
dst[y * dst_step + 4 * x + 3] = dstVal.w;
|
||||
}
|
||||
}
|
||||
}
|
@ -719,3 +719,195 @@ Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_GPU()
|
||||
}
|
||||
|
||||
#endif // HAVE_OPENCV_GPU
|
||||
#ifdef HAVE_OPENCV_OCL
|
||||
|
||||
namespace
|
||||
{
|
||||
class oclOpticalFlow : public DenseOpticalFlowExt
|
||||
{
|
||||
public:
|
||||
explicit oclOpticalFlow(int work_type);
|
||||
|
||||
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
|
||||
void collectGarbage();
|
||||
|
||||
protected:
|
||||
virtual void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2) = 0;
|
||||
|
||||
private:
|
||||
int work_type_;
|
||||
cv::ocl::oclMat buf_[6];
|
||||
cv::ocl::oclMat u_, v_, flow_;
|
||||
};
|
||||
|
||||
oclOpticalFlow::oclOpticalFlow(int work_type) : work_type_(work_type)
|
||||
{
|
||||
}
|
||||
|
||||
void oclOpticalFlow::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
|
||||
{
|
||||
ocl::oclMat& _frame0 = ocl::getOclMatRef(frame0);
|
||||
ocl::oclMat& _frame1 = ocl::getOclMatRef(frame1);
|
||||
ocl::oclMat& _flow1 = ocl::getOclMatRef(flow1);
|
||||
ocl::oclMat& _flow2 = ocl::getOclMatRef(flow2);
|
||||
|
||||
CV_Assert( _frame1.type() == _frame0.type() );
|
||||
CV_Assert( _frame1.size() == _frame0.size() );
|
||||
|
||||
cv::ocl::oclMat input0_ = convertToType(_frame0, work_type_, buf_[2], buf_[3]);
|
||||
cv::ocl::oclMat input1_ = convertToType(_frame1, work_type_, buf_[4], buf_[5]);
|
||||
|
||||
impl(input0_, input1_, u_, v_);//go to tvl1 algorithm
|
||||
|
||||
u_.copyTo(_flow1);
|
||||
v_.copyTo(_flow2);
|
||||
}
|
||||
|
||||
void oclOpticalFlow::collectGarbage()
|
||||
{
|
||||
for (int i = 0; i < 6; ++i)
|
||||
buf_[i].release();
|
||||
u_.release();
|
||||
v_.release();
|
||||
flow_.release();
|
||||
}
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// PyrLK_OCL
|
||||
|
||||
namespace
|
||||
{
|
||||
class PyrLK_OCL : public oclOpticalFlow
|
||||
{
|
||||
public:
|
||||
AlgorithmInfo* info() const;
|
||||
|
||||
PyrLK_OCL();
|
||||
|
||||
void collectGarbage();
|
||||
|
||||
protected:
|
||||
void impl(const ocl::oclMat& input0, const ocl::oclMat& input1, ocl::oclMat& dst1, ocl::oclMat& dst2);
|
||||
|
||||
private:
|
||||
int winSize_;
|
||||
int maxLevel_;
|
||||
int iterations_;
|
||||
|
||||
ocl::PyrLKOpticalFlow alg_;
|
||||
};
|
||||
|
||||
CV_INIT_ALGORITHM(PyrLK_OCL, "DenseOpticalFlowExt.PyrLK_OCL",
|
||||
obj.info()->addParam(obj, "winSize", obj.winSize_);
|
||||
obj.info()->addParam(obj, "maxLevel", obj.maxLevel_);
|
||||
obj.info()->addParam(obj, "iterations", obj.iterations_));
|
||||
|
||||
PyrLK_OCL::PyrLK_OCL() : oclOpticalFlow(CV_8UC1)
|
||||
{
|
||||
winSize_ = alg_.winSize.width;
|
||||
maxLevel_ = alg_.maxLevel;
|
||||
iterations_ = alg_.iters;
|
||||
}
|
||||
|
||||
void PyrLK_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2)
|
||||
{
|
||||
alg_.winSize.width = winSize_;
|
||||
alg_.winSize.height = winSize_;
|
||||
alg_.maxLevel = maxLevel_;
|
||||
alg_.iters = iterations_;
|
||||
|
||||
alg_.dense(input0, input1, dst1, dst2);
|
||||
}
|
||||
|
||||
void PyrLK_OCL::collectGarbage()
|
||||
{
|
||||
alg_.releaseMemory();
|
||||
oclOpticalFlow::collectGarbage();
|
||||
}
|
||||
}
|
||||
|
||||
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_PyrLK_OCL()
|
||||
{
|
||||
return new PyrLK_OCL;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// DualTVL1_OCL
|
||||
|
||||
namespace
|
||||
{
|
||||
class DualTVL1_OCL : public oclOpticalFlow
|
||||
{
|
||||
public:
|
||||
AlgorithmInfo* info() const;
|
||||
|
||||
DualTVL1_OCL();
|
||||
|
||||
void collectGarbage();
|
||||
|
||||
protected:
|
||||
void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2);
|
||||
|
||||
private:
|
||||
double tau_;
|
||||
double lambda_;
|
||||
double theta_;
|
||||
int nscales_;
|
||||
int warps_;
|
||||
double epsilon_;
|
||||
int iterations_;
|
||||
bool useInitialFlow_;
|
||||
|
||||
ocl::OpticalFlowDual_TVL1_OCL alg_;
|
||||
};
|
||||
|
||||
CV_INIT_ALGORITHM(DualTVL1_OCL, "DenseOpticalFlowExt.DualTVL1_OCL",
|
||||
obj.info()->addParam(obj, "tau", obj.tau_);
|
||||
obj.info()->addParam(obj, "lambda", obj.lambda_);
|
||||
obj.info()->addParam(obj, "theta", obj.theta_);
|
||||
obj.info()->addParam(obj, "nscales", obj.nscales_);
|
||||
obj.info()->addParam(obj, "warps", obj.warps_);
|
||||
obj.info()->addParam(obj, "epsilon", obj.epsilon_);
|
||||
obj.info()->addParam(obj, "iterations", obj.iterations_);
|
||||
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_));
|
||||
|
||||
DualTVL1_OCL::DualTVL1_OCL() : oclOpticalFlow(CV_8UC1)
|
||||
{
|
||||
tau_ = alg_.tau;
|
||||
lambda_ = alg_.lambda;
|
||||
theta_ = alg_.theta;
|
||||
nscales_ = alg_.nscales;
|
||||
warps_ = alg_.warps;
|
||||
epsilon_ = alg_.epsilon;
|
||||
iterations_ = alg_.iterations;
|
||||
useInitialFlow_ = alg_.useInitialFlow;
|
||||
}
|
||||
|
||||
void DualTVL1_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2)
|
||||
{
|
||||
alg_.tau = tau_;
|
||||
alg_.lambda = lambda_;
|
||||
alg_.theta = theta_;
|
||||
alg_.nscales = nscales_;
|
||||
alg_.warps = warps_;
|
||||
alg_.epsilon = epsilon_;
|
||||
alg_.iterations = iterations_;
|
||||
alg_.useInitialFlow = useInitialFlow_;
|
||||
|
||||
alg_(input0, input1, dst1, dst2);
|
||||
|
||||
}
|
||||
|
||||
void DualTVL1_OCL::collectGarbage()
|
||||
{
|
||||
alg_.collectGarbage();
|
||||
oclOpticalFlow::collectGarbage();
|
||||
}
|
||||
}
|
||||
|
||||
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_OCL()
|
||||
{
|
||||
return new DualTVL1_OCL;
|
||||
}
|
||||
|
||||
#endif
|
@ -65,6 +65,10 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_OPENCV_OCL
|
||||
#include "opencv2/ocl/private/util.hpp"
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_OPENCV_HIGHGUI
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#endif
|
||||
|
@ -274,5 +274,12 @@ TEST_F(SuperResolution, BTVL1_GPU)
|
||||
{
|
||||
RunTest(cv::superres::createSuperResolution_BTVL1_GPU());
|
||||
}
|
||||
|
||||
#endif
|
||||
#if defined(HAVE_OPENCV_OCL) && defined(HAVE_OPENCL)
|
||||
TEST_F(SuperResolution, BTVL1_OCL)
|
||||
{
|
||||
std::vector<cv::ocl::Info> infos;
|
||||
cv::ocl::getDevice(infos);
|
||||
RunTest(cv::superres::createSuperResolution_BTVL1_OCL());
|
||||
}
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user