mirror of
https://github.com/opencv/opencv.git
synced 2024-12-02 07:39:57 +08:00
Merge branch 'Itseez-2.4' into Feature_3692_2.4
This commit is contained in:
commit
8a3b93773d
@ -1252,11 +1252,12 @@ gemm
|
|||||||
----
|
----
|
||||||
Performs generalized matrix multiplication.
|
Performs generalized matrix multiplication.
|
||||||
|
|
||||||
.. ocv:function:: void gemm( InputArray src1, InputArray src2, double alpha, InputArray src3, double gamma, OutputArray dst, int flags=0 )
|
.. ocv:function:: void gemm( InputArray src1, InputArray src2, double alpha, InputArray src3, double beta, OutputArray dst, int flags=0 )
|
||||||
|
|
||||||
.. ocv:pyfunction:: cv2.gemm(src1, src2, alpha, src3, gamma[, dst[, flags]]) -> dst
|
.. ocv:pyfunction:: cv2.gemm(src1, src2, alpha, src3, beta[, dst[, flags]]) -> dst
|
||||||
|
|
||||||
.. ocv:cfunction:: void cvGEMM( const CvArr* src1, const CvArr* src2, double alpha, const CvArr* src3, double beta, CvArr* dst, int tABC=0)
|
.. ocv:cfunction:: void cvGEMM( const CvArr* src1, const CvArr* src2, double alpha, const CvArr* src3, double beta, CvArr* dst, int tABC=0)
|
||||||
|
|
||||||
.. ocv:pyoldfunction:: cv.GEMM(src1, src2, alpha, src3, beta, dst, tABC=0)-> None
|
.. ocv:pyoldfunction:: cv.GEMM(src1, src2, alpha, src3, beta, dst, tABC=0)-> None
|
||||||
|
|
||||||
:param src1: first multiplied input matrix that should have ``CV_32FC1``, ``CV_64FC1``, ``CV_32FC2``, or ``CV_64FC2`` type.
|
:param src1: first multiplied input matrix that should have ``CV_32FC1``, ``CV_64FC1``, ``CV_32FC2``, or ``CV_64FC2`` type.
|
||||||
|
@ -2319,7 +2319,7 @@ CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val=0);
|
|||||||
|
|
||||||
//! implements generalized matrix product algorithm GEMM from BLAS
|
//! implements generalized matrix product algorithm GEMM from BLAS
|
||||||
CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
|
CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
|
||||||
InputArray src3, double gamma, OutputArray dst, int flags=0);
|
InputArray src3, double beta, OutputArray dst, int flags=0);
|
||||||
//! multiplies matrix by its transposition from the left or from the right
|
//! multiplies matrix by its transposition from the left or from the right
|
||||||
CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
|
CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
|
||||||
InputArray delta=noArray(),
|
InputArray delta=noArray(),
|
||||||
|
@ -2691,16 +2691,18 @@ double cv::kmeans( InputArray _data, int K,
|
|||||||
int flags, OutputArray _centers )
|
int flags, OutputArray _centers )
|
||||||
{
|
{
|
||||||
const int SPP_TRIALS = 3;
|
const int SPP_TRIALS = 3;
|
||||||
Mat data = _data.getMat();
|
Mat data0 = _data.getMat();
|
||||||
bool isrow = data.rows == 1 && data.channels() > 1;
|
bool isrow = data0.rows == 1 && data0.channels() > 1;
|
||||||
int N = !isrow ? data.rows : data.cols;
|
int N = !isrow ? data0.rows : data0.cols;
|
||||||
int dims = (!isrow ? data.cols : 1)*data.channels();
|
int dims = (!isrow ? data0.cols : 1)*data0.channels();
|
||||||
int type = data.depth();
|
int type = data0.depth();
|
||||||
|
|
||||||
attempts = std::max(attempts, 1);
|
attempts = std::max(attempts, 1);
|
||||||
CV_Assert( data.dims <= 2 && type == CV_32F && K > 0 );
|
CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 );
|
||||||
CV_Assert( N >= K );
|
CV_Assert( N >= K );
|
||||||
|
|
||||||
|
Mat data(N, dims, CV_32F, data0.data, isrow ? dims * sizeof(float) : static_cast<size_t>(data0.step));
|
||||||
|
|
||||||
_bestLabels.create(N, 1, CV_32S, -1, true);
|
_bestLabels.create(N, 1, CV_32S, -1, true);
|
||||||
|
|
||||||
Mat _labels, best_labels = _bestLabels.getMat();
|
Mat _labels, best_labels = _bestLabels.getMat();
|
||||||
|
@ -2512,6 +2512,15 @@ TEST(Core_SVD, flt)
|
|||||||
|
|
||||||
// TODO: eigenvv, invsqrt, cbrt, fastarctan, (round, floor, ceil(?)),
|
// TODO: eigenvv, invsqrt, cbrt, fastarctan, (round, floor, ceil(?)),
|
||||||
|
|
||||||
|
enum
|
||||||
|
{
|
||||||
|
MAT_N_DIM_C1,
|
||||||
|
MAT_N_1_CDIM,
|
||||||
|
MAT_1_N_CDIM,
|
||||||
|
MAT_N_DIM_C1_NONCONT,
|
||||||
|
MAT_N_1_CDIM_NONCONT,
|
||||||
|
VECTOR
|
||||||
|
};
|
||||||
|
|
||||||
class CV_KMeansSingularTest : public cvtest::BaseTest
|
class CV_KMeansSingularTest : public cvtest::BaseTest
|
||||||
{
|
{
|
||||||
@ -2519,7 +2528,7 @@ public:
|
|||||||
CV_KMeansSingularTest() {}
|
CV_KMeansSingularTest() {}
|
||||||
~CV_KMeansSingularTest() {}
|
~CV_KMeansSingularTest() {}
|
||||||
protected:
|
protected:
|
||||||
void run(int)
|
void run(int inVariant)
|
||||||
{
|
{
|
||||||
int i, iter = 0, N = 0, N0 = 0, K = 0, dims = 0;
|
int i, iter = 0, N = 0, N0 = 0, K = 0, dims = 0;
|
||||||
Mat labels;
|
Mat labels;
|
||||||
@ -2531,20 +2540,70 @@ protected:
|
|||||||
for( iter = 0; iter < maxIter; iter++ )
|
for( iter = 0; iter < maxIter; iter++ )
|
||||||
{
|
{
|
||||||
ts->update_context(this, iter, true);
|
ts->update_context(this, iter, true);
|
||||||
dims = rng.uniform(1, MAX_DIM+1);
|
dims = rng.uniform(inVariant == MAT_1_N_CDIM ? 2 : 1, MAX_DIM+1);
|
||||||
N = rng.uniform(1, MAX_POINTS+1);
|
N = rng.uniform(1, MAX_POINTS+1);
|
||||||
N0 = rng.uniform(1, MAX(N/10, 2));
|
N0 = rng.uniform(1, MAX(N/10, 2));
|
||||||
K = rng.uniform(1, N+1);
|
K = rng.uniform(1, N+1);
|
||||||
|
|
||||||
Mat data0(N0, dims, CV_32F);
|
if (inVariant == VECTOR)
|
||||||
rng.fill(data0, RNG::UNIFORM, -1, 1);
|
{
|
||||||
|
dims = 2;
|
||||||
|
|
||||||
Mat data(N, dims, CV_32F);
|
std::vector<cv::Point2f> data0(N0);
|
||||||
for( i = 0; i < N; i++ )
|
rng.fill(data0, RNG::UNIFORM, -1, 1);
|
||||||
data0.row(rng.uniform(0, N0)).copyTo(data.row(i));
|
|
||||||
|
|
||||||
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
|
std::vector<cv::Point2f> data(N);
|
||||||
5, KMEANS_PP_CENTERS);
|
for( i = 0; i < N; i++ )
|
||||||
|
data[i] = data0[rng.uniform(0, N0)];
|
||||||
|
|
||||||
|
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
|
||||||
|
5, KMEANS_PP_CENTERS);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
Mat data0(N0, dims, CV_32F);
|
||||||
|
rng.fill(data0, RNG::UNIFORM, -1, 1);
|
||||||
|
|
||||||
|
Mat data;
|
||||||
|
|
||||||
|
switch (inVariant)
|
||||||
|
{
|
||||||
|
case MAT_N_DIM_C1:
|
||||||
|
data.create(N, dims, CV_32F);
|
||||||
|
for( i = 0; i < N; i++ )
|
||||||
|
data0.row(rng.uniform(0, N0)).copyTo(data.row(i));
|
||||||
|
break;
|
||||||
|
|
||||||
|
case MAT_N_1_CDIM:
|
||||||
|
data.create(N, 1, CV_32FC(dims));
|
||||||
|
for( i = 0; i < N; i++ )
|
||||||
|
memcpy(data.ptr(i), data0.ptr(rng.uniform(0, N0)), dims * sizeof(float));
|
||||||
|
break;
|
||||||
|
|
||||||
|
case MAT_1_N_CDIM:
|
||||||
|
data.create(1, N, CV_32FC(dims));
|
||||||
|
for( i = 0; i < N; i++ )
|
||||||
|
memcpy(data.data + i * dims * sizeof(float), data0.ptr(rng.uniform(0, N0)), dims * sizeof(float));
|
||||||
|
break;
|
||||||
|
|
||||||
|
case MAT_N_DIM_C1_NONCONT:
|
||||||
|
data.create(N, dims + 5, CV_32F);
|
||||||
|
data = data(Range(0, N), Range(0, dims));
|
||||||
|
for( i = 0; i < N; i++ )
|
||||||
|
data0.row(rng.uniform(0, N0)).copyTo(data.row(i));
|
||||||
|
break;
|
||||||
|
|
||||||
|
case MAT_N_1_CDIM_NONCONT:
|
||||||
|
data.create(N, 3, CV_32FC(dims));
|
||||||
|
data = data.colRange(0, 1);
|
||||||
|
for( i = 0; i < N; i++ )
|
||||||
|
memcpy(data.ptr(i), data0.ptr(rng.uniform(0, N0)), dims * sizeof(float));
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
|
||||||
|
5, KMEANS_PP_CENTERS);
|
||||||
|
}
|
||||||
|
|
||||||
Mat hist(K, 1, CV_32S, Scalar(0));
|
Mat hist(K, 1, CV_32S, Scalar(0));
|
||||||
for( i = 0; i < N; i++ )
|
for( i = 0; i < N; i++ )
|
||||||
@ -2568,7 +2627,19 @@ protected:
|
|||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
TEST(Core_KMeans, singular) { CV_KMeansSingularTest test; test.safe_run(); }
|
TEST(Core_KMeans, singular) { CV_KMeansSingularTest test; test.safe_run(MAT_N_DIM_C1); }
|
||||||
|
|
||||||
|
CV_ENUM(KMeansInputVariant, MAT_N_DIM_C1, MAT_N_1_CDIM, MAT_1_N_CDIM, MAT_N_DIM_C1_NONCONT, MAT_N_1_CDIM_NONCONT, VECTOR)
|
||||||
|
|
||||||
|
typedef testing::TestWithParam<KMeansInputVariant> Core_KMeans_InputVariants;
|
||||||
|
|
||||||
|
TEST_P(Core_KMeans_InputVariants, singular)
|
||||||
|
{
|
||||||
|
CV_KMeansSingularTest test;
|
||||||
|
test.safe_run(GetParam());
|
||||||
|
}
|
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(AllVariants, Core_KMeans_InputVariants, KMeansInputVariant::all());
|
||||||
|
|
||||||
TEST(CovariationMatrixVectorOfMat, accuracy)
|
TEST(CovariationMatrixVectorOfMat, accuracy)
|
||||||
{
|
{
|
||||||
|
@ -1436,8 +1436,6 @@ static LRESULT CALLBACK HighGUIProc( HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM
|
|||||||
if( window->on_mouse )
|
if( window->on_mouse )
|
||||||
{
|
{
|
||||||
POINT pt;
|
POINT pt;
|
||||||
RECT rect;
|
|
||||||
SIZE size = {0,0};
|
|
||||||
|
|
||||||
int flags = (wParam & MK_LBUTTON ? CV_EVENT_FLAG_LBUTTON : 0)|
|
int flags = (wParam & MK_LBUTTON ? CV_EVENT_FLAG_LBUTTON : 0)|
|
||||||
(wParam & MK_RBUTTON ? CV_EVENT_FLAG_RBUTTON : 0)|
|
(wParam & MK_RBUTTON ? CV_EVENT_FLAG_RBUTTON : 0)|
|
||||||
@ -1463,12 +1461,23 @@ static LRESULT CALLBACK HighGUIProc( HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM
|
|||||||
pt.x = GET_X_LPARAM( lParam );
|
pt.x = GET_X_LPARAM( lParam );
|
||||||
pt.y = GET_Y_LPARAM( lParam );
|
pt.y = GET_Y_LPARAM( lParam );
|
||||||
|
|
||||||
GetClientRect( window->hwnd, &rect );
|
if (window->flags & CV_WINDOW_AUTOSIZE)
|
||||||
icvGetBitmapData( window, &size, 0, 0 );
|
{
|
||||||
|
// As user can't change window size, do not scale window coordinates. Underlying windowing system
|
||||||
|
// may prevent full window from being displayed and in this case coordinates should not be scaled.
|
||||||
|
window->on_mouse( event, pt.x, pt.y, flags, window->on_mouse_param );
|
||||||
|
} else {
|
||||||
|
// Full window is displayed using different size. Scale coordinates to match underlying positions.
|
||||||
|
RECT rect;
|
||||||
|
SIZE size = {0, 0};
|
||||||
|
|
||||||
window->on_mouse( event, pt.x*size.cx/MAX(rect.right - rect.left,1),
|
GetClientRect( window->hwnd, &rect );
|
||||||
pt.y*size.cy/MAX(rect.bottom - rect.top,1), flags,
|
icvGetBitmapData( window, &size, 0, 0 );
|
||||||
window->on_mouse_param );
|
|
||||||
|
window->on_mouse( event, pt.x*size.cx/MAX(rect.right - rect.left,1),
|
||||||
|
pt.y*size.cy/MAX(rect.bottom - rect.top,1), flags,
|
||||||
|
window->on_mouse_param );
|
||||||
|
}
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
||||||
|
@ -256,6 +256,57 @@ The function computes an inverse affine transformation represented by
|
|||||||
The result is also a
|
The result is also a
|
||||||
:math:`2 \times 3` matrix of the same type as ``M`` .
|
:math:`2 \times 3` matrix of the same type as ``M`` .
|
||||||
|
|
||||||
|
LinearPolar
|
||||||
|
-----------
|
||||||
|
Remaps an image to polar space.
|
||||||
|
|
||||||
|
.. ocv:cfunction:: void cvLinearPolar( const CvArr* src, CvArr* dst, CvPoint2D32f center, double maxRadius, int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS )
|
||||||
|
|
||||||
|
:param src: Source image
|
||||||
|
|
||||||
|
:param dst: Destination image
|
||||||
|
|
||||||
|
:param center: The transformation center;
|
||||||
|
|
||||||
|
:param maxRadius: Inverse magnitude scale parameter. See below
|
||||||
|
|
||||||
|
:param flags: A combination of interpolation methods and the following optional flags:
|
||||||
|
|
||||||
|
* **CV_WARP_FILL_OUTLIERS** fills all of the destination image pixels. If some of them correspond to outliers in the source image, they are set to zero
|
||||||
|
|
||||||
|
* **CV_WARP_INVERSE_MAP** See below
|
||||||
|
|
||||||
|
The function ``cvLinearPolar`` transforms the source image using the following transformation:
|
||||||
|
|
||||||
|
*
|
||||||
|
Forward transformation (``CV_WARP_INVERSE_MAP`` is not set):
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
dst( \phi , \rho ) = src(x,y)
|
||||||
|
|
||||||
|
|
||||||
|
*
|
||||||
|
Inverse transformation (``CV_WARP_INVERSE_MAP`` is set):
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
dst(x,y) = src( \phi , \rho )
|
||||||
|
|
||||||
|
|
||||||
|
where
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
\rho = (src.width/maxRadius) \cdot \sqrt{x^2 + y^2} , \phi =atan(y/x)
|
||||||
|
|
||||||
|
|
||||||
|
The function can not operate in-place.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
|
||||||
|
* An example using the LinearPolar operation can be found at opencv_source_code/samples/c/polar_transforms.c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
LogPolar
|
LogPolar
|
||||||
|
@ -504,7 +504,7 @@ Fills a connected component with the given color.
|
|||||||
|
|
||||||
:param image: Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the function unless the ``FLOODFILL_MASK_ONLY`` flag is set in the second variant of the function. See the details below.
|
:param image: Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the function unless the ``FLOODFILL_MASK_ONLY`` flag is set in the second variant of the function. See the details below.
|
||||||
|
|
||||||
:param mask: (For the second function only) Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels taller. The function uses and updates the mask, so you take responsibility of initializing the ``mask`` content. Flood-filling cannot go across non-zero pixels in the mask. For example, an edge detector output can be used as a mask to stop filling at edges. It is possible to use the same mask in multiple calls to the function to make sure the filled area does not overlap.
|
:param mask: Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels taller than ``image``. Since this is both an input and output parameter, you must take responsibility of initializing it. Flood-filling cannot go across non-zero pixels in the input mask. For example, an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the mask corresponding to filled pixels in the image are set to 1 or to the a value specified in ``flags`` as described below. It is therefore possible to use the same mask in multiple calls to the function to make sure the filled areas do not overlap.
|
||||||
|
|
||||||
.. note:: Since the mask is larger than the filled image, a pixel :math:`(x, y)` in ``image`` corresponds to the pixel :math:`(x+1, y+1)` in the ``mask`` .
|
.. note:: Since the mask is larger than the filled image, a pixel :math:`(x, y)` in ``image`` corresponds to the pixel :math:`(x+1, y+1)` in the ``mask`` .
|
||||||
|
|
||||||
@ -518,11 +518,11 @@ Fills a connected component with the given color.
|
|||||||
|
|
||||||
:param rect: Optional output parameter set by the function to the minimum bounding rectangle of the repainted domain.
|
:param rect: Optional output parameter set by the function to the minimum bounding rectangle of the repainted domain.
|
||||||
|
|
||||||
:param flags: Operation flags. Lower bits contain a connectivity value, 4 (default) or 8, used within the function. Connectivity determines which neighbors of a pixel are considered. Upper bits can be 0 or a combination of the following flags:
|
:param flags: Operation flags. The first 8 bits contain a connectivity value. The default value of 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner) will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill the ``mask`` (the default value is 1). For example, ``4 | ( 255 << 8 )`` will consider 4 nearest neighbours and fill the mask with a value of 255. The following additional options occupy higher bits and therefore may be further combined with the connectivity and mask fill values using bit-wise or (``|``):
|
||||||
|
|
||||||
* **FLOODFILL_FIXED_RANGE** If set, the difference between the current pixel and seed pixel is considered. Otherwise, the difference between neighbor pixels is considered (that is, the range is floating).
|
* **FLOODFILL_FIXED_RANGE** If set, the difference between the current pixel and seed pixel is considered. Otherwise, the difference between neighbor pixels is considered (that is, the range is floating).
|
||||||
|
|
||||||
* **FLOODFILL_MASK_ONLY** If set, the function does not change the image ( ``newVal`` is ignored), but fills the mask. The flag can be used for the second variant only.
|
* **FLOODFILL_MASK_ONLY** If set, the function does not change the image ( ``newVal`` is ignored), and only fills the mask with the value specified in bits 8-16 of ``flags`` as described above. This option only make sense in function variants that have the ``mask`` parameter.
|
||||||
|
|
||||||
The functions ``floodFill`` fill a connected component starting from the seed point with the specified color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The pixel at
|
The functions ``floodFill`` fill a connected component starting from the seed point with the specified color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The pixel at
|
||||||
:math:`(x,y)` is considered to belong to the repainted domain if:
|
:math:`(x,y)` is considered to belong to the repainted domain if:
|
||||||
|
@ -133,7 +133,7 @@ Finds contours in a binary image.
|
|||||||
|
|
||||||
.. ocv:pyoldfunction:: cv.FindContours(image, storage, mode=CV_RETR_LIST, method=CV_CHAIN_APPROX_SIMPLE, offset=(0, 0)) -> contours
|
.. ocv:pyoldfunction:: cv.FindContours(image, storage, mode=CV_RETR_LIST, method=CV_CHAIN_APPROX_SIMPLE, offset=(0, 0)) -> contours
|
||||||
|
|
||||||
:param image: Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero pixels remain 0's, so the image is treated as ``binary`` . You can use :ocv:func:`compare` , :ocv:func:`inRange` , :ocv:func:`threshold` , :ocv:func:`adaptiveThreshold` , :ocv:func:`Canny` , and others to create a binary image out of a grayscale or color one. The function modifies the ``image`` while extracting the contours.
|
:param image: Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero pixels remain 0's, so the image is treated as ``binary`` . You can use :ocv:func:`compare` , :ocv:func:`inRange` , :ocv:func:`threshold` , :ocv:func:`adaptiveThreshold` , :ocv:func:`Canny` , and others to create a binary image out of a grayscale or color one. The function modifies the ``image`` while extracting the contours. If mode equals to ``CV_RETR_CCOMP`` or ``CV_RETR_FLOODFILL``, the input can also be a 32-bit integer image of labels (``CV_32SC1``).
|
||||||
|
|
||||||
:param contours: Detected contours. Each contour is stored as a vector of points.
|
:param contours: Detected contours. Each contour is stored as a vector of points.
|
||||||
|
|
||||||
|
@ -453,8 +453,11 @@ void FilterEngine::apply(const Mat& src, Mat& dst,
|
|||||||
dstOfs.y + srcRoi.height <= dst.rows );
|
dstOfs.y + srcRoi.height <= dst.rows );
|
||||||
|
|
||||||
int y = start(src, srcRoi, isolated);
|
int y = start(src, srcRoi, isolated);
|
||||||
proceed( src.data + y*src.step, (int)src.step, endY - startY,
|
proceed( src.data + y*src.step
|
||||||
dst.data + dstOfs.y*dst.step + dstOfs.x*dst.elemSize(), (int)dst.step );
|
+ srcRoi.x*src.elemSize(),
|
||||||
|
(int)src.step, endY - startY,
|
||||||
|
dst.data + dstOfs.y*dst.step +
|
||||||
|
dstOfs.x*dst.elemSize(), (int)dst.step );
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -837,7 +837,7 @@ void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
|
|||||||
_dst.create( src.size(), src.type() );
|
_dst.create( src.size(), src.type() );
|
||||||
Mat dst = _dst.getMat();
|
Mat dst = _dst.getMat();
|
||||||
|
|
||||||
if( borderType != BORDER_CONSTANT )
|
if( borderType != BORDER_CONSTANT && (borderType & BORDER_ISOLATED) != 0 )
|
||||||
{
|
{
|
||||||
if( src.rows == 1 )
|
if( src.rows == 1 )
|
||||||
ksize.height = 1;
|
ksize.height = 1;
|
||||||
|
@ -333,12 +333,6 @@ void CvCalibFilter::Stop( bool calibrate )
|
|||||||
points[0],points[1],
|
points[0],points[1],
|
||||||
buffer,
|
buffer,
|
||||||
&stereo);
|
&stereo);
|
||||||
|
|
||||||
for( i = 0; i < 9; i++ )
|
|
||||||
{
|
|
||||||
stereo.fundMatr[i] = stereo.fundMatr[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -577,54 +577,48 @@ void BackgroundSubtractorMOG2::operator()(InputArray _image, OutputArray _fgmask
|
|||||||
void BackgroundSubtractorMOG2::getBackgroundImage(OutputArray backgroundImage) const
|
void BackgroundSubtractorMOG2::getBackgroundImage(OutputArray backgroundImage) const
|
||||||
{
|
{
|
||||||
int nchannels = CV_MAT_CN(frameType);
|
int nchannels = CV_MAT_CN(frameType);
|
||||||
CV_Assert( nchannels == 3 );
|
CV_Assert(nchannels == 1 || nchannels == 3);
|
||||||
Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0));
|
Mat meanBackground(frameSize, CV_MAKETYPE(CV_8U, nchannels), Scalar::all(0));
|
||||||
|
|
||||||
int firstGaussianIdx = 0;
|
int firstGaussianIdx = 0;
|
||||||
const GMM* gmm = (GMM*)bgmodel.data;
|
const GMM* gmm = (GMM*)bgmodel.data;
|
||||||
const Vec3f* mean = reinterpret_cast<const Vec3f*>(gmm + frameSize.width*frameSize.height*nmixtures);
|
const float* mean = reinterpret_cast<const float*>(gmm + frameSize.width*frameSize.height*nmixtures);
|
||||||
|
std::vector<float> meanVal(nchannels, 0.f);
|
||||||
for(int row=0; row<meanBackground.rows; row++)
|
for(int row=0; row<meanBackground.rows; row++)
|
||||||
{
|
{
|
||||||
for(int col=0; col<meanBackground.cols; col++)
|
for(int col=0; col<meanBackground.cols; col++)
|
||||||
{
|
{
|
||||||
int nmodes = bgmodelUsedModes.at<uchar>(row, col);
|
int nmodes = bgmodelUsedModes.at<uchar>(row, col);
|
||||||
Vec3f meanVal;
|
|
||||||
float totalWeight = 0.f;
|
float totalWeight = 0.f;
|
||||||
for(int gaussianIdx = firstGaussianIdx; gaussianIdx < firstGaussianIdx + nmodes; gaussianIdx++)
|
for(int gaussianIdx = firstGaussianIdx; gaussianIdx < firstGaussianIdx + nmodes; gaussianIdx++)
|
||||||
{
|
{
|
||||||
GMM gaussian = gmm[gaussianIdx];
|
GMM gaussian = gmm[gaussianIdx];
|
||||||
meanVal += gaussian.weight * mean[gaussianIdx];
|
size_t meanPosition = gaussianIdx*nchannels;
|
||||||
|
for(int chn = 0; chn < nchannels; chn++)
|
||||||
|
{
|
||||||
|
meanVal[chn] += gaussian.weight * mean[meanPosition + chn];
|
||||||
|
}
|
||||||
totalWeight += gaussian.weight;
|
totalWeight += gaussian.weight;
|
||||||
|
|
||||||
if(totalWeight > backgroundRatio)
|
if(totalWeight > backgroundRatio)
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
float invWeight = 1.f/totalWeight;
|
||||||
meanVal *= (1.f / totalWeight);
|
switch(nchannels)
|
||||||
meanBackground.at<Vec3b>(row, col) = Vec3b(meanVal);
|
{
|
||||||
|
case 1:
|
||||||
|
meanBackground.at<uchar>(row, col) = (uchar)(meanVal[0] * invWeight);
|
||||||
|
meanVal[0] = 0.f;
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
Vec3f& meanVec = *reinterpret_cast<Vec3f*>(&meanVal[0]);
|
||||||
|
meanBackground.at<Vec3b>(row, col) = Vec3b(meanVec * invWeight);
|
||||||
|
meanVec = 0.f;
|
||||||
|
break;
|
||||||
|
}
|
||||||
firstGaussianIdx += nmixtures;
|
firstGaussianIdx += nmixtures;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
meanBackground.copyTo(backgroundImage);
|
||||||
switch(CV_MAT_CN(frameType))
|
|
||||||
{
|
|
||||||
case 1:
|
|
||||||
{
|
|
||||||
vector<Mat> channels;
|
|
||||||
split(meanBackground, channels);
|
|
||||||
channels[0].copyTo(backgroundImage);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
case 3:
|
|
||||||
{
|
|
||||||
meanBackground.copyTo(backgroundImage);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
default:
|
|
||||||
CV_Error(CV_StsUnsupportedFormat, "");
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -33,7 +33,7 @@ int main( int /*argc*/, char** /*argv*/ )
|
|||||||
{
|
{
|
||||||
int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
|
int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
|
||||||
int i, sampleCount = rng.uniform(1, 1001);
|
int i, sampleCount = rng.uniform(1, 1001);
|
||||||
Mat points(sampleCount, 2, CV_32F), labels;
|
Mat points(sampleCount, 1, CV_32FC2), labels;
|
||||||
|
|
||||||
clusterCount = MIN(clusterCount, sampleCount);
|
clusterCount = MIN(clusterCount, sampleCount);
|
||||||
Mat centers;
|
Mat centers;
|
||||||
|
Loading…
Reference in New Issue
Block a user