mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Merge pull request #9049 from Cartucho:improve_mask_tutorial_codes
This commit is contained in:
commit
89172c08a2
@ -12,7 +12,7 @@ static void help(char* progName)
|
||||
<< "This program shows how to filter images with mask: the write it yourself and the"
|
||||
<< "filter2d way. " << endl
|
||||
<< "Usage:" << endl
|
||||
<< progName << " [image_name -- default ../data/lena.jpg] [G -- grayscale] " << endl << endl;
|
||||
<< progName << " [image_path -- default ../data/lena.jpg] [G -- grayscale] " << endl << endl;
|
||||
}
|
||||
|
||||
|
||||
@ -45,7 +45,7 @@ int main( int argc, char* argv[])
|
||||
Sharpen( src, dst0 );
|
||||
|
||||
t = ((double)getTickCount() - t)/getTickFrequency();
|
||||
cout << "Hand written function times passed in seconds: " << t << endl;
|
||||
cout << "Hand written function time passed in seconds: " << t << endl;
|
||||
|
||||
imshow( "Output", dst0 );
|
||||
waitKey();
|
||||
@ -62,7 +62,7 @@ int main( int argc, char* argv[])
|
||||
filter2D( src, dst1, src.depth(), kernel );
|
||||
//![filter2D]
|
||||
t = ((double)getTickCount() - t)/getTickFrequency();
|
||||
cout << "Built-in filter2D time passed in seconds: " << t << endl;
|
||||
cout << "Built-in filter2D time passed in seconds: " << t << endl;
|
||||
|
||||
imshow( "Output", dst1 );
|
||||
|
||||
|
@ -1,102 +1,109 @@
|
||||
import org.opencv.core.*;
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
import javax.swing.*;
|
||||
import java.awt.Image;
|
||||
import java.awt.*;
|
||||
import java.awt.image.BufferedImage;
|
||||
import java.awt.image.DataBufferByte;
|
||||
|
||||
class MatMaskOperationsRun {
|
||||
|
||||
public void run() {
|
||||
public void run(String[] args) {
|
||||
|
||||
//! [laod_image]
|
||||
Mat I = Imgcodecs.imread("../data/lena.jpg");
|
||||
if(I.empty())
|
||||
System.out.println("Error opening image");
|
||||
//! [laod_image]
|
||||
String filename = "../data/lena.jpg";
|
||||
|
||||
Image img = toBufferedImage( I );
|
||||
displayImage("Input Image" , img, 0, 200 );
|
||||
int img_codec = Imgcodecs.IMREAD_COLOR;
|
||||
if (args.length != 0) {
|
||||
filename = args[0];
|
||||
if (args.length >= 2 && args[1].equals("G"))
|
||||
img_codec = Imgcodecs.IMREAD_GRAYSCALE;
|
||||
}
|
||||
|
||||
Mat src = Imgcodecs.imread(filename, img_codec);
|
||||
|
||||
if (src.empty()) {
|
||||
System.out.println("Can't open image [" + filename + "]");
|
||||
System.out.println("Program Arguments: [image_path -- default ../data/lena.jpg] [G -- grayscale]");
|
||||
System.exit(-1);
|
||||
}
|
||||
|
||||
Image img = toBufferedImage(src);
|
||||
displayImage("Input", img, 0, 200);
|
||||
double t = System.currentTimeMillis();
|
||||
|
||||
Mat J = sharpen(I, new Mat());
|
||||
Mat dst0 = sharpen(src, new Mat());
|
||||
|
||||
t = ((double)System.currentTimeMillis() - t)/1000;
|
||||
System.out.println("Hand written function times passed in seconds: " + t);
|
||||
t = ((double) System.currentTimeMillis() - t) / 1000;
|
||||
System.out.println("Hand written function time passed in seconds: " + t);
|
||||
|
||||
Image img2 = toBufferedImage( J );
|
||||
displayImage("Output Image" , img2, 400, 400 );
|
||||
Image img2 = toBufferedImage(dst0);
|
||||
displayImage("Output", img2, 400, 400);
|
||||
|
||||
Mat K = new Mat();
|
||||
//![kern]
|
||||
Mat kern = new Mat( 3, 3, CvType.CV_8S );
|
||||
//![kern]
|
||||
Mat kern = new Mat(3, 3, CvType.CV_8S);
|
||||
int row = 0, col = 0;
|
||||
kern.put(row ,col, 0, -1, 0, -1, 5, -1, 0, -1, 0 );
|
||||
//![kern]
|
||||
|
||||
System.out.println("kern = \n" + kern.dump());
|
||||
kern.put(row, col, 0, -1, 0, -1, 5, -1, 0, -1, 0);
|
||||
//![kern]
|
||||
|
||||
t = System.currentTimeMillis();
|
||||
|
||||
//![filter2D]
|
||||
Imgproc.filter2D(I, K, I.depth(), kern );
|
||||
//![filter2D]
|
||||
Mat dst1 = new Mat();
|
||||
//![filter2D]
|
||||
Imgproc.filter2D(src, dst1, src.depth(), kern);
|
||||
//![filter2D]
|
||||
t = ((double) System.currentTimeMillis() - t) / 1000;
|
||||
System.out.println("Built-in filter2D time passed in seconds: " + t);
|
||||
|
||||
t = ((double)System.currentTimeMillis() - t)/1000;
|
||||
System.out.println("Built-in filter2D time passed in seconds: " + t);
|
||||
|
||||
Image img3 = toBufferedImage( J );
|
||||
displayImage("filter2D Output Image" , img3, 800, 400 );
|
||||
Image img3 = toBufferedImage(dst1);
|
||||
displayImage("Output", img3, 800, 400);
|
||||
}
|
||||
|
||||
//! [basic_method]
|
||||
public static double saturateCastUchar(double x) {
|
||||
public static double saturate(double x) {
|
||||
return x > 255.0 ? 255.0 : (x < 0.0 ? 0.0 : x);
|
||||
}
|
||||
|
||||
public Mat sharpen(Mat myImage, Mat Result)
|
||||
{
|
||||
//! [8_bit]
|
||||
public Mat sharpen(Mat myImage, Mat Result) {
|
||||
//! [8_bit]
|
||||
myImage.convertTo(myImage, CvType.CV_8U);
|
||||
//! [8_bit]
|
||||
//! [8_bit]
|
||||
|
||||
//! [create_channels]
|
||||
//! [create_channels]
|
||||
int nChannels = myImage.channels();
|
||||
Result.create(myImage.size(),myImage.type());
|
||||
//! [create_channels]
|
||||
Result.create(myImage.size(), myImage.type());
|
||||
//! [create_channels]
|
||||
|
||||
//! [basic_method_loop]
|
||||
for(int j = 1 ; j < myImage.rows()-1; ++j)
|
||||
{
|
||||
for(int i = 1 ; i < myImage.cols()-1; ++i)
|
||||
{
|
||||
//! [basic_method_loop]
|
||||
for (int j = 1; j < myImage.rows() - 1; ++j) {
|
||||
for (int i = 1; i < myImage.cols() - 1; ++i) {
|
||||
double sum[] = new double[nChannels];
|
||||
|
||||
for(int k = 0; k < nChannels; ++k) {
|
||||
for (int k = 0; k < nChannels; ++k) {
|
||||
|
||||
double top = -myImage.get(j - 1, i)[k];
|
||||
double bottom = -myImage.get(j + 1, i)[k];
|
||||
double center = (5 * myImage.get(j, i)[k]);
|
||||
double left = -myImage.get(j , i - 1)[k];
|
||||
double right = -myImage.get(j , i + 1)[k];
|
||||
double left = -myImage.get(j, i - 1)[k];
|
||||
double right = -myImage.get(j, i + 1)[k];
|
||||
|
||||
sum[k] = saturateCastUchar(top + bottom + center + left + right);
|
||||
sum[k] = saturate(top + bottom + center + left + right);
|
||||
}
|
||||
|
||||
Result.put(j, i, sum);
|
||||
}
|
||||
}
|
||||
//! [basic_method_loop]
|
||||
//! [basic_method_loop]
|
||||
|
||||
//! [borders]
|
||||
//! [borders]
|
||||
Result.row(0).setTo(new Scalar(0));
|
||||
Result.row(Result.rows()-1).setTo(new Scalar(0));
|
||||
Result.row(Result.rows() - 1).setTo(new Scalar(0));
|
||||
Result.col(0).setTo(new Scalar(0));
|
||||
Result.col(Result.cols()-1).setTo(new Scalar(0));
|
||||
//! [borders]
|
||||
Result.col(Result.cols() - 1).setTo(new Scalar(0));
|
||||
//! [borders]
|
||||
|
||||
return Result;
|
||||
}
|
||||
@ -104,23 +111,22 @@ class MatMaskOperationsRun {
|
||||
|
||||
public Image toBufferedImage(Mat m) {
|
||||
int type = BufferedImage.TYPE_BYTE_GRAY;
|
||||
if ( m.channels() > 1 ) {
|
||||
if (m.channels() > 1) {
|
||||
type = BufferedImage.TYPE_3BYTE_BGR;
|
||||
}
|
||||
int bufferSize = m.channels()*m.cols()*m.rows();
|
||||
byte [] b = new byte[bufferSize];
|
||||
m.get(0,0,b); // get all the pixels
|
||||
BufferedImage image = new BufferedImage(m.cols(),m.rows(), type);
|
||||
int bufferSize = m.channels() * m.cols() * m.rows();
|
||||
byte[] b = new byte[bufferSize];
|
||||
m.get(0, 0, b); // get all the pixels
|
||||
BufferedImage image = new BufferedImage(m.cols(), m.rows(), type);
|
||||
final byte[] targetPixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
|
||||
System.arraycopy(b, 0, targetPixels, 0, b.length);
|
||||
return image;
|
||||
}
|
||||
|
||||
public void displayImage(String title, Image img, int x, int y)
|
||||
{
|
||||
ImageIcon icon=new ImageIcon(img);
|
||||
JFrame frame=new JFrame(title);
|
||||
JLabel lbl=new JLabel(icon);
|
||||
public void displayImage(String title, Image img, int x, int y) {
|
||||
ImageIcon icon = new ImageIcon(img);
|
||||
JFrame frame = new JFrame(title);
|
||||
JLabel lbl = new JLabel(icon);
|
||||
frame.add(lbl);
|
||||
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
|
||||
frame.pack();
|
||||
@ -131,9 +137,9 @@ class MatMaskOperationsRun {
|
||||
|
||||
public class MatMaskOperations {
|
||||
public static void main(String[] args) {
|
||||
|
||||
// Load the native library.
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
new MatMaskOperationsRun().run();
|
||||
|
||||
new MatMaskOperationsRun().run(args); // run code
|
||||
}
|
||||
}
|
||||
|
@ -1,57 +1,100 @@
|
||||
import sys
|
||||
import time
|
||||
import numpy as np
|
||||
import cv2
|
||||
## [basic_method]
|
||||
def sharpen(my_image):
|
||||
my_image = cv2.cvtColor(my_image, cv2.CV_8U)
|
||||
|
||||
height, width, n_channels = my_image.shape
|
||||
|
||||
## [basic_method]
|
||||
def is_grayscale(my_image):
|
||||
return len(my_image.shape) < 3
|
||||
|
||||
|
||||
def saturated(sum_value):
|
||||
if sum_value > 255:
|
||||
sum_value = 255
|
||||
if sum_value < 0:
|
||||
sum_value = 0
|
||||
|
||||
return sum_value
|
||||
|
||||
|
||||
def sharpen(my_image):
|
||||
if is_grayscale(my_image):
|
||||
height, width = my_image.shape
|
||||
else:
|
||||
my_image = cv2.cvtColor(my_image, cv2.CV_8U)
|
||||
height, width, n_channels = my_image.shape
|
||||
|
||||
result = np.zeros(my_image.shape, my_image.dtype)
|
||||
|
||||
## [basic_method_loop]
|
||||
for j in range (1, height-1):
|
||||
for i in range (1, width-1):
|
||||
for k in range (0, n_channels):
|
||||
sum = 5 * my_image[j, i, k] - my_image[j + 1, i, k] - my_image[j - 1, i, k]\
|
||||
- my_image[j, i + 1, k] - my_image[j, i - 1, k];
|
||||
|
||||
if sum > 255:
|
||||
sum = 255
|
||||
if sum < 0:
|
||||
sum = 0
|
||||
|
||||
result[j, i, k] = sum
|
||||
for j in range(1, height - 1):
|
||||
for i in range(1, width - 1):
|
||||
if is_grayscale(my_image):
|
||||
sum_value = 5 * my_image[j, i] - my_image[j + 1, i] - my_image[j - 1, i] \
|
||||
- my_image[j, i + 1] - my_image[j, i - 1]
|
||||
result[j, i] = saturated(sum_value)
|
||||
else:
|
||||
for k in range(0, n_channels):
|
||||
sum_value = 5 * my_image[j, i, k] - my_image[j + 1, i, k] - my_image[j - 1, i, k] \
|
||||
- my_image[j, i + 1, k] - my_image[j, i - 1, k]
|
||||
result[j, i, k] = saturated(sum_value)
|
||||
## [basic_method_loop]
|
||||
|
||||
return result
|
||||
## [basic_method]
|
||||
|
||||
|
||||
I = cv2.imread("../data/lena.jpg")
|
||||
cv2.imshow('Input Image', I)
|
||||
def main(argv):
|
||||
filename = "../data/lena.jpg"
|
||||
|
||||
t = round(time.time())
|
||||
J = sharpen(I)
|
||||
t = (time.time() - t)/1000
|
||||
print "Hand written function times passed in seconds: %s" % t
|
||||
img_codec = cv2.IMREAD_COLOR
|
||||
if argv:
|
||||
filename = sys.argv[1]
|
||||
if len(argv) >= 2 and sys.argv[2] == "G":
|
||||
img_codec = cv2.IMREAD_GRAYSCALE
|
||||
|
||||
cv2.imshow('Output Image', J)
|
||||
src = cv2.imread(filename, img_codec)
|
||||
|
||||
t = time.time()
|
||||
## [kern]
|
||||
kernel = np.array([ [0,-1,0],
|
||||
[-1,5,-1],
|
||||
[0,-1,0] ],np.float32) # kernel should be floating point type
|
||||
## [kern]
|
||||
if src is None:
|
||||
print "Can't open image [" + filename + "]"
|
||||
print "Usage:\nmat_mask_operations.py [image_path -- default ../data/lena.jpg] [G -- grayscale]"
|
||||
return -1
|
||||
|
||||
## [filter2D]
|
||||
K = cv2.filter2D(I, -1, kernel) # ddepth = -1, means destination image has depth same as input image.
|
||||
## [filter2D]
|
||||
cv2.namedWindow("Input", cv2.WINDOW_AUTOSIZE)
|
||||
cv2.namedWindow("Output", cv2.WINDOW_AUTOSIZE)
|
||||
|
||||
t = (time.time() - t)/1000
|
||||
print "Built-in filter2D time passed in seconds: %s" % t
|
||||
cv2.imshow("Input", src)
|
||||
t = round(time.time())
|
||||
|
||||
cv2.imshow('filter2D Output Image', K)
|
||||
dst0 = sharpen(src)
|
||||
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
t = (time.time() - t) / 1000
|
||||
print "Hand written function time passed in seconds: %s" % t
|
||||
|
||||
cv2.imshow("Output", dst0)
|
||||
cv2.waitKey()
|
||||
|
||||
t = time.time()
|
||||
## [kern]
|
||||
kernel = np.array([[0, -1, 0],
|
||||
[-1, 5, -1],
|
||||
[0, -1, 0]], np.float32) # kernel should be floating point type
|
||||
## [kern]
|
||||
|
||||
## [filter2D]
|
||||
dst1 = cv2.filter2D(src, -1, kernel) # ddepth = -1, means destination image has depth same as input image
|
||||
## [filter2D]
|
||||
|
||||
t = (time.time() - t) / 1000
|
||||
print "Built-in filter2D time passed in seconds: %s" % t
|
||||
|
||||
cv2.imshow("Output", dst1)
|
||||
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
return 0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(sys.argv[1:])
|
||||
|
Loading…
Reference in New Issue
Block a user