mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 05:29:54 +08:00
added BruteForceMatcher_GPU
This commit is contained in:
parent
77027f6075
commit
8891acb67a
@ -1,6 +1,6 @@
|
|||||||
|
|
||||||
set(name "gpu")
|
set(name "gpu")
|
||||||
set(DEPS "opencv_core" "opencv_imgproc" "opencv_objdetect")
|
set(DEPS "opencv_core" "opencv_imgproc" "opencv_objdetect" "opencv_features2d" "opencv_flann")
|
||||||
|
|
||||||
set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} opencv_gpu)
|
set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} opencv_gpu)
|
||||||
|
|
||||||
|
@ -48,6 +48,7 @@
|
|||||||
#include "opencv2/imgproc/imgproc.hpp"
|
#include "opencv2/imgproc/imgproc.hpp"
|
||||||
#include "opencv2/objdetect/objdetect.hpp"
|
#include "opencv2/objdetect/objdetect.hpp"
|
||||||
#include "opencv2/gpu/devmem2d.hpp"
|
#include "opencv2/gpu/devmem2d.hpp"
|
||||||
|
#include "opencv2/features2d/features2d.hpp"
|
||||||
|
|
||||||
namespace cv
|
namespace cv
|
||||||
{
|
{
|
||||||
@ -1118,7 +1119,152 @@ namespace cv
|
|||||||
|
|
||||||
// Gradients conputation results
|
// Gradients conputation results
|
||||||
GpuMat grad, qangle;
|
GpuMat grad, qangle;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
////////////////////////////////// BruteForceMatcher //////////////////////////////////
|
||||||
|
|
||||||
|
class CV_EXPORTS BruteForceMatcher_GPU_base
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
enum DistType {L1Dist = 0, L2Dist};
|
||||||
|
|
||||||
|
explicit BruteForceMatcher_GPU_base(DistType distType = L2Dist);
|
||||||
|
|
||||||
|
// Add descriptors to train descriptor collection.
|
||||||
|
void add(const std::vector<GpuMat>& descCollection);
|
||||||
|
|
||||||
|
// Get train descriptors collection.
|
||||||
|
const std::vector<GpuMat>& getTrainDescriptors() const;
|
||||||
|
|
||||||
|
// Clear train descriptors collection.
|
||||||
|
void clear();
|
||||||
|
|
||||||
|
// Return true if there are not train descriptors in collection.
|
||||||
|
bool empty() const;
|
||||||
|
|
||||||
|
// Return true if the matcher supports mask in match methods.
|
||||||
|
bool isMaskSupported() const;
|
||||||
|
|
||||||
|
// Find one best match for each query descriptor.
|
||||||
|
// trainIdx.at<int>(0, queryIdx) will contain best train index for queryIdx
|
||||||
|
// distance.at<float>(0, queryIdx) will contain distance
|
||||||
|
void matchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||||
|
GpuMat& trainIdx, GpuMat& distance,
|
||||||
|
const GpuMat& mask = GpuMat());
|
||||||
|
|
||||||
|
// Download trainIdx and distance to CPU vector with DMatch
|
||||||
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches);
|
||||||
|
|
||||||
|
// Find one best match for each query descriptor.
|
||||||
|
void match(const GpuMat& queryDescs, const GpuMat& trainDescs, std::vector<DMatch>& matches,
|
||||||
|
const GpuMat& mask = GpuMat());
|
||||||
|
|
||||||
|
// Make gpu collection of trains and masks in suitable format for matchCollection function
|
||||||
|
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection,
|
||||||
|
const vector<GpuMat>& masks = std::vector<GpuMat>());
|
||||||
|
|
||||||
|
// Find one best match from train collection for each query descriptor.
|
||||||
|
// trainIdx.at<int>(0, queryIdx) will contain best train index for queryIdx
|
||||||
|
// imgIdx.at<int>(0, queryIdx) will contain best image index for queryIdx
|
||||||
|
// distance.at<float>(0, queryIdx) will contain distance
|
||||||
|
void matchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection,
|
||||||
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
|
||||||
|
const GpuMat& maskCollection);
|
||||||
|
|
||||||
|
// Download trainIdx, imgIdx and distance to CPU vector with DMatch
|
||||||
|
static void matchDownload(const GpuMat& trainIdx, GpuMat& imgIdx, const GpuMat& distance,
|
||||||
|
std::vector<DMatch>& matches);
|
||||||
|
|
||||||
|
// Find one best match from train collection for each query descriptor.
|
||||||
|
void match(const GpuMat& queryDescs, std::vector<DMatch>& matches,
|
||||||
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>());
|
||||||
|
|
||||||
|
// Find k best matches for each query descriptor (in increasing order of distances).
|
||||||
|
// trainIdx.at<int>(queryIdx, i) will contain index of i'th best trains (i < k).
|
||||||
|
// distance.at<float>(queryIdx, i) will contain distance.
|
||||||
|
// allDist is a buffer to store all distance between query descriptors and train descriptors
|
||||||
|
// it have size (nQuery,nTrain) and CV_32F type
|
||||||
|
// allDist.at<float>(queryIdx, trainIdx) will contain FLT_MAX, if trainIdx is one from k best,
|
||||||
|
// otherwise it will contain distance between queryIdx and trainIdx descriptors
|
||||||
|
void knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||||
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask = GpuMat());
|
||||||
|
|
||||||
|
// Download trainIdx and distance to CPU vector with DMatch
|
||||||
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
||||||
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
||||||
|
// matches vector will not contain matches for fully masked out query descriptors.
|
||||||
|
static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
|
||||||
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
||||||
|
|
||||||
|
// Find k best matches for each query descriptor (in increasing order of distances).
|
||||||
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
||||||
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
||||||
|
// matches vector will not contain matches for fully masked out query descriptors.
|
||||||
|
void knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||||
|
std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(),
|
||||||
|
bool compactResult = false);
|
||||||
|
|
||||||
|
// Find k best matches for each query descriptor (in increasing order of distances).
|
||||||
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
||||||
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
||||||
|
// matches vector will not contain matches for fully masked out query descriptors.
|
||||||
|
void knnMatch(const GpuMat& queryDescs, std::vector< std::vector<DMatch> >& matches, int knn,
|
||||||
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false );
|
||||||
|
|
||||||
|
// Find best matches for each query descriptor which have distance less than maxDistance.
|
||||||
|
// nMatches.at<unsigned int>(0, queruIdx) will contain matches count for queryIdx.
|
||||||
|
// carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
|
||||||
|
// because it didn't have enough memory.
|
||||||
|
// trainIdx.at<int>(queruIdx, i) will contain ith train index (i < min(nMatches.at<unsigned int>(0, queruIdx), trainIdx.cols))
|
||||||
|
// distance.at<int>(queruIdx, i) will contain ith distance (i < min(nMatches.at<unsigned int>(0, queruIdx), trainIdx.cols))
|
||||||
|
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x nTrain,
|
||||||
|
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
|
||||||
|
// Matches doesn't sorted.
|
||||||
|
void radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||||
|
GpuMat& trainIdx, GpuMat& nMatches, GpuMat& distance, float maxDistance,
|
||||||
|
const GpuMat& mask = GpuMat());
|
||||||
|
|
||||||
|
// Download trainIdx, nMatches and distance to CPU vector with DMatch.
|
||||||
|
// matches will be sorted in increasing order of distances.
|
||||||
|
// compactResult is used when mask is not empty. If compactResult is false matches
|
||||||
|
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
||||||
|
// matches vector will not contain matches for fully masked out query descriptors.
|
||||||
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& nMatches, const GpuMat& distance,
|
||||||
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
|
||||||
|
|
||||||
|
// Find best matches for each query descriptor which have distance less than maxDistance
|
||||||
|
// in increasing order of distances).
|
||||||
|
void radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||||
|
std::vector< std::vector<DMatch> >& matches, float maxDistance,
|
||||||
|
const GpuMat& mask = GpuMat(), bool compactResult = false);
|
||||||
|
|
||||||
|
// Find best matches from train collection for each query descriptor which have distance less than
|
||||||
|
// maxDistance (in increasing order of distances).
|
||||||
|
void radiusMatch(const GpuMat& queryDescs, std::vector< std::vector<DMatch> >& matches, float maxDistance,
|
||||||
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
|
||||||
|
|
||||||
|
private:
|
||||||
|
DistType distType;
|
||||||
|
|
||||||
|
std::vector<GpuMat> trainDescCollection;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <class Distance>
|
||||||
|
class CV_EXPORTS BruteForceMatcher_GPU;
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class CV_EXPORTS BruteForceMatcher_GPU< L1<T> > : public BruteForceMatcher_GPU_base
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
explicit BruteForceMatcher_GPU(L1<T> d = L1<T>()) : BruteForceMatcher_GPU_base(L1Dist) {}
|
||||||
|
};
|
||||||
|
template <typename T>
|
||||||
|
class CV_EXPORTS BruteForceMatcher_GPU< L2<T> > : public BruteForceMatcher_GPU_base
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
explicit BruteForceMatcher_GPU(L2<T> d = L2<T>()) : BruteForceMatcher_GPU_base(L2Dist) {}
|
||||||
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
605
modules/gpu/src/brute_force_matcher.cpp
Normal file
605
modules/gpu/src/brute_force_matcher.cpp
Normal file
@ -0,0 +1,605 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other GpuMaterials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or bpied warranties, including, but not limited to, the bpied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "precomp.hpp"
|
||||||
|
|
||||||
|
using namespace cv;
|
||||||
|
using namespace cv::gpu;
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
#if !defined (HAVE_CUDA)
|
||||||
|
|
||||||
|
cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::add(const vector<GpuMat>&) { throw_nogpu(); }
|
||||||
|
const vector<GpuMat>& cv::gpu::BruteForceMatcher_GPU_base::getTrainDescriptors() const { throw_nogpu(); return trainDescCollection; }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::clear() { throw_nogpu(); }
|
||||||
|
bool cv::gpu::BruteForceMatcher_GPU_base::empty() const { throw_nogpu(); return true; }
|
||||||
|
bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const { throw_nogpu(); return true; }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, vector<DMatch>&) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, const GpuMat&, vector<DMatch>&, const GpuMat&) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat&, GpuMat&, const vector<GpuMat>&) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, GpuMat&, const GpuMat&, std::vector<DMatch>&) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, std::vector<DMatch>&, const std::vector<GpuMat>&) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, const GpuMat&) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, int, const GpuMat&, bool) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, int, const std::vector<GpuMat>&, bool) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, const GpuMat&) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, float, const GpuMat&, bool) { throw_nogpu(); }
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, float, const std::vector<GpuMat>&, bool) { throw_nogpu(); }
|
||||||
|
|
||||||
|
#else /* !defined (HAVE_CUDA) */
|
||||||
|
|
||||||
|
namespace cv { namespace gpu { namespace bfmatcher
|
||||||
|
{
|
||||||
|
template <typename T>
|
||||||
|
void matchSingleL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
|
||||||
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance);
|
||||||
|
template <typename T>
|
||||||
|
void matchSingleL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
|
||||||
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance);
|
||||||
|
template <typename T>
|
||||||
|
void matchCollectionL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
|
||||||
|
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
|
||||||
|
const DevMem2Df& distance);
|
||||||
|
template <typename T>
|
||||||
|
void matchCollectionL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
|
||||||
|
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
|
||||||
|
const DevMem2Df& distance);
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void knnMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
|
||||||
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist);
|
||||||
|
template <typename T>
|
||||||
|
void knnMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
|
||||||
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist);
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void radiusMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
|
||||||
|
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance);
|
||||||
|
template <typename T>
|
||||||
|
void radiusMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
|
||||||
|
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance);
|
||||||
|
}}}
|
||||||
|
|
||||||
|
cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType distType_) : distType(distType_)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////
|
||||||
|
// Train collection
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::add(const vector<GpuMat>& descCollection)
|
||||||
|
{
|
||||||
|
trainDescCollection.insert(trainDescCollection.end(), descCollection.begin(), descCollection.end());
|
||||||
|
}
|
||||||
|
|
||||||
|
const vector<GpuMat>& cv::gpu::BruteForceMatcher_GPU_base::getTrainDescriptors() const
|
||||||
|
{
|
||||||
|
return trainDescCollection;
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::clear()
|
||||||
|
{
|
||||||
|
trainDescCollection.clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool cv::gpu::BruteForceMatcher_GPU_base::empty() const
|
||||||
|
{
|
||||||
|
return trainDescCollection.empty();
|
||||||
|
}
|
||||||
|
|
||||||
|
bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const
|
||||||
|
{
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////
|
||||||
|
// Match
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||||
|
GpuMat& trainIdx, GpuMat& distance, const GpuMat& mask)
|
||||||
|
{
|
||||||
|
using namespace cv::gpu::bfmatcher;
|
||||||
|
|
||||||
|
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
|
||||||
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance);
|
||||||
|
|
||||||
|
static const match_caller_t match_callers[2][8] =
|
||||||
|
{
|
||||||
|
{
|
||||||
|
matchSingleL1_gpu<unsigned char>, matchSingleL1_gpu<char>, matchSingleL1_gpu<unsigned short>,
|
||||||
|
matchSingleL1_gpu<short>, matchSingleL1_gpu<int>, matchSingleL1_gpu<float>, 0, 0
|
||||||
|
},
|
||||||
|
{
|
||||||
|
matchSingleL2_gpu<unsigned char>, matchSingleL2_gpu<char>, matchSingleL2_gpu<unsigned short>,
|
||||||
|
matchSingleL2_gpu<short>, matchSingleL2_gpu<int>, matchSingleL2_gpu<float>, 0, 0
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
CV_Assert(queryDescs.channels() == 1);
|
||||||
|
CV_Assert(trainDescs.cols == queryDescs.cols && trainDescs.type() == queryDescs.type());
|
||||||
|
|
||||||
|
const int nQuery = queryDescs.rows;
|
||||||
|
|
||||||
|
trainIdx.create(1, nQuery, CV_32S);
|
||||||
|
distance.create(1, nQuery, CV_32F);
|
||||||
|
|
||||||
|
match_caller_t func = match_callers[distType][queryDescs.depth()];
|
||||||
|
CV_Assert(func != 0);
|
||||||
|
|
||||||
|
// For single train there is no need to save imgIdx, so we just save imgIdx to trainIdx.
|
||||||
|
// trainIdx store after imgIdx, so we doesn't lose it value.
|
||||||
|
func(queryDescs, trainDescs, mask, trainIdx, trainIdx, distance);
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& distance,
|
||||||
|
vector<DMatch>& matches)
|
||||||
|
{
|
||||||
|
const int nQuery = trainIdx.cols;
|
||||||
|
|
||||||
|
Mat trainIdxCPU = trainIdx;
|
||||||
|
Mat distanceCPU = distance;
|
||||||
|
|
||||||
|
matches.clear();
|
||||||
|
matches.reserve(nQuery);
|
||||||
|
|
||||||
|
const int* trainIdx_ptr = trainIdxCPU.ptr<int>();
|
||||||
|
const float* distance_ptr = distanceCPU.ptr<float>();
|
||||||
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr)
|
||||||
|
{
|
||||||
|
int trainIdx = *trainIdx_ptr;
|
||||||
|
if (trainIdx == -1)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
float distance = *distance_ptr;
|
||||||
|
|
||||||
|
DMatch m(queryIdx, trainIdx, 0, distance);
|
||||||
|
|
||||||
|
matches.push_back(m);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||||
|
vector<DMatch>& matches, const GpuMat& mask)
|
||||||
|
{
|
||||||
|
GpuMat trainIdx, distance;
|
||||||
|
matchSingle(queryDescs, trainDescs, trainIdx, distance, mask);
|
||||||
|
matchDownload(trainIdx, distance, matches);
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection,
|
||||||
|
const vector<GpuMat>& masks)
|
||||||
|
{
|
||||||
|
if (masks.empty())
|
||||||
|
{
|
||||||
|
Mat trainCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(DevMem2D)));
|
||||||
|
|
||||||
|
for (size_t i = 0; i < trainDescCollection.size(); ++i)
|
||||||
|
{
|
||||||
|
const GpuMat& trainDescs = trainDescCollection[i];
|
||||||
|
|
||||||
|
trainCollectionCPU.ptr<DevMem2D>(0)[i] = trainDescs;
|
||||||
|
}
|
||||||
|
|
||||||
|
trainCollection.upload(trainCollectionCPU);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
CV_Assert(masks.size() == trainDescCollection.size());
|
||||||
|
|
||||||
|
Mat trainCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(DevMem2D)));
|
||||||
|
Mat maskCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(PtrStep)));
|
||||||
|
|
||||||
|
for (size_t i = 0; i < trainDescCollection.size(); ++i)
|
||||||
|
{
|
||||||
|
const GpuMat& trainDescs = trainDescCollection[i];
|
||||||
|
const GpuMat& mask = masks[i];
|
||||||
|
|
||||||
|
CV_Assert(mask.empty() || (mask.type() == CV_8UC1));
|
||||||
|
|
||||||
|
trainCollectionCPU.ptr<DevMem2D>(0)[i] = trainDescs;
|
||||||
|
|
||||||
|
maskCollectionCPU.ptr<PtrStep>(0)[i] = static_cast<PtrStep>(mask);
|
||||||
|
}
|
||||||
|
|
||||||
|
trainCollection.upload(trainCollectionCPU);
|
||||||
|
maskCollection.upload(maskCollectionCPU);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection,
|
||||||
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection)
|
||||||
|
{
|
||||||
|
using namespace cv::gpu::bfmatcher;
|
||||||
|
|
||||||
|
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
|
||||||
|
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
|
||||||
|
const DevMem2Df& distance);
|
||||||
|
|
||||||
|
static const match_caller_t match_callers[2][8] =
|
||||||
|
{
|
||||||
|
{
|
||||||
|
matchCollectionL1_gpu<unsigned char>, matchCollectionL1_gpu<char>,
|
||||||
|
matchCollectionL1_gpu<unsigned short>, matchCollectionL1_gpu<short>,
|
||||||
|
matchCollectionL1_gpu<int>, matchCollectionL1_gpu<float>, 0, 0
|
||||||
|
},
|
||||||
|
{
|
||||||
|
matchCollectionL2_gpu<unsigned char>, matchCollectionL2_gpu<char>,
|
||||||
|
matchCollectionL2_gpu<unsigned short>, matchCollectionL2_gpu<short>,
|
||||||
|
matchCollectionL2_gpu<int>, matchCollectionL2_gpu<float>, 0, 0
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
CV_Assert(queryDescs.channels() == 1);
|
||||||
|
|
||||||
|
const int nQuery = queryDescs.rows;
|
||||||
|
|
||||||
|
trainIdx.create(1, nQuery, CV_32S);
|
||||||
|
imgIdx.create(1, nQuery, CV_32S);
|
||||||
|
distance.create(1, nQuery, CV_32F);
|
||||||
|
|
||||||
|
match_caller_t func = match_callers[distType][queryDescs.depth()];
|
||||||
|
CV_Assert(func != 0);
|
||||||
|
|
||||||
|
func(queryDescs, trainCollection, maskCollection, trainIdx, imgIdx, distance);
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, GpuMat& imgIdx,
|
||||||
|
const GpuMat& distance, vector<DMatch>& matches)
|
||||||
|
{
|
||||||
|
const int nQuery = trainIdx.cols;
|
||||||
|
|
||||||
|
Mat trainIdxCPU = trainIdx;
|
||||||
|
Mat imgIdxCPU = imgIdx;
|
||||||
|
Mat distanceCPU = distance;
|
||||||
|
|
||||||
|
matches.clear();
|
||||||
|
matches.reserve(nQuery);
|
||||||
|
|
||||||
|
const int* trainIdx_ptr = trainIdxCPU.ptr<int>();
|
||||||
|
const int* imgIdx_ptr = imgIdxCPU.ptr<int>();
|
||||||
|
const float* distance_ptr = distanceCPU.ptr<float>();
|
||||||
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
|
||||||
|
{
|
||||||
|
int trainIdx = *trainIdx_ptr;
|
||||||
|
if (trainIdx == -1)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
int imgIdx = *imgIdx_ptr;
|
||||||
|
|
||||||
|
float distance = *distance_ptr;
|
||||||
|
|
||||||
|
DMatch m(queryIdx, trainIdx, imgIdx, distance);
|
||||||
|
|
||||||
|
matches.push_back(m);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, vector<DMatch>& matches,
|
||||||
|
const vector<GpuMat>& masks)
|
||||||
|
{
|
||||||
|
GpuMat trainCollection;
|
||||||
|
GpuMat maskCollection;
|
||||||
|
|
||||||
|
makeGpuCollection(trainCollection, maskCollection, masks);
|
||||||
|
|
||||||
|
GpuMat trainIdx, imgIdx, distance;
|
||||||
|
|
||||||
|
matchCollection(queryDescs, trainCollection, trainIdx, imgIdx, distance, maskCollection);
|
||||||
|
matchDownload(trainIdx, imgIdx, distance, matches);
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////
|
||||||
|
// KnnMatch
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||||
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask)
|
||||||
|
{
|
||||||
|
using namespace cv::gpu::bfmatcher;
|
||||||
|
|
||||||
|
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
|
||||||
|
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist);
|
||||||
|
|
||||||
|
static const match_caller_t match_callers[2][8] =
|
||||||
|
{
|
||||||
|
{
|
||||||
|
knnMatchL1_gpu<unsigned char>, knnMatchL1_gpu<char>, knnMatchL1_gpu<unsigned short>,
|
||||||
|
knnMatchL1_gpu<short>, knnMatchL1_gpu<int>, knnMatchL1_gpu<float>, 0, 0
|
||||||
|
},
|
||||||
|
{
|
||||||
|
knnMatchL2_gpu<unsigned char>, knnMatchL2_gpu<char>, knnMatchL2_gpu<unsigned short>,
|
||||||
|
knnMatchL2_gpu<short>, knnMatchL2_gpu<int>, knnMatchL2_gpu<float>, 0, 0
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
CV_Assert(queryDescs.channels() == 1);
|
||||||
|
|
||||||
|
const int nQuery = queryDescs.rows;
|
||||||
|
const int nTrain = trainDescs.rows;
|
||||||
|
|
||||||
|
trainIdx.create(nQuery, k, CV_32S);
|
||||||
|
trainIdx.setTo(Scalar::all(-1));
|
||||||
|
distance.create(nQuery, k, CV_32F);
|
||||||
|
|
||||||
|
allDist.create(nQuery, nTrain, CV_32F);
|
||||||
|
|
||||||
|
match_caller_t func = match_callers[distType][queryDescs.depth()];
|
||||||
|
CV_Assert(func != 0);
|
||||||
|
|
||||||
|
func(queryDescs, trainDescs, k, mask, trainIdx, distance, allDist);
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
|
||||||
|
vector< vector<DMatch> >& matches, bool compactResult)
|
||||||
|
{
|
||||||
|
const int nQuery = distance.rows;
|
||||||
|
const int k = trainIdx.cols;
|
||||||
|
|
||||||
|
Mat trainIdxCPU = trainIdx;
|
||||||
|
Mat distanceCPU = distance;
|
||||||
|
|
||||||
|
matches.clear();
|
||||||
|
matches.reserve(nQuery);
|
||||||
|
|
||||||
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
|
||||||
|
{
|
||||||
|
matches.push_back(vector<DMatch>());
|
||||||
|
vector<DMatch>& curMatches = matches.back();
|
||||||
|
curMatches.reserve(k);
|
||||||
|
|
||||||
|
int* trainIdx_ptr = trainIdxCPU.ptr<int>(queryIdx);
|
||||||
|
float* distance_ptr = distanceCPU.ptr<float>(queryIdx);
|
||||||
|
for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr)
|
||||||
|
{
|
||||||
|
int trainIdx = *trainIdx_ptr;
|
||||||
|
|
||||||
|
if (trainIdx != -1)
|
||||||
|
{
|
||||||
|
float distance = *distance_ptr;
|
||||||
|
|
||||||
|
DMatch m(queryIdx, trainIdx, 0, distance);
|
||||||
|
|
||||||
|
curMatches.push_back(m);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (compactResult && curMatches.empty())
|
||||||
|
matches.pop_back();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||||
|
vector< vector<DMatch> >& matches, int k, const GpuMat& mask, bool compactResult)
|
||||||
|
{
|
||||||
|
GpuMat trainIdx, distance, allDist;
|
||||||
|
knnMatch(queryDescs, trainDescs, trainIdx, distance, allDist, k, mask);
|
||||||
|
knnMatchDownload(trainIdx, distance, matches, compactResult);
|
||||||
|
}
|
||||||
|
|
||||||
|
namespace
|
||||||
|
{
|
||||||
|
class ImgIdxSetter
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {}
|
||||||
|
void operator()(DMatch& m) const {m.imgIdx = imgIdx;}
|
||||||
|
private:
|
||||||
|
int imgIdx;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs,
|
||||||
|
vector< vector<DMatch> >& matches, int knn, const vector<GpuMat>& masks, bool compactResult)
|
||||||
|
{
|
||||||
|
vector< vector<DMatch> > curMatches;
|
||||||
|
vector<DMatch> temp;
|
||||||
|
temp.reserve(2 * knn);
|
||||||
|
|
||||||
|
matches.resize(queryDescs.rows);
|
||||||
|
for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&vector<DMatch>::reserve), knn));
|
||||||
|
|
||||||
|
for (size_t imgIdx = 0; imgIdx < trainDescCollection.size(); ++imgIdx)
|
||||||
|
{
|
||||||
|
knnMatch(queryDescs, trainDescCollection[imgIdx], curMatches, knn,
|
||||||
|
masks.empty() ? GpuMat() : masks[imgIdx]);
|
||||||
|
|
||||||
|
for (int queryIdx = 0; queryIdx < queryDescs.rows; ++queryIdx)
|
||||||
|
{
|
||||||
|
vector<DMatch>& localMatch = curMatches[queryIdx];
|
||||||
|
vector<DMatch>& globalMatch = matches[queryIdx];
|
||||||
|
|
||||||
|
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(imgIdx));
|
||||||
|
|
||||||
|
temp.clear();
|
||||||
|
merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), back_inserter(temp));
|
||||||
|
|
||||||
|
globalMatch.clear();
|
||||||
|
const size_t count = std::min((size_t)knn, temp.size());
|
||||||
|
copy(temp.begin(), temp.begin() + count, back_inserter(globalMatch));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (compactResult)
|
||||||
|
{
|
||||||
|
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(),
|
||||||
|
mem_fun_ref(&vector<DMatch>::empty));
|
||||||
|
matches.erase(new_end, matches.end());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
////////////////////////////////////////////////////////////////////
|
||||||
|
// RadiusMatch
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||||
|
GpuMat& trainIdx, GpuMat& nMatches, GpuMat& distance, float maxDistance, const GpuMat& mask)
|
||||||
|
{
|
||||||
|
using namespace cv::gpu::bfmatcher;
|
||||||
|
|
||||||
|
typedef void (*radiusMatch_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
|
||||||
|
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance);
|
||||||
|
|
||||||
|
static const radiusMatch_caller_t radiusMatch_callers[2][8] =
|
||||||
|
{
|
||||||
|
{
|
||||||
|
radiusMatchL1_gpu<unsigned char>, radiusMatchL1_gpu<char>, radiusMatchL1_gpu<unsigned short>,
|
||||||
|
radiusMatchL1_gpu<short>, radiusMatchL1_gpu<int>, radiusMatchL1_gpu<float>, 0, 0
|
||||||
|
},
|
||||||
|
{
|
||||||
|
radiusMatchL2_gpu<unsigned char>, radiusMatchL2_gpu<char>, radiusMatchL2_gpu<unsigned short>,
|
||||||
|
radiusMatchL2_gpu<short>, radiusMatchL2_gpu<int>, radiusMatchL2_gpu<float>, 0, 0
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
const int nQuery = queryDescs.rows;
|
||||||
|
const int nTrain = trainDescs.rows;
|
||||||
|
|
||||||
|
CV_Assert(queryDescs.channels() == 1);
|
||||||
|
CV_Assert(trainDescs.type() == queryDescs.type() && trainDescs.cols == queryDescs.cols);
|
||||||
|
CV_Assert(trainIdx.empty() || trainIdx.rows == nQuery);
|
||||||
|
|
||||||
|
nMatches.create(1, nQuery, CV_32SC1);
|
||||||
|
nMatches.setTo(Scalar::all(0));
|
||||||
|
if (trainIdx.empty())
|
||||||
|
{
|
||||||
|
trainIdx.create(nQuery, nTrain, CV_32SC1);
|
||||||
|
distance.create(nQuery, nTrain, CV_32FC1);
|
||||||
|
}
|
||||||
|
|
||||||
|
radiusMatch_caller_t func = radiusMatch_callers[distType][queryDescs.depth()];
|
||||||
|
CV_Assert(func != 0);
|
||||||
|
|
||||||
|
func(queryDescs, trainDescs, maxDistance, mask, trainIdx, nMatches.ptr<unsigned int>(), distance);
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& nMatches,
|
||||||
|
const GpuMat& distance, std::vector< std::vector<DMatch> >& matches, bool compactResult)
|
||||||
|
{
|
||||||
|
const int nQuery = trainIdx.rows;
|
||||||
|
|
||||||
|
Mat trainIdxCPU = trainIdx;
|
||||||
|
Mat nMatchesCPU = nMatches;
|
||||||
|
Mat distanceCPU = distance;
|
||||||
|
|
||||||
|
matches.clear();
|
||||||
|
matches.reserve(nQuery);
|
||||||
|
|
||||||
|
const unsigned int* nMatches_ptr = nMatchesCPU.ptr<unsigned int>();
|
||||||
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
|
||||||
|
{
|
||||||
|
const int* trainIdx_ptr = trainIdxCPU.ptr<int>(queryIdx);
|
||||||
|
const float* distance_ptr = distanceCPU.ptr<float>(queryIdx);
|
||||||
|
|
||||||
|
const int nMatches = std::min(static_cast<int>(nMatches_ptr[queryIdx]), trainIdx.cols);
|
||||||
|
|
||||||
|
if (nMatches == 0)
|
||||||
|
{
|
||||||
|
if (!compactResult)
|
||||||
|
matches.push_back(vector<DMatch>());
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
matches.push_back(vector<DMatch>());
|
||||||
|
vector<DMatch>& curMatches = matches.back();
|
||||||
|
curMatches.reserve(nMatches);
|
||||||
|
|
||||||
|
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++distance_ptr)
|
||||||
|
{
|
||||||
|
int trainIdx = *trainIdx_ptr;
|
||||||
|
|
||||||
|
float distance = *distance_ptr;
|
||||||
|
|
||||||
|
DMatch m(queryIdx, trainIdx, 0, distance);
|
||||||
|
|
||||||
|
curMatches.push_back(m);
|
||||||
|
}
|
||||||
|
sort(curMatches.begin(), curMatches.end());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||||
|
vector< vector<DMatch> >& matches, float maxDistance, const GpuMat& mask, bool compactResult)
|
||||||
|
{
|
||||||
|
GpuMat trainIdx, nMatches, distance;
|
||||||
|
radiusMatch(queryDescs, trainDescs, trainIdx, nMatches, distance, maxDistance, mask);
|
||||||
|
radiusMatchDownload(trainIdx, nMatches, distance, matches, compactResult);
|
||||||
|
}
|
||||||
|
|
||||||
|
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, vector< vector<DMatch> >& matches,
|
||||||
|
float maxDistance, const vector<GpuMat>& masks, bool compactResult)
|
||||||
|
|
||||||
|
{
|
||||||
|
matches.resize(queryDescs.rows);
|
||||||
|
|
||||||
|
vector< vector<DMatch> > curMatches;
|
||||||
|
|
||||||
|
for (size_t imgIdx = 0; imgIdx < trainDescCollection.size(); ++imgIdx)
|
||||||
|
{
|
||||||
|
radiusMatch(queryDescs, trainDescCollection[imgIdx], curMatches, maxDistance,
|
||||||
|
masks.empty() ? GpuMat() : masks[imgIdx]);
|
||||||
|
|
||||||
|
for (int queryIdx = 0; queryIdx < queryDescs.rows; ++queryIdx)
|
||||||
|
{
|
||||||
|
vector<DMatch>& localMatch = curMatches[queryIdx];
|
||||||
|
vector<DMatch>& globalMatch = matches[queryIdx];
|
||||||
|
|
||||||
|
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(imgIdx));
|
||||||
|
|
||||||
|
const size_t oldSize = globalMatch.size();
|
||||||
|
|
||||||
|
copy(localMatch.begin(), localMatch.end(), back_inserter(globalMatch));
|
||||||
|
inplace_merge(globalMatch.begin(), globalMatch.begin() + oldSize, globalMatch.end());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (compactResult)
|
||||||
|
{
|
||||||
|
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(),
|
||||||
|
mem_fun_ref(&vector<DMatch>::empty));
|
||||||
|
matches.erase(new_end, matches.end());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif /* !defined (HAVE_CUDA) */
|
1205
modules/gpu/src/cuda/brute_force_matcher.cu
Normal file
1205
modules/gpu/src/cuda/brute_force_matcher.cu
Normal file
File diff suppressed because it is too large
Load Diff
175
tests/gpu/src/brute_force_matcher.cpp
Normal file
175
tests/gpu/src/brute_force_matcher.cpp
Normal file
@ -0,0 +1,175 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// Intel License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "gputest.hpp"
|
||||||
|
|
||||||
|
using namespace cv;
|
||||||
|
using namespace cv::gpu;
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
class CV_GpuBruteForceMatcherTest : public CvTest
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
CV_GpuBruteForceMatcherTest() : CvTest( "GPU-BruteForceMatcher", "BruteForceMatcher" ) {}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void run(int)
|
||||||
|
{
|
||||||
|
try
|
||||||
|
{
|
||||||
|
BruteForceMatcher< L2<float> > matcherCPU;
|
||||||
|
BruteForceMatcher_GPU< L2<float> > matcherGPU;
|
||||||
|
|
||||||
|
vector<DMatch> matchesCPU, matchesGPU;
|
||||||
|
vector< vector<DMatch> > knnMatchesCPU, knnMatchesGPU;
|
||||||
|
vector< vector<DMatch> > radiusMatchesCPU, radiusMatchesGPU;
|
||||||
|
|
||||||
|
RNG rng(*ts->get_rng());
|
||||||
|
|
||||||
|
const int desc_len = rng.uniform(40, 300);
|
||||||
|
|
||||||
|
Mat queryCPU(rng.uniform(100, 300), desc_len, CV_32F);
|
||||||
|
rng.fill(queryCPU, cv::RNG::UNIFORM, cv::Scalar::all(0.0), cv::Scalar::all(1.0));
|
||||||
|
GpuMat queryGPU(queryCPU);
|
||||||
|
|
||||||
|
const int nTrains = rng.uniform(1, 5);
|
||||||
|
|
||||||
|
vector<Mat> trainsCPU(nTrains);
|
||||||
|
vector<GpuMat> trainsGPU(nTrains);
|
||||||
|
|
||||||
|
vector<Mat> masksCPU(nTrains);
|
||||||
|
vector<GpuMat> masksGPU(nTrains);
|
||||||
|
|
||||||
|
for (int i = 0; i < nTrains; ++i)
|
||||||
|
{
|
||||||
|
Mat train(rng.uniform(100, 300), desc_len, CV_32F);
|
||||||
|
rng.fill(train, cv::RNG::UNIFORM, cv::Scalar::all(0.0), cv::Scalar::all(1.0));
|
||||||
|
|
||||||
|
trainsCPU[i] = train;
|
||||||
|
trainsGPU[i].upload(train);
|
||||||
|
|
||||||
|
bool with_mask = rng.uniform(0, 10) < 5;
|
||||||
|
if (with_mask)
|
||||||
|
{
|
||||||
|
Mat mask(queryCPU.rows, train.rows, CV_8U, Scalar::all(1));
|
||||||
|
rng.fill(mask, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(200));
|
||||||
|
|
||||||
|
masksCPU[i] = mask;
|
||||||
|
masksGPU[i].upload(mask);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
matcherCPU.add(trainsCPU);
|
||||||
|
matcherGPU.add(trainsGPU);
|
||||||
|
|
||||||
|
matcherCPU.match(queryCPU, matchesCPU, masksCPU);
|
||||||
|
matcherGPU.match(queryGPU, matchesGPU, masksGPU);
|
||||||
|
|
||||||
|
if (!compareMatches(matchesCPU, matchesGPU))
|
||||||
|
{
|
||||||
|
ts->set_failed_test_info(CvTS::FAIL_MISMATCH);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int knn = rng.uniform(3, 10);
|
||||||
|
|
||||||
|
matcherCPU.knnMatch(queryCPU, knnMatchesCPU, knn, masksCPU);
|
||||||
|
matcherGPU.knnMatch(queryGPU, knnMatchesGPU, knn, masksGPU);
|
||||||
|
|
||||||
|
if (!compareMatches(knnMatchesCPU, knnMatchesGPU))
|
||||||
|
{
|
||||||
|
ts->set_failed_test_info(CvTS::FAIL_MISMATCH);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float maxDistance = rng.uniform(0.01f, 0.3f);
|
||||||
|
|
||||||
|
matcherCPU.radiusMatch(queryCPU, radiusMatchesCPU, maxDistance, masksCPU);
|
||||||
|
matcherGPU.radiusMatch(queryGPU, radiusMatchesGPU, maxDistance, masksGPU);
|
||||||
|
|
||||||
|
if (!compareMatches(radiusMatchesCPU, radiusMatchesGPU))
|
||||||
|
{
|
||||||
|
ts->set_failed_test_info(CvTS::FAIL_MISMATCH);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
catch (const cv::Exception& e)
|
||||||
|
{
|
||||||
|
if (!check_and_treat_gpu_exception(e, ts))
|
||||||
|
throw;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
ts->set_failed_test_info(CvTS::OK);
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
static void convertMatches(const vector< vector<DMatch> >& knnMatches, vector<DMatch>& matches)
|
||||||
|
{
|
||||||
|
matches.clear();
|
||||||
|
for (size_t i = 0; i < knnMatches.size(); ++i)
|
||||||
|
copy(knnMatches[i].begin(), knnMatches[i].end(), back_inserter(matches));
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool compareMatches(const vector<DMatch>& matches1, const vector<DMatch>& matches2)
|
||||||
|
{
|
||||||
|
if (matches1.size() != matches2.size())
|
||||||
|
return false;
|
||||||
|
|
||||||
|
struct DMatchEqual : public binary_function<DMatch, DMatch, bool>
|
||||||
|
{
|
||||||
|
bool operator()(const DMatch& m1, const DMatch& m2)
|
||||||
|
{
|
||||||
|
return m1.imgIdx == m2.imgIdx && m1.queryIdx == m2.queryIdx && m1.trainIdx == m2.trainIdx;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
return equal(matches1.begin(), matches1.end(), matches2.begin(), DMatchEqual());
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool compareMatches(const vector< vector<DMatch> >& matches1, const vector< vector<DMatch> >& matches2)
|
||||||
|
{
|
||||||
|
vector<DMatch> m1, m2;
|
||||||
|
convertMatches(matches1, m1);
|
||||||
|
convertMatches(matches2, m2);
|
||||||
|
return compareMatches(m1, m2);
|
||||||
|
}
|
||||||
|
} brute_force_matcher_test;
|
@ -50,7 +50,8 @@
|
|||||||
|
|
||||||
#include <opencv2/gpu/gpu.hpp>
|
#include <opencv2/gpu/gpu.hpp>
|
||||||
#include <opencv2/highgui/highgui.hpp>
|
#include <opencv2/highgui/highgui.hpp>
|
||||||
#include <opencv2/imgproc/imgproc.hpp>
|
#include <opencv2/imgproc/imgproc.hpp>
|
||||||
|
#include <opencv2/features2d/features2d.hpp>
|
||||||
#include "cxts.h"
|
#include "cxts.h"
|
||||||
|
|
||||||
/****************************************************************************************/
|
/****************************************************************************************/
|
||||||
|
Loading…
Reference in New Issue
Block a user