mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Finish implementing the Nonlinear Conjugate Gradient
Now everything is prepared for the pull request.
This commit is contained in:
parent
581d454536
commit
891bcd8491
@ -1,11 +0,0 @@
|
||||
Conjugate Gradient
|
||||
=======================
|
||||
|
||||
.. highlight:: cpp
|
||||
|
||||
optim::ConjGradSolver
|
||||
---------------------------------
|
||||
|
||||
.. ocv:class:: optim::ConjGradSolver
|
||||
|
||||
This class is used
|
@ -8,14 +8,15 @@ optim::DownhillSolver
|
||||
|
||||
.. ocv:class:: optim::DownhillSolver
|
||||
|
||||
This class is used to perform the non-linear non-constrained *minimization* of a function, given on an *n*-dimensional Euclidean space,
|
||||
This class is used to perform the non-linear non-constrained *minimization* of a function, defined on an *n*-dimensional Euclidean space,
|
||||
using the **Nelder-Mead method**, also known as **downhill simplex method**. The basic idea about the method can be obtained from
|
||||
(`http://en.wikipedia.org/wiki/Nelder-Mead\_method <http://en.wikipedia.org/wiki/Nelder-Mead_method>`_). It should be noted, that
|
||||
this method, although deterministic, is rather a heuristic and therefore may converge to a local minima, not necessary a global one.
|
||||
It is iterative optimization technique, which at each step uses an information about the values of a function evaluated only at
|
||||
*n+1* points, arranged as a *simplex* in *n*-dimensional space (hence the second name of the method). At each step new point is
|
||||
chosen to evaluate function at, obtained value is compared with previous ones and based on this information simplex changes it's shape
|
||||
, slowly moving to the local minimum.
|
||||
, slowly moving to the local minimum. Thus this method is using *only* function values to make decision, on contrary to, say, Nonlinear
|
||||
Conjugate Gradient method (which is also implemented in ``optim``).
|
||||
|
||||
Algorithm stops when the number of function evaluations done exceeds ``termcrit.maxCount``, when the function values at the
|
||||
vertices of simplex are within ``termcrit.epsilon`` range or simplex becomes so small that it
|
||||
@ -30,9 +31,9 @@ positive integer ``termcrit.maxCount`` and positive non-integer ``termcrit.epsil
|
||||
class CV_EXPORTS Function
|
||||
{
|
||||
public:
|
||||
virtual ~Function() {}
|
||||
//! ndim - dimensionality
|
||||
virtual double calc(const double* x) const = 0;
|
||||
virtual ~Function() {}
|
||||
virtual double calc(const double* x) const = 0;
|
||||
virtual void getGradient(const double* /*x*/,double* /*grad*/) {}
|
||||
};
|
||||
|
||||
virtual Ptr<Function> getFunction() const = 0;
|
||||
@ -150,7 +151,7 @@ optim::createDownhillSolver
|
||||
This function returns the reference to the ready-to-use ``DownhillSolver`` object. All the parameters are optional, so this procedure can be called
|
||||
even without parameters at all. In this case, the default values will be used. As default value for terminal criteria are the only sensible ones,
|
||||
``DownhillSolver::setFunction()`` and ``DownhillSolver::setInitStep()`` should be called upon the obtained object, if the respective parameters
|
||||
were not given to ``createDownhillSolver()``. Otherwise, the two ways (give parameters to ``createDownhillSolver()`` or miss the out and call the
|
||||
were not given to ``createDownhillSolver()``. Otherwise, the two ways (give parameters to ``createDownhillSolver()`` or miss them out and call the
|
||||
``DownhillSolver::setFunction()`` and ``DownhillSolver::setInitStep()``) are absolutely equivalent (and will drop the same errors in the same way,
|
||||
should invalid input be detected).
|
||||
|
||||
|
@ -10,4 +10,4 @@ optim. Generic numerical optimization
|
||||
linear_programming
|
||||
downhill_simplex_method
|
||||
primal_dual_algorithm
|
||||
conjugate_gradient
|
||||
nonlinear_conjugate_gradient
|
||||
|
@ -1,8 +1,11 @@
|
||||
#include "precomp.hpp"
|
||||
#undef ALEX_DEBUG
|
||||
#include "debug.hpp"
|
||||
|
||||
namespace cv{namespace optim{
|
||||
|
||||
#define SEC_METHOD_ITERATIONS 4
|
||||
#define INITIAL_SEC_METHOD_SIGMA 0.1
|
||||
class ConjGradSolverImpl : public ConjGradSolver
|
||||
{
|
||||
public:
|
||||
@ -16,9 +19,45 @@ namespace cv{namespace optim{
|
||||
Ptr<Solver::Function> _Function;
|
||||
TermCriteria _termcrit;
|
||||
Mat_<double> d,r,buf_x,r_old;
|
||||
Mat_<double> minimizeOnTheLine_buf1,minimizeOnTheLine_buf2;
|
||||
private:
|
||||
static void minimizeOnTheLine(Ptr<Solver::Function> _f,Mat_<double>& x,const Mat_<double>& d,Mat_<double>& buf1,Mat_<double>& buf2);
|
||||
};
|
||||
|
||||
void ConjGradSolverImpl::minimizeOnTheLine(Ptr<Solver::Function> _f,Mat_<double>& x,const Mat_<double>& d,Mat_<double>& buf1,
|
||||
Mat_<double>& buf2){
|
||||
double sigma=INITIAL_SEC_METHOD_SIGMA;
|
||||
buf1=0.0;
|
||||
buf2=0.0;
|
||||
|
||||
dprintf(("before minimizeOnTheLine\n"));
|
||||
dprintf(("x:\n"));
|
||||
print_matrix(x);
|
||||
dprintf(("d:\n"));
|
||||
print_matrix(d);
|
||||
|
||||
for(int i=0;i<SEC_METHOD_ITERATIONS;i++){
|
||||
_f->getGradient((double*)x.data,(double*)buf1.data);
|
||||
dprintf(("buf1:\n"));
|
||||
print_matrix(buf1);
|
||||
x=x+sigma*d;
|
||||
_f->getGradient((double*)x.data,(double*)buf2.data);
|
||||
dprintf(("buf2:\n"));
|
||||
print_matrix(buf2);
|
||||
double d1=buf1.dot(d), d2=buf2.dot(d);
|
||||
if((d1-d2)==0){
|
||||
break;
|
||||
}
|
||||
double alpha=-sigma*d1/(d2-d1);
|
||||
dprintf(("(buf2.dot(d)-buf1.dot(d))=%f\nalpha=%f\n",(buf2.dot(d)-buf1.dot(d)),alpha));
|
||||
x=x+(alpha-sigma)*d;
|
||||
sigma=-alpha;
|
||||
}
|
||||
|
||||
dprintf(("after minimizeOnTheLine\n"));
|
||||
print_matrix(x);
|
||||
}
|
||||
|
||||
double ConjGradSolverImpl::minimize(InputOutputArray x){
|
||||
CV_Assert(_Function.empty()==false);
|
||||
dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));
|
||||
@ -28,9 +67,13 @@ namespace cv{namespace optim{
|
||||
int ndim=MAX(x_mat.rows,x_mat.cols);
|
||||
CV_Assert(x_mat.type()==CV_64FC1);
|
||||
|
||||
d.create(1,ndim);
|
||||
r.create(1,ndim);
|
||||
r_old.create(1,ndim);
|
||||
if(d.cols!=ndim){
|
||||
d.create(1,ndim);
|
||||
r.create(1,ndim);
|
||||
r_old.create(1,ndim);
|
||||
minimizeOnTheLine_buf1.create(1,ndim);
|
||||
minimizeOnTheLine_buf2.create(1,ndim);
|
||||
}
|
||||
|
||||
Mat_<double> proxy_x;
|
||||
if(x_mat.rows>1){
|
||||
@ -41,14 +84,40 @@ namespace cv{namespace optim{
|
||||
}else{
|
||||
proxy_x=x_mat;
|
||||
}
|
||||
_Function->getGradient((double*)proxy_x.data,(double*)d.data);
|
||||
if(true){
|
||||
d*=-1.0;
|
||||
d.copyTo(r);
|
||||
}else{((double*)d.data)[1]=42.0;}
|
||||
|
||||
//here everything goes. check that everything is setted properly
|
||||
dprintf(("proxy_x\n"));print_matrix(proxy_x);
|
||||
dprintf(("d first time\n"));print_matrix(d);
|
||||
dprintf(("r\n"));print_matrix(r);
|
||||
|
||||
double beta=0;
|
||||
for(int count=0;count<_termcrit.maxCount;count++){
|
||||
minimizeOnTheLine(_Function,proxy_x,d,minimizeOnTheLine_buf1,minimizeOnTheLine_buf2);
|
||||
r.copyTo(r_old);
|
||||
_Function->getGradient((double*)proxy_x.data,(double*)r.data);
|
||||
r*=-1.0;
|
||||
double r_norm_sq=norm(r);
|
||||
if(_termcrit.type==(TermCriteria::MAX_ITER+TermCriteria::EPS) && r_norm_sq<_termcrit.epsilon){
|
||||
break;
|
||||
}
|
||||
r_norm_sq=r_norm_sq*r_norm_sq;
|
||||
beta=MAX(0.0,(r_norm_sq-r.dot(r_old))/r_norm_sq);
|
||||
d=r+beta*d;
|
||||
}
|
||||
|
||||
|
||||
|
||||
if(x_mat.rows>1){
|
||||
Mat(ndim, 1, CV_64F, (double*)proxy_x.data).copyTo(x);
|
||||
}
|
||||
return 0.0;
|
||||
return _Function->calc((double*)proxy_x.data);
|
||||
}
|
||||
|
||||
ConjGradSolverImpl::ConjGradSolverImpl(){
|
||||
_Function=Ptr<Function>();
|
||||
}
|
||||
@ -74,4 +143,3 @@ namespace cv{namespace optim{
|
||||
return Ptr<ConjGradSolver>(CG);
|
||||
}
|
||||
}}
|
||||
|
||||
|
@ -24,38 +24,39 @@ public:
|
||||
return x[0]*x[0]+x[1]*x[1]+x[2]*x[2]+x[3]*x[3];
|
||||
}
|
||||
void getGradient(const double* x,double* grad){
|
||||
for(int i=0;i<4;i++,grad++,x++){
|
||||
grad[0]=2*x[0];
|
||||
for(int i=0;i<4;i++){
|
||||
grad[i]=2*x[i];
|
||||
}
|
||||
}
|
||||
};
|
||||
//TODO: test transp/usual x
|
||||
/*class RosenbrockF:public cv::optim::Solver::Function{
|
||||
class RosenbrockF:public cv::optim::Solver::Function{
|
||||
double calc(const double* x)const{
|
||||
return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]);
|
||||
}
|
||||
};*/
|
||||
void getGradient(const double* x,double* grad){
|
||||
grad[0]=-2*(1-x[0])-400*(x[1]-x[0]*x[0])*x[0];
|
||||
grad[1]=200*(x[1]-x[0]*x[0]);
|
||||
}
|
||||
};
|
||||
|
||||
TEST(Optim_ConjGrad, regression_basic){
|
||||
cv::Ptr<cv::optim::ConjGradSolver> solver=cv::optim::createConjGradSolver();
|
||||
#if 1
|
||||
{
|
||||
cv::Ptr<cv::optim::Solver::Function> ptr_F(new SphereF());
|
||||
cv::Mat x=(cv::Mat_<double>(1,2)<<1.0,1.0),
|
||||
etalon_x=(cv::Mat_<double>(1,2)<<0.0,0.0);
|
||||
cv::Mat x=(cv::Mat_<double>(4,1)<<50.0,10.0,1.0,-10.0),
|
||||
etalon_x=(cv::Mat_<double>(1,4)<<0.0,0.0,0.0,0.0);
|
||||
double etalon_res=0.0;
|
||||
return;
|
||||
mytest(solver,ptr_F,x,etalon_x,etalon_res);
|
||||
}
|
||||
#endif
|
||||
#if 0
|
||||
#if 1
|
||||
{
|
||||
cv::Ptr<cv::optim::Solver::Function> ptr_F(new RosenbrockF());
|
||||
cv::Mat x=(cv::Mat_<double>(2,1)<<0.0,0.0),
|
||||
step=(cv::Mat_<double>(2,1)<<0.5,+0.5),
|
||||
etalon_x=(cv::Mat_<double>(2,1)<<1.0,1.0);
|
||||
double etalon_res=0.0;
|
||||
mytest(solver,ptr_F,x,step,etalon_x,etalon_res);
|
||||
mytest(solver,ptr_F,x,etalon_x,etalon_res);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user