changed hog to work with variable parameters and changed the hog sample to test it with more options

added comments and tests
This commit is contained in:
ManuelFreudenreich 2015-06-11 13:29:23 +02:00
parent 424c2bddb3
commit 89889ae8ea
4 changed files with 467 additions and 113 deletions

View File

@ -49,11 +49,6 @@
namespace cv { namespace cuda { namespace device
{
// Other values are not supported
#define CELL_WIDTH 8
#define CELL_HEIGHT 8
#define CELLS_PER_BLOCK_X 2
#define CELLS_PER_BLOCK_Y 2
namespace hog
{
@ -62,6 +57,8 @@ namespace cv { namespace cuda { namespace device
__constant__ int cblock_stride_y;
__constant__ int cnblocks_win_x;
__constant__ int cnblocks_win_y;
__constant__ int cncells_block_x;
__constant__ int cncells_block_y;
__constant__ int cblock_hist_size;
__constant__ int cblock_hist_size_2up;
__constant__ int cdescr_size;
@ -72,31 +69,47 @@ namespace cv { namespace cuda { namespace device
the typical GPU thread count (pert block) values */
int power_2up(unsigned int n)
{
if (n < 1) return 1;
else if (n < 2) return 2;
else if (n < 4) return 4;
else if (n < 8) return 8;
else if (n < 16) return 16;
else if (n < 32) return 32;
else if (n < 64) return 64;
else if (n < 128) return 128;
else if (n < 256) return 256;
else if (n < 512) return 512;
else if (n < 1024) return 1024;
if (n <= 1) return 1;
else if (n <= 2) return 2;
else if (n <= 4) return 4;
else if (n <= 8) return 8;
else if (n <= 16) return 16;
else if (n <= 32) return 32;
else if (n <= 64) return 64;
else if (n <= 128) return 128;
else if (n <= 256) return 256;
else if (n <= 512) return 512;
else if (n <= 1024) return 1024;
return -1; // Input is too big
}
/* Returns the max size for nblocks */
int max_nblocks(int nthreads, int ncells_block = 1)
{
int threads = nthreads * ncells_block;
if(threads * 4 <= 256)
return 4;
else if(threads * 3 <= 256)
return 3;
else if(threads * 2 <= 256)
return 2;
else
return 1;
}
void set_up_constants(int nbins, int block_stride_x, int block_stride_y,
int nblocks_win_x, int nblocks_win_y)
int nblocks_win_x, int nblocks_win_y, int ncells_block_x, int ncells_block_y)
{
cudaSafeCall( cudaMemcpyToSymbol(cnbins, &nbins, sizeof(nbins)) );
cudaSafeCall( cudaMemcpyToSymbol(cblock_stride_x, &block_stride_x, sizeof(block_stride_x)) );
cudaSafeCall( cudaMemcpyToSymbol(cblock_stride_y, &block_stride_y, sizeof(block_stride_y)) );
cudaSafeCall( cudaMemcpyToSymbol(cnblocks_win_x, &nblocks_win_x, sizeof(nblocks_win_x)) );
cudaSafeCall( cudaMemcpyToSymbol(cnblocks_win_y, &nblocks_win_y, sizeof(nblocks_win_y)) );
cudaSafeCall( cudaMemcpyToSymbol(cncells_block_x, &ncells_block_x, sizeof(ncells_block_x)) );
cudaSafeCall( cudaMemcpyToSymbol(cncells_block_y, &ncells_block_y, sizeof(ncells_block_y)) );
int block_hist_size = nbins * CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y;
int block_hist_size = nbins * ncells_block_x * ncells_block_y;
cudaSafeCall( cudaMemcpyToSymbol(cblock_hist_size, &block_hist_size, sizeof(block_hist_size)) );
int block_hist_size_2up = power_2up(block_hist_size);
@ -112,44 +125,48 @@ namespace cv { namespace cuda { namespace device
//----------------------------------------------------------------------------
// Histogram computation
//
// CUDA kernel to compute the histograms
template <int nblocks> // Number of histogram blocks processed by single GPU thread block
__global__ void compute_hists_kernel_many_blocks(const int img_block_width, const PtrStepf grad,
const PtrStepb qangle, float scale, float* block_hists)
const PtrStepb qangle, float scale, float* block_hists,
int cell_size, int patch_size, int block_patch_size,
int threads_cell, int threads_block, int half_cell_size)
{
const int block_x = threadIdx.z;
const int cell_x = threadIdx.x / 16;
const int cell_x = threadIdx.x / threads_cell;
const int cell_y = threadIdx.y;
const int cell_thread_x = threadIdx.x & 0xF;
const int cell_thread_x = threadIdx.x & (threads_cell - 1);
if (blockIdx.x * blockDim.z + block_x >= img_block_width)
return;
extern __shared__ float smem[];
float* hists = smem;
float* final_hist = smem + cnbins * 48 * nblocks;
float* final_hist = smem + cnbins * block_patch_size * nblocks;
// patch_size means that patch_size pixels affect on block's cell
if (cell_thread_x < patch_size)
{
const int offset_x = (blockIdx.x * blockDim.z + block_x) * cblock_stride_x +
4 * cell_x + cell_thread_x;
const int offset_y = blockIdx.y * cblock_stride_y + 4 * cell_y;
half_cell_size * cell_x + cell_thread_x;
const int offset_y = blockIdx.y * cblock_stride_y + half_cell_size * cell_y;
const float* grad_ptr = grad.ptr(offset_y) + offset_x * 2;
const unsigned char* qangle_ptr = qangle.ptr(offset_y) + offset_x * 2;
// 12 means that 12 pixels affect on block's cell (in one row)
if (cell_thread_x < 12)
{
float* hist = hists + 12 * (cell_y * blockDim.z * CELLS_PER_BLOCK_Y +
cell_x + block_x * CELLS_PER_BLOCK_X) +
float* hist = hists + patch_size * (cell_y * blockDim.z * cncells_block_y +
cell_x + block_x * cncells_block_x) +
cell_thread_x;
for (int bin_id = 0; bin_id < cnbins; ++bin_id)
hist[bin_id * 48 * nblocks] = 0.f;
hist[bin_id * block_patch_size * nblocks] = 0.f;
const int dist_x = -4 + (int)cell_thread_x - 4 * cell_x;
//(dist_x, dist_y) : distance between current pixel in patch and cell's center
const int dist_x = -half_cell_size + (int)cell_thread_x - half_cell_size * cell_x;
const int dist_y_begin = -4 - 4 * (int)threadIdx.y;
for (int dist_y = dist_y_begin; dist_y < dist_y_begin + 12; ++dist_y)
const int dist_y_begin = -half_cell_size - half_cell_size * (int)threadIdx.y;
for (int dist_y = dist_y_begin; dist_y < dist_y_begin + patch_size; ++dist_y)
{
float2 vote = *(const float2*)grad_ptr;
uchar2 bin = *(const uchar2*)qangle_ptr;
@ -157,25 +174,29 @@ namespace cv { namespace cuda { namespace device
grad_ptr += grad.step/sizeof(float);
qangle_ptr += qangle.step;
int dist_center_y = dist_y - 4 * (1 - 2 * cell_y);
int dist_center_x = dist_x - 4 * (1 - 2 * cell_x);
//(dist_center_x, dist_center_y) : distance between current pixel in patch and block's center
int dist_center_y = dist_y - half_cell_size * (1 - 2 * cell_y);
int dist_center_x = dist_x - half_cell_size * (1 - 2 * cell_x);
float gaussian = ::expf(-(dist_center_y * dist_center_y +
dist_center_x * dist_center_x) * scale);
float interp_weight = (8.f - ::fabs(dist_y + 0.5f)) *
(8.f - ::fabs(dist_x + 0.5f)) / 64.f;
hist[bin.x * 48 * nblocks] += gaussian * interp_weight * vote.x;
hist[bin.y * 48 * nblocks] += gaussian * interp_weight * vote.y;
float interp_weight = ((float)cell_size - ::fabs(dist_y + 0.5f)) *
((float)cell_size - ::fabs(dist_x + 0.5f)) / (float)threads_block;
hist[bin.x * block_patch_size * nblocks] += gaussian * interp_weight * vote.x;
hist[bin.y * block_patch_size * nblocks] += gaussian * interp_weight * vote.y;
}
//reduction of the histograms
volatile float* hist_ = hist;
for (int bin_id = 0; bin_id < cnbins; ++bin_id, hist_ += 48 * nblocks)
for (int bin_id = 0; bin_id < cnbins; ++bin_id, hist_ += block_patch_size * nblocks)
{
if (cell_thread_x < 6) hist_[0] += hist_[6];
if (cell_thread_x < 3) hist_[0] += hist_[3];
if (cell_thread_x < patch_size/2) hist_[0] += hist_[patch_size/2];
if (cell_thread_x < patch_size/4 && (!((patch_size/4) < 3 && cell_thread_x == 0)))
hist_[0] += hist_[patch_size/4];
if (cell_thread_x == 0)
final_hist[((cell_x + block_x * 2) * 2 + cell_y) * cnbins + bin_id]
final_hist[((cell_x + block_x * cncells_block_x) * cncells_block_y + cell_y) * cnbins + bin_id]
= hist_[0] + hist_[1] + hist_[2];
}
}
@ -186,37 +207,69 @@ namespace cv { namespace cuda { namespace device
blockIdx.x * blockDim.z + block_x) *
cblock_hist_size;
int tid = (cell_y * CELLS_PER_BLOCK_Y + cell_x) * 16 + cell_thread_x;
//copying from final_hist to block_hist
int tid;
if(threads_cell < cnbins)
{
tid = (cell_y * cncells_block_y + cell_x) * cnbins + cell_thread_x;
} else
{
tid = (cell_y * cncells_block_y + cell_x) * threads_cell + cell_thread_x;
}
if (tid < cblock_hist_size)
{
block_hist[tid] = final_hist[block_x * cblock_hist_size + tid];
if(threads_cell < cnbins && cell_thread_x == (threads_cell-1))
{
for(int i=1;i<=(cnbins - threads_cell);++i)
{
block_hist[tid + i] = final_hist[block_x * cblock_hist_size + tid + i];
}
}
}
}
//declaration of variables and invoke the kernel with the calculated number of blocks
void compute_hists(int nbins, int block_stride_x, int block_stride_y,
int height, int width, const PtrStepSzf& grad,
const PtrStepSzb& qangle, float sigma, float* block_hists)
const PtrStepSzb& qangle, float sigma, float* block_hists,
int cell_size_x, int cell_size_y, int ncells_block_x, int ncells_block_y)
{
const int nblocks = 1;
const int ncells_block = ncells_block_x * ncells_block_y;
const int patch_side = cell_size_x / 4;
const int patch_size = cell_size_x + (patch_side * 2);
const int block_patch_size = ncells_block * patch_size;
const int threads_cell = power_2up(patch_size);
const int threads_block = ncells_block * threads_cell;
const int half_cell_size = cell_size_x / 2;
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) /
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) /
block_stride_x;
int img_block_height = (height - CELLS_PER_BLOCK_Y * CELL_HEIGHT + block_stride_y) /
int img_block_height = (height - ncells_block_y * cell_size_y + block_stride_y) /
block_stride_y;
const int nblocks = max_nblocks(threads_cell, ncells_block);
dim3 grid(divUp(img_block_width, nblocks), img_block_height);
dim3 threads(32, 2, nblocks);
cudaSafeCall(cudaFuncSetCacheConfig(compute_hists_kernel_many_blocks<nblocks>,
cudaFuncCachePreferL1));
dim3 threads(threads_cell * ncells_block_x, ncells_block_y, nblocks);
// Precompute gaussian spatial window parameter
float scale = 1.f / (2.f * sigma * sigma);
int hists_size = (nbins * CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y * 12 * nblocks) * sizeof(float);
int final_hists_size = (nbins * CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y * nblocks) * sizeof(float);
int hists_size = (nbins * ncells_block * patch_size * nblocks) * sizeof(float);
int final_hists_size = (nbins * ncells_block * nblocks) * sizeof(float);
int smem = hists_size + final_hists_size;
compute_hists_kernel_many_blocks<nblocks><<<grid, threads, smem>>>(
img_block_width, grad, qangle, scale, block_hists);
if (nblocks == 4)
compute_hists_kernel_many_blocks<4><<<grid, threads, smem>>>(
img_block_width, grad, qangle, scale, block_hists, cell_size_x, patch_size, block_patch_size, threads_cell, threads_block, half_cell_size);
else if (nblocks == 3)
compute_hists_kernel_many_blocks<3><<<grid, threads, smem>>>(
img_block_width, grad, qangle, scale, block_hists, cell_size_x, patch_size, block_patch_size, threads_cell, threads_block, half_cell_size);
else if (nblocks == 2)
compute_hists_kernel_many_blocks<2><<<grid, threads, smem>>>(
img_block_width, grad, qangle, scale, block_hists, cell_size_x, patch_size, block_patch_size, threads_cell, threads_block, half_cell_size);
else
compute_hists_kernel_many_blocks<1><<<grid, threads, smem>>>(
img_block_width, grad, qangle, scale, block_hists, cell_size_x, patch_size, block_patch_size, threads_cell, threads_block, half_cell_size);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
@ -293,16 +346,16 @@ namespace cv { namespace cuda { namespace device
void normalize_hists(int nbins, int block_stride_x, int block_stride_y,
int height, int width, float* block_hists, float threshold)
int height, int width, float* block_hists, float threshold, int cell_size_x, int cell_size_y, int ncells_block_x, int ncells_block_y)
{
const int nblocks = 1;
int block_hist_size = nbins * CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y;
int block_hist_size = nbins * ncells_block_x * ncells_block_y;
int nthreads = power_2up(block_hist_size);
dim3 threads(nthreads, 1, nblocks);
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) / block_stride_x;
int img_block_height = (height - CELLS_PER_BLOCK_Y * CELL_HEIGHT + block_stride_y) / block_stride_y;
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) / block_stride_x;
int img_block_height = (height - ncells_block_y * cell_size_y + block_stride_y) / block_stride_y;
dim3 grid(divUp(img_block_width, nblocks), img_block_height);
if (nthreads == 32)
@ -310,7 +363,7 @@ namespace cv { namespace cuda { namespace device
else if (nthreads == 64)
normalize_hists_kernel_many_blocks<64, nblocks><<<grid, threads>>>(block_hist_size, img_block_width, block_hists, threshold);
else if (nthreads == 128)
normalize_hists_kernel_many_blocks<64, nblocks><<<grid, threads>>>(block_hist_size, img_block_width, block_hists, threshold);
normalize_hists_kernel_many_blocks<128, nblocks><<<grid, threads>>>(block_hist_size, img_block_width, block_hists, threshold);
else if (nthreads == 256)
normalize_hists_kernel_many_blocks<256, nblocks><<<grid, threads>>>(block_hist_size, img_block_width, block_hists, threshold);
else if (nthreads == 512)
@ -365,7 +418,7 @@ namespace cv { namespace cuda { namespace device
void compute_confidence_hists(int win_height, int win_width, int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
float* coefs, float free_coef, float threshold, float *confidences)
float* coefs, float free_coef, float threshold, int cell_size_x, int ncells_block_x, float *confidences)
{
const int nthreads = 256;
const int nblocks = 1;
@ -381,7 +434,7 @@ namespace cv { namespace cuda { namespace device
cudaSafeCall(cudaFuncSetCacheConfig(compute_confidence_hists_kernel_many_blocks<nthreads, nblocks>,
cudaFuncCachePreferL1));
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) /
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) /
block_stride_x;
compute_confidence_hists_kernel_many_blocks<nthreads, nblocks><<<grid, threads>>>(
img_win_width, img_block_width, win_block_stride_x, win_block_stride_y,
@ -427,7 +480,7 @@ namespace cv { namespace cuda { namespace device
void classify_hists(int win_height, int win_width, int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
float* coefs, float free_coef, float threshold, unsigned char* labels)
float* coefs, float free_coef, float threshold, int cell_size_x, int ncells_block_x, unsigned char* labels)
{
const int nthreads = 256;
const int nblocks = 1;
@ -442,7 +495,7 @@ namespace cv { namespace cuda { namespace device
cudaSafeCall(cudaFuncSetCacheConfig(classify_hists_kernel_many_blocks<nthreads, nblocks>, cudaFuncCachePreferL1));
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) / block_stride_x;
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) / block_stride_x;
classify_hists_kernel_many_blocks<nthreads, nblocks><<<grid, threads>>>(
img_win_width, img_block_width, win_block_stride_x, win_block_stride_y,
block_hists, coefs, free_coef, threshold, labels);
@ -477,7 +530,7 @@ namespace cv { namespace cuda { namespace device
void extract_descrs_by_rows(int win_height, int win_width, int block_stride_y, int block_stride_x, int win_stride_y, int win_stride_x,
int height, int width, float* block_hists, PtrStepSzf descriptors)
int height, int width, float* block_hists, int cell_size_x, int ncells_block_x, PtrStepSzf descriptors)
{
const int nthreads = 256;
@ -488,7 +541,7 @@ namespace cv { namespace cuda { namespace device
dim3 threads(nthreads, 1);
dim3 grid(img_win_width, img_win_height);
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) / block_stride_x;
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) / block_stride_x;
extract_descrs_by_rows_kernel<nthreads><<<grid, threads>>>(
img_block_width, win_block_stride_x, win_block_stride_y, block_hists, descriptors);
cudaSafeCall( cudaGetLastError() );
@ -525,7 +578,7 @@ namespace cv { namespace cuda { namespace device
void extract_descrs_by_cols(int win_height, int win_width, int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists, int cell_size_x, int ncells_block_x,
PtrStepSzf descriptors)
{
const int nthreads = 256;
@ -537,7 +590,7 @@ namespace cv { namespace cuda { namespace device
dim3 threads(nthreads, 1);
dim3 grid(img_win_width, img_win_height);
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) / block_stride_x;
int img_block_width = (width - ncells_block_x * cell_size_x + block_stride_x) / block_stride_x;
extract_descrs_by_cols_kernel<nthreads><<<grid, threads>>>(
img_block_width, win_block_stride_x, win_block_stride_y, block_hists, descriptors);
cudaSafeCall( cudaGetLastError() );

View File

@ -51,34 +51,45 @@ Ptr<cuda::HOG> cv::cuda::HOG::create(Size, Size, Size, Size, int) { throw_no_cud
#else
/****************************************************************************************\
The code below is implementation of HOG (Histogram-of-Oriented Gradients)
descriptor and object detection, introduced by Navneet Dalal and Bill Triggs.
The computed feature vectors are compatible with the
INRIA Object Detection and Localization Toolkit
(http://pascal.inrialpes.fr/soft/olt/)
\****************************************************************************************/
namespace cv { namespace cuda { namespace device
{
namespace hog
{
void set_up_constants(int nbins, int block_stride_x, int block_stride_y,
int nblocks_win_x, int nblocks_win_y);
int nblocks_win_x, int nblocks_win_y,
int ncells_block_x, int ncells_block_y);
void compute_hists(int nbins, int block_stride_x, int blovck_stride_y,
int height, int width, const cv::cuda::PtrStepSzf& grad,
const cv::cuda::PtrStepSzb& qangle, float sigma, float* block_hists);
void compute_hists(int nbins, int block_stride_x, int block_stride_y,
int height, int width, const PtrStepSzf& grad,
const PtrStepSzb& qangle, float sigma, float* block_hists,
int cell_size_x, int cell_size_y, int ncells_block_x, int ncells_block_y);
void normalize_hists(int nbins, int block_stride_x, int block_stride_y,
int height, int width, float* block_hists, float threshold);
int height, int width, float* block_hists, float threshold, int cell_size_x, int cell_size_y, int ncells_block_x, int ncells_block_y);
void classify_hists(int win_height, int win_width, int block_stride_y,
int block_stride_x, int win_stride_y, int win_stride_x, int height,
int width, float* block_hists, float* coefs, float free_coef,
float threshold, unsigned char* labels);
float threshold, int cell_size_x, int ncells_block_x, unsigned char* labels);
void compute_confidence_hists(int win_height, int win_width, int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
float* coefs, float free_coef, float threshold, float *confidences);
float* coefs, float free_coef, float threshold, int cell_size_x, int ncells_block_x, float *confidences);
void extract_descrs_by_rows(int win_height, int win_width, int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists, int cell_size_x, int ncells_block_x,
cv::cuda::PtrStepSzf descriptors);
void extract_descrs_by_cols(int win_height, int win_width, int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists, int cell_size_x, int ncells_block_x,
cv::cuda::PtrStepSzf descriptors);
void compute_gradients_8UC1(int nbins, int height, int width, const cv::cuda::PtrStepSzb& img,
@ -167,6 +178,7 @@ namespace
double scale0_;
int group_threshold_;
int descr_format_;
Size cells_per_block_;
private:
int getTotalHistSize(Size img_size) const;
@ -197,7 +209,8 @@ namespace
win_stride_(block_stride),
scale0_(1.05),
group_threshold_(2),
descr_format_(DESCR_FORMAT_COL_BY_COL)
descr_format_(DESCR_FORMAT_COL_BY_COL),
cells_per_block_(block_size.width / cell_size.width, block_size.height / cell_size.height)
{
CV_Assert((win_size.width - block_size.width ) % block_stride.width == 0 &&
(win_size.height - block_size.height) % block_stride.height == 0);
@ -205,12 +218,13 @@ namespace
CV_Assert(block_size.width % cell_size.width == 0 &&
block_size.height % cell_size.height == 0);
CV_Assert(block_stride == cell_size);
// Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
// human detection. In International Conference on Computer Vision and
// Pattern Recognition, volume 2, pages 886893, June 2005
// http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf (28.07.2015) [Figure 5]
CV_Assert(block_stride == (block_size / 2));
CV_Assert(cell_size == Size(8, 8));
Size cells_per_block(block_size.width / cell_size.width, block_size.height / cell_size.height);
CV_Assert(cells_per_block == Size(2, 2));
CV_Assert(cell_size.width == cell_size.height);
}
static int numPartsWithin(int size, int part_size, int stride)
@ -231,8 +245,7 @@ namespace
size_t HOG_Impl::getBlockHistogramSize() const
{
Size cells_per_block(block_size_.width / cell_size_.width, block_size_.height / cell_size_.height);
return nbins_ * cells_per_block.area();
return nbins_ * cells_per_block_.area();
}
double HOG_Impl::getWinSigma() const
@ -313,6 +326,7 @@ namespace
detector_.ptr<float>(),
(float)free_coef_,
(float)hit_threshold_,
cell_size_.width, cells_per_block_.width,
labels.ptr());
Mat labels_host;
@ -339,6 +353,7 @@ namespace
detector_.ptr<float>(),
(float)free_coef_,
(float)hit_threshold_,
cell_size_.width, cells_per_block_.width,
labels.ptr<float>());
Mat labels_host;
@ -465,6 +480,7 @@ namespace
win_stride_.height, win_stride_.width,
img.rows, img.cols,
block_hists.ptr<float>(),
cell_size_.width, cells_per_block_.width,
descriptors);
break;
case DESCR_FORMAT_COL_BY_COL:
@ -473,6 +489,7 @@ namespace
win_stride_.height, win_stride_.width,
img.rows, img.cols,
block_hists.ptr<float>(),
cell_size_.width, cells_per_block_.width,
descriptors);
break;
default:
@ -490,7 +507,7 @@ namespace
void HOG_Impl::computeBlockHistograms(const GpuMat& img, GpuMat& block_hists)
{
cv::Size blocks_per_win = numPartsWithin(win_size_, block_size_, block_stride_);
hog::set_up_constants(nbins_, block_stride_.width, block_stride_.height, blocks_per_win.width, blocks_per_win.height);
hog::set_up_constants(nbins_, block_stride_.width, block_stride_.height, blocks_per_win.width, blocks_per_win.height, cells_per_block_.width, cells_per_block_.height);
BufferPool pool(Stream::Null());
@ -505,13 +522,17 @@ namespace
img.rows, img.cols,
grad, qangle,
(float)getWinSigma(),
block_hists.ptr<float>());
block_hists.ptr<float>(),
cell_size_.width, cell_size_.height,
cells_per_block_.width, cells_per_block_.height);
hog::normalize_hists(nbins_,
block_stride_.width, block_stride_.height,
img.rows, img.cols,
block_hists.ptr<float>(),
(float)threshold_L2hys_);
(float)threshold_L2hys_,
cell_size_.width, cell_size_.height,
cells_per_block_.width, cells_per_block_.height);
}
void HOG_Impl::computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle)

View File

@ -217,9 +217,9 @@ CUDA_TEST_P(HOG, GetDescriptors)
r[(x * blocks_per_win_y + y) * block_hist_size + k]);
}
}
/*
INSTANTIATE_TEST_CASE_P(CUDA_ObjDetect, HOG, ALL_DEVICES);
*/
//============== caltech hog tests =====================//
struct CalTech : public ::testing::TestWithParam<std::tr1::tuple<cv::cuda::DeviceInfo, std::string> >
@ -269,8 +269,204 @@ INSTANTIATE_TEST_CASE_P(detect, CalTech, testing::Combine(ALL_DEVICES,
"caltech/image_00000527_0.png", "caltech/image_00000574_0.png")));
//------------------------variable GPU HOG Tests------------------------//
struct Hog_var : public ::testing::TestWithParam<std::tr1::tuple<cv::cuda::DeviceInfo, std::string> >
{
cv::cuda::DeviceInfo devInfo;
cv::Mat img, c_img;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
cv::cuda::setDevice(devInfo.deviceID());
cv::Rect roi(0, 0, 16, 32);
img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
c_img = img(roi);
}
};
CUDA_TEST_P(Hog_var, HOG)
{
cv::cuda::GpuMat _img(c_img);
cv::cuda::GpuMat d_img;
int win_stride_width = 8;int win_stride_height = 8;
int win_width = 16;
int block_width = 8;
int block_stride_width = 4;int block_stride_height = 4;
int cell_width = 4;
int nbins = 9;
Size win_stride(win_stride_width, win_stride_height);
Size win_size(win_width, win_width * 2);
Size block_size(block_width, block_width);
Size block_stride(block_stride_width, block_stride_height);
Size cell_size(cell_width, cell_width);
cv::Ptr<cv::cuda::HOG> gpu_hog = cv::cuda::HOG::create(win_size, block_size, block_stride, cell_size, nbins);
gpu_hog->setNumLevels(13);
gpu_hog->setHitThreshold(0);
gpu_hog->setWinStride(win_stride);
gpu_hog->setScaleFactor(1.05);
gpu_hog->setGroupThreshold(8);
gpu_hog->compute(_img, d_img);
vector<float> gpu_desc_vec;
ASSERT_TRUE(gpu_desc_vec.empty());
cv::Mat R(d_img);
cv::HOGDescriptor cpu_hog(win_size, block_size, block_stride, cell_size, nbins);
cpu_hog.nlevels = 13;
vector<float> cpu_desc_vec;
ASSERT_TRUE(cpu_desc_vec.empty());
cpu_hog.compute(c_img, cpu_desc_vec, win_stride, Size(0,0));
}
INSTANTIATE_TEST_CASE_P(detect, Hog_var, testing::Combine(ALL_DEVICES,
::testing::Values<std::string>("/hog/road.png")));
struct Hog_var_cell : public ::testing::TestWithParam<std::tr1::tuple<cv::cuda::DeviceInfo, std::string> >
{
cv::cuda::DeviceInfo devInfo;
cv::Mat img, c_img, c_img2, c_img3, c_img4;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
cv::cuda::setDevice(devInfo.deviceID());
cv::Rect roi(0, 0, 48, 96);
img = readImage(GET_PARAM(1), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
c_img = img(roi);
cv::Rect roi2(0, 0, 54, 108);
c_img2 = img(roi2);
cv::Rect roi3(0, 0, 64, 128);
c_img3 = img(roi3);
cv::Rect roi4(0, 0, 32, 64);
c_img4 = img(roi4);
}
};
CUDA_TEST_P(Hog_var_cell, HOG)
{
cv::cuda::GpuMat _img(c_img);
cv::cuda::GpuMat _img2(c_img2);
cv::cuda::GpuMat _img3(c_img3);
cv::cuda::GpuMat _img4(c_img4);
cv::cuda::GpuMat d_img;
ASSERT_FALSE(_img.empty());
ASSERT_TRUE(d_img.empty());
int win_stride_width = 8;int win_stride_height = 8;
int win_width = 48;
int block_width = 16;
int block_stride_width = 8;int block_stride_height = 8;
int cell_width = 8;
int nbins = 9;
Size win_stride(win_stride_width, win_stride_height);
Size win_size(win_width, win_width * 2);
Size block_size(block_width, block_width);
Size block_stride(block_stride_width, block_stride_height);
Size cell_size(cell_width, cell_width);
cv::Ptr<cv::cuda::HOG> gpu_hog = cv::cuda::HOG::create(win_size, block_size, block_stride, cell_size, nbins);
gpu_hog->setNumLevels(13);
gpu_hog->setHitThreshold(0);
gpu_hog->setWinStride(win_stride);
gpu_hog->setScaleFactor(1.05);
gpu_hog->setGroupThreshold(8);
gpu_hog->compute(_img, d_img);
//------------------------------------------------------------------------------
cv::cuda::GpuMat d_img2;
ASSERT_TRUE(d_img2.empty());
int win_stride_width2 = 8;int win_stride_height2 = 8;
int win_width2 = 48;
int block_width2 = 16;
int block_stride_width2 = 8;int block_stride_height2 = 8;
int cell_width2 = 4;
Size win_stride2(win_stride_width2, win_stride_height2);
Size win_size2(win_width2, win_width2 * 2);
Size block_size2(block_width2, block_width2);
Size block_stride2(block_stride_width2, block_stride_height2);
Size cell_size2(cell_width2, cell_width2);
cv::Ptr<cv::cuda::HOG> gpu_hog2 = cv::cuda::HOG::create(win_size2, block_size2, block_stride2, cell_size2, nbins);
gpu_hog2->setWinStride(win_stride2);
gpu_hog2->compute(_img, d_img2);
//------------------------------------------------------------------------------
cv::cuda::GpuMat d_img3;
ASSERT_TRUE(d_img3.empty());
int win_stride_width3 = 9;int win_stride_height3 = 9;
int win_width3 = 54;
int block_width3 = 18;
int block_stride_width3 = 9;int block_stride_height3 = 9;
int cell_width3 = 6;
Size win_stride3(win_stride_width3, win_stride_height3);
Size win_size3(win_width3, win_width3 * 2);
Size block_size3(block_width3, block_width3);
Size block_stride3(block_stride_width3, block_stride_height3);
Size cell_size3(cell_width3, cell_width3);
cv::Ptr<cv::cuda::HOG> gpu_hog3 = cv::cuda::HOG::create(win_size3, block_size3, block_stride3, cell_size3, nbins);
gpu_hog3->setWinStride(win_stride3);
gpu_hog3->compute(_img2, d_img3);
//------------------------------------------------------------------------------
cv::cuda::GpuMat d_img4;
ASSERT_TRUE(d_img4.empty());
int win_stride_width4 = 16;int win_stride_height4 = 16;
int win_width4 = 64;
int block_width4 = 32;
int block_stride_width4 = 16;int block_stride_height4 = 16;
int cell_width4 = 8;
Size win_stride4(win_stride_width4, win_stride_height4);
Size win_size4(win_width4, win_width4 * 2);
Size block_size4(block_width4, block_width4);
Size block_stride4(block_stride_width4, block_stride_height4);
Size cell_size4(cell_width4, cell_width4);
cv::Ptr<cv::cuda::HOG> gpu_hog4 = cv::cuda::HOG::create(win_size4, block_size4, block_stride4, cell_size4, nbins);
gpu_hog4->setWinStride(win_stride4);
gpu_hog4->compute(_img3, d_img4);
//------------------------------------------------------------------------------
cv::cuda::GpuMat d_img5;
ASSERT_TRUE(d_img5.empty());
int win_stride_width5 = 16;int win_stride_height5 = 16;
int win_width5 = 64;
int block_width5 = 32;
int block_stride_width5 = 16;int block_stride_height5 = 16;
int cell_width5 = 16;
Size win_stride5(win_stride_width5, win_stride_height5);
Size win_size5(win_width5, win_width5 * 2);
Size block_size5(block_width5, block_width5);
Size block_stride5(block_stride_width5, block_stride_height5);
Size cell_size5(cell_width5, cell_width5);
cv::Ptr<cv::cuda::HOG> gpu_hog5 = cv::cuda::HOG::create(win_size5, block_size5, block_stride5, cell_size5, nbins);
gpu_hog5->setWinStride(win_stride5);
gpu_hog5->compute(_img3, d_img5);
//------------------------------------------------------------------------------
}
INSTANTIATE_TEST_CASE_P(detect, Hog_var_cell, testing::Combine(ALL_DEVICES,
::testing::Values<std::string>("/hog/road.png")));
//////////////////////////////////////////////////////////////////////////////////////////
/// LBP classifier

View File

@ -22,10 +22,14 @@ public:
static Args read(int argc, char** argv);
string src;
bool src_is_folder;
bool src_is_video;
bool src_is_camera;
int camera_id;
bool svm_load;
string svm;
bool write_video;
string dst_video;
double dst_video_fps;
@ -44,6 +48,10 @@ public:
int win_width;
int win_stride_width, win_stride_height;
int block_width;
int block_stride_width, block_stride_height;
int cell_width;
int nbins;
bool gamma_corr;
};
@ -93,6 +101,9 @@ static void printHelp()
cout << "Histogram of Oriented Gradients descriptor and detector sample.\n"
<< "\nUsage: hog_gpu\n"
<< " (<image>|--video <vide>|--camera <camera_id>) # frames source\n"
<< " or"
<< " (--folder <folder_path>) # load images from folder\n"
<< " [--svm <file> # load svm file"
<< " [--make_gray <true/false>] # convert image to gray one or not\n"
<< " [--resize_src <true/false>] # do resize of the source image or not\n"
<< " [--width <int>] # resized image width\n"
@ -100,9 +111,14 @@ static void printHelp()
<< " [--hit_threshold <double>] # classifying plane distance threshold (0.0 usually)\n"
<< " [--scale <double>] # HOG window scale factor\n"
<< " [--nlevels <int>] # max number of HOG window scales\n"
<< " [--win_width <int>] # width of the window (48 or 64)\n"
<< " [--win_width <int>] # width of the window\n"
<< " [--win_stride_width <int>] # distance by OX axis between neighbour wins\n"
<< " [--win_stride_height <int>] # distance by OY axis between neighbour wins\n"
<< " [--block_width <int>] # width of the block\n"
<< " [--block_stride_width <int>] # distance by 0X axis between neighbour blocks\n"
<< " [--block_stride_height <int>] # distance by 0Y axis between neighbour blocks\n"
<< " [--cell_width <int>] # width of the cell\n"
<< " [--nbins <int>] # number of bins\n"
<< " [--gr_threshold <int>] # merging similar rects constant\n"
<< " [--gamma_correct <int>] # do gamma correction or not\n"
<< " [--write_video <bool>] # write video or not\n"
@ -142,6 +158,8 @@ Args::Args()
{
src_is_video = false;
src_is_camera = false;
src_is_folder = false;
svm_load = false;
camera_id = 0;
write_video = false;
@ -162,6 +180,11 @@ Args::Args()
win_width = 48;
win_stride_width = 8;
win_stride_height = 8;
block_width = 16;
block_stride_width = 8;
block_stride_height = 8;
cell_width = 8;
nbins = 9;
gamma_corr = true;
}
@ -186,6 +209,11 @@ Args Args::read(int argc, char** argv)
else if (string(argv[i]) == "--win_width") args.win_width = atoi(argv[++i]);
else if (string(argv[i]) == "--win_stride_width") args.win_stride_width = atoi(argv[++i]);
else if (string(argv[i]) == "--win_stride_height") args.win_stride_height = atoi(argv[++i]);
else if (string(argv[i]) == "--block_width") args.block_width = atoi(argv[++i]);
else if (string(argv[i]) == "--block_stride_width") args.block_stride_width = atoi(argv[++i]);
else if (string(argv[i]) == "--block_stride_height") args.block_stride_height = atoi(argv[++i]);
else if (string(argv[i]) == "--cell_width") args.cell_width = atoi(argv[++i]);
else if (string(argv[i]) == "--nbins") args.nbins = atoi(argv[++i]);
else if (string(argv[i]) == "--gr_threshold") args.gr_threshold = atoi(argv[++i]);
else if (string(argv[i]) == "--gamma_correct") args.gamma_corr = (string(argv[++i]) == "true");
else if (string(argv[i]) == "--write_video") args.write_video = (string(argv[++i]) == "true");
@ -194,6 +222,8 @@ Args Args::read(int argc, char** argv)
else if (string(argv[i]) == "--help") printHelp();
else if (string(argv[i]) == "--video") { args.src = argv[++i]; args.src_is_video = true; }
else if (string(argv[i]) == "--camera") { args.camera_id = atoi(argv[++i]); args.src_is_camera = true; }
else if (string(argv[i]) == "--folder") { args.src = argv[++i]; args.src_is_folder = true;}
else if (string(argv[i]) == "--svm") { args.svm = argv[++i]; args.svm_load = true;}
else if (args.src.empty()) args.src = argv[i];
else throw runtime_error((string("unknown key: ") + argv[i]));
}
@ -228,16 +258,17 @@ App::App(const Args& s)
gamma_corr = args.gamma_corr;
if (args.win_width != 64 && args.win_width != 48)
args.win_width = 64;
cout << "Scale: " << scale << endl;
if (args.resize_src)
cout << "Resized source: (" << args.width << ", " << args.height << ")\n";
cout << "Group threshold: " << gr_threshold << endl;
cout << "Levels number: " << nlevels << endl;
cout << "Win width: " << args.win_width << endl;
cout << "Win size: (" << args.win_width << ", " << args.win_width*2 << ")\n";
cout << "Win stride: (" << args.win_stride_width << ", " << args.win_stride_height << ")\n";
cout << "Block size: (" << args.block_width << ", " << args.block_width << ")\n";
cout << "Block stride: (" << args.block_stride_width << ", " << args.block_stride_height << ")\n";
cout << "Cell size: (" << args.cell_width << ", " << args.cell_width << ")\n";
cout << "Bins number: " << args.nbins << endl;
cout << "Hit threshold: " << hit_threshold << endl;
cout << "Gamma correction: " << gamma_corr << endl;
cout << endl;
@ -249,22 +280,58 @@ void App::run()
running = true;
cv::VideoWriter video_writer;
Size win_size(args.win_width, args.win_width * 2); //(64, 128) or (48, 96)
Size win_stride(args.win_stride_width, args.win_stride_height);
Size win_size(args.win_width, args.win_width * 2);
Size block_size(args.block_width, args.block_width);
Size block_stride(args.block_stride_width, args.block_stride_height);
Size cell_size(args.cell_width, args.cell_width);
cv::Ptr<cv::cuda::HOG> gpu_hog = cv::cuda::HOG::create(win_size);
cv::HOGDescriptor cpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9);
cv::Ptr<cv::cuda::HOG> gpu_hog = cv::cuda::HOG::create(win_size, block_size, block_stride, cell_size, args.nbins);
cv::HOGDescriptor cpu_hog(win_size, block_size, block_stride, cell_size, args.nbins);
if(args.svm_load) {
std::vector<float> svm_model;
const std::string model_file_name = args.svm;
FileStorage ifs(model_file_name, FileStorage::READ);
if (ifs.isOpened()) {
ifs["svm_detector"] >> svm_model;
} else {
const std::string what =
"could not load model for hog classifier from file: "
+ model_file_name;
throw std::runtime_error(what);
}
// check if the variables are initialized
if (svm_model.empty()) {
const std::string what =
"HoG classifier: svm model could not be loaded from file"
+ model_file_name;
throw std::runtime_error(what);
}
gpu_hog->setSVMDetector(svm_model);
cpu_hog.setSVMDetector(svm_model);
} else {
// Create HOG descriptors and detectors here
Mat detector = gpu_hog->getDefaultPeopleDetector();
gpu_hog->setSVMDetector(detector);
cpu_hog.setSVMDetector(detector);
}
cout << "gpusvmDescriptorSize : " << gpu_hog->getDescriptorSize()
<< endl;
cout << "cpusvmDescriptorSize : " << cpu_hog.getDescriptorSize()
<< endl;
while (running)
{
VideoCapture vc;
Mat frame;
vector<String> filenames;
unsigned int count = 1;
if (args.src_is_video)
{
@ -273,6 +340,14 @@ void App::run()
throw runtime_error(string("can't open video file: " + args.src));
vc >> frame;
}
else if (args.src_is_folder) {
String folder = args.src;
cout << folder << endl;
glob(folder, filenames);
frame = imread(filenames[count]); // 0 --> .gitignore
if (!frame.data)
cerr << "Problem loading image from folder!!!" << endl;
}
else if (args.src_is_camera)
{
vc.open(args.camera_id);
@ -342,11 +417,20 @@ void App::run()
putText(img_to_show, "Mode: GPU", Point(5, 25), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
else
putText(img_to_show, "Mode: CPU", Point(5, 25), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
putText(img_to_show, "FPS (HOG only): " + hogWorkFps(), Point(5, 65), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
putText(img_to_show, "FPS (total): " + workFps(), Point(5, 105), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
putText(img_to_show, "FPS HOG: " + hogWorkFps(), Point(5, 65), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
putText(img_to_show, "FPS total: " + workFps(), Point(5, 105), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
imshow("opencv_gpu_hog", img_to_show);
if (args.src_is_video || args.src_is_camera) vc >> frame;
if (args.src_is_folder) {
count++;
if (count < filenames.size()) {
frame = imread(filenames[count]);
} else {
Mat empty;
frame = empty;
}
}
workEnd();