less pointers

rtsort + formatting

less pointers + more compact code

less reallocations, cleaner code

less pointers, less GEMMs

trailing whitespace
This commit is contained in:
Rostislav Vasilikhin 2022-09-02 18:11:42 +02:00
parent bfc4bdd9d0
commit 8a43956a1b

View File

@ -661,22 +661,14 @@ static double calibrateCameraInternal( const Mat& objectPoints,
//////////////////////////////// Stereo Calibration /////////////////////////////////// //////////////////////////////// Stereo Calibration ///////////////////////////////////
static int dbCmp( const void* _a, const void* _b )
{
double a = *(const double*)_a;
double b = *(const double*)_b;
return (a > b) - (a < b);
}
static double stereoCalibrateImpl( static double stereoCalibrateImpl(
const Mat& _objectPoints, const Mat& _imagePoints1, const Mat& _objectPoints, const Mat& _imagePoints1,
const Mat& _imagePoints2, const Mat& _npoints, const Mat& _imagePoints2, const Mat& _npoints,
Mat& _cameraMatrix1, Mat& _distCoeffs1, Mat& _cameraMatrix1, Mat& _distCoeffs1,
Mat& _cameraMatrix2, Mat& _distCoeffs2, Mat& _cameraMatrix2, Mat& _distCoeffs2,
Size imageSize, Mat* matR, Mat* matT, Size imageSize, Mat matR, Mat matT,
Mat* matE, Mat* matF, Mat matE, Mat matF,
Mat* perViewErr, int flags, Mat perViewErr, int flags,
TermCriteria termCrit ) TermCriteria termCrit )
{ {
const int NINTRINSIC = 18; const int NINTRINSIC = 18;
@ -725,11 +717,12 @@ static double stereoCalibrateImpl(
imagePoints[k] = imagePoints[k].reshape(2, 1); imagePoints[k] = imagePoints[k].reshape(2, 1);
if( flags & (CALIB_FIX_INTRINSIC|CALIB_USE_INTRINSIC_GUESS| if( flags & (CALIB_FIX_INTRINSIC|CALIB_USE_INTRINSIC_GUESS|
CALIB_FIX_ASPECT_RATIO|CALIB_FIX_FOCAL_LENGTH) ) CALIB_FIX_ASPECT_RATIO|CALIB_FIX_FOCAL_LENGTH) )
cameraMatrix.convertTo(A[k], CV_64F); cameraMatrix.convertTo(A[k], CV_64F);
if( flags & (CALIB_FIX_INTRINSIC|CALIB_USE_INTRINSIC_GUESS| if( flags & (CALIB_FIX_INTRINSIC|CALIB_USE_INTRINSIC_GUESS|
CALIB_FIX_K1|CALIB_FIX_K2|CALIB_FIX_K3|CALIB_FIX_K4|CALIB_FIX_K5|CALIB_FIX_K6|CALIB_FIX_TANGENT_DIST) ) CALIB_FIX_K1|CALIB_FIX_K2|CALIB_FIX_K3|CALIB_FIX_K4|CALIB_FIX_K5|CALIB_FIX_K6|
CALIB_FIX_TANGENT_DIST) )
{ {
Mat tdist( distCoeffs.size(), CV_MAKETYPE(CV_64F, distCoeffs.channels()), dk[k] ); Mat tdist( distCoeffs.size(), CV_MAKETYPE(CV_64F, distCoeffs.channels()), dk[k] );
distCoeffs.convertTo(tdist, CV_64F); distCoeffs.convertTo(tdist, CV_64F);
@ -741,8 +734,6 @@ static double stereoCalibrateImpl(
calibrateCameraInternal(objectPoints, imagePoints[k], calibrateCameraInternal(objectPoints, imagePoints[k],
_npoints, imageSize, 0, matA, Dist[k], _npoints, imageSize, 0, matA, Dist[k],
0, 0, 0, 0, 0, flags, termCrit); 0, 0, 0, 0, 0, flags, termCrit);
//std::cout << "K(" << k << "): " << A[k] << "\n";
//std::cout << "Dist(" << k << "): " << Dist[k] << "\n";
} }
} }
@ -762,13 +753,12 @@ static double stereoCalibrateImpl(
recomputeIntrinsics = (flags & CALIB_FIX_INTRINSIC) == 0; recomputeIntrinsics = (flags & CALIB_FIX_INTRINSIC) == 0;
Mat err( maxPoints*2, 1, CV_64F );
Mat Je( maxPoints*2, 6, CV_64F );
Mat J_LR( maxPoints*2, 6, CV_64F );
Mat Ji( maxPoints*2, NINTRINSIC, CV_64F, Scalar(0) );
// we optimize for the inter-camera R(3),t(3), then, optionally, // we optimize for the inter-camera R(3),t(3), then, optionally,
// for intrinisic parameters of each camera ((fx,fy,cx,cy,k1,k2,p1,p2) ~ 8 parameters). // for intrinisic parameters of each camera ((fx,fy,cx,cy,k1,k2,p1,p2) ~ 8 parameters).
// Param mapping is:
// - from 0 next 6: stereo pair Rt, from 6+i*6 next 6: Rt for each ith camera of nimages,
// - from 6*(nimages+1) next NINTRINSICS: intrinsics for 1st camera: fx, fy, cx, cy, 14 x dist
// - next NINTRINSICS: the same for for 2nd camera
nparams = 6*(nimages+1) + (recomputeIntrinsics ? NINTRINSIC*2 : 0); nparams = 6*(nimages+1) + (recomputeIntrinsics ? NINTRINSIC*2 : 0);
std::vector<uchar> mask(nparams, (uchar)1); std::vector<uchar> mask(nparams, (uchar)1);
@ -819,8 +809,7 @@ static double stereoCalibrateImpl(
} }
// storage for initial [om(R){i}|t{i}] (in order to compute the median for each component) // storage for initial [om(R){i}|t{i}] (in order to compute the median for each component)
Mat RT0(6, nimages, CV_64F); std::vector<double> rtsort(nimages*6);
double* RT0data = RT0.ptr<double>();
/* /*
Compute initial estimate of pose Compute initial estimate of pose
For each image, compute: For each image, compute:
@ -836,19 +825,19 @@ static double stereoCalibrateImpl(
for(int i = 0; i < nimages; i++ ) for(int i = 0; i < nimages; i++ )
{ {
int ni = _npoints.at<int>(i); int ni = _npoints.at<int>(i);
Mat objpt_i(1, ni, CV_64FC3, objectPoints.ptr<double>() + pos*3); Mat objpt_i = objectPoints(Range::all(), Range(pos, pos + ni));
Matx33d R[2]; Matx33d R[2];
Vec3d rv, T[2]; Vec3d rv, T[2];
for(int k = 0; k < 2; k++ ) for(int k = 0; k < 2; k++ )
{ {
Mat imgpt_ik = Mat(1, ni, CV_64FC2, imagePoints[k].ptr<double>() + pos*2); Mat imgpt_ik = imagePoints[k](Range::all(), Range(pos, pos + ni));
solvePnP(objpt_i, imgpt_ik, A[k], Dist[k], rv, T[k], false, SOLVEPNP_ITERATIVE ); solvePnP(objpt_i, imgpt_ik, A[k], Dist[k], rv, T[k], false, SOLVEPNP_ITERATIVE );
Rodrigues(rv, R[k]); Rodrigues(rv, R[k]);
if( k == 0 ) if( k == 0 )
{ {
// save initial om_left and T_left // save initial om_left and T_left
param[(i+1)*6] = rv[0]; param[(i+1)*6 + 0] = rv[0];
param[(i+1)*6 + 1] = rv[1]; param[(i+1)*6 + 1] = rv[1];
param[(i+1)*6 + 2] = rv[2]; param[(i+1)*6 + 2] = rv[2];
param[(i+1)*6 + 3] = T[0][0]; param[(i+1)*6 + 3] = T[0][0];
@ -861,12 +850,12 @@ static double stereoCalibrateImpl(
Rodrigues(R[0], rv); Rodrigues(R[0], rv);
RT0data[i] = rv[0]; rtsort[i + nimages*0] = rv[0];
RT0data[i + nimages] = rv[1]; rtsort[i + nimages*1] = rv[1];
RT0data[i + nimages*2] = rv[2]; rtsort[i + nimages*2] = rv[2];
RT0data[i + nimages*3] = T[1][0]; rtsort[i + nimages*3] = T[1][0];
RT0data[i + nimages*4] = T[1][1]; rtsort[i + nimages*4] = T[1][1];
RT0data[i + nimages*5] = T[1][2]; rtsort[i + nimages*5] = T[1][2];
pos += ni; pos += ni;
} }
@ -874,12 +863,12 @@ static double stereoCalibrateImpl(
if(flags & CALIB_USE_EXTRINSIC_GUESS) if(flags & CALIB_USE_EXTRINSIC_GUESS)
{ {
Vec3d R, T; Vec3d R, T;
matT->convertTo(T, CV_64F); matT.convertTo(T, CV_64F);
if( matR->rows == 3 && matR->cols == 3 ) if( matR.rows == 3 && matR.cols == 3 )
Rodrigues(*matR, R); Rodrigues(matR, R);
else else
matR->convertTo(R, CV_64F); matR.convertTo(R, CV_64F);
param[0] = R[0]; param[0] = R[0];
param[1] = R[1]; param[1] = R[1];
@ -893,29 +882,35 @@ static double stereoCalibrateImpl(
// find the medians and save the first 6 parameters // find the medians and save the first 6 parameters
for(int i = 0; i < 6; i++ ) for(int i = 0; i < 6; i++ )
{ {
double* rti = RT0data + i*nimages; size_t idx = i*nimages;
qsort( rti, nimages, sizeof(*rti), dbCmp ); std::nth_element(rtsort.begin() + idx,
param[i] = nimages % 2 != 0 ? rti[nimages/2] : (rti[nimages/2 - 1] + rti[nimages/2])*0.5; rtsort.begin() + idx + nimages/2,
rtsort.begin() + idx + nimages);
double h = rtsort[idx + nimages/2];
param[i] = (nimages % 2 == 0) ? (h + rtsort[idx + nimages/2 - 1]) * 0.5 : h;
} }
} }
if( recomputeIntrinsics ) if( recomputeIntrinsics )
{
for(int k = 0; k < 2; k++ ) for(int k = 0; k < 2; k++ )
{ {
size_t idx = (nimages+1)*6 + k*NINTRINSIC; size_t idx = (nimages+1)*6 + k*NINTRINSIC;
if( flags & CALIB_ZERO_TANGENT_DIST ) if( flags & CALIB_ZERO_TANGENT_DIST )
dk[k][2] = dk[k][3] = 0; dk[k][2] = dk[k][3] = 0;
param[idx + 0] = A[k](0, 0); param[idx + 1] = A[k](1, 1); param[idx + 2] = A[k](0, 2); param[idx + 3] = A[k](1, 2); param[idx + 0] = A[k](0, 0); param[idx + 1] = A[k](1, 1); param[idx + 2] = A[k](0, 2); param[idx + 3] = A[k](1, 2);
param[idx + 4] = dk[k][0]; param[idx + 5] = dk[k][1]; param[idx + 6] = dk[k][2]; for (int i = 0; i < 14; i++)
param[idx + 7] = dk[k][3]; param[idx + 8] = dk[k][4]; param[idx + 9] = dk[k][5]; {
param[idx + 10] = dk[k][6]; param[idx + 11] = dk[k][7]; param[idx + 4 + i] = dk[k][i];
param[idx + 12] = dk[k][8]; }
param[idx + 13] = dk[k][9];
param[idx + 14] = dk[k][10];
param[idx + 15] = dk[k][11];
param[idx + 16] = dk[k][12];
param[idx + 17] = dk[k][13];
} }
}
// Preallocated place for callback calculations
Mat errBuf( maxPoints*2, 1, CV_64F );
Mat JeBuf( maxPoints*2, 6, CV_64F );
Mat J_LRBuf( maxPoints*2, 6, CV_64F );
Mat JiBuf( maxPoints*2, NINTRINSIC, CV_64F, Scalar(0) );
auto lmcallback = [&](InputOutputArray _param, OutputArray JtErr_, OutputArray JtJ_, double& errnorm) auto lmcallback = [&](InputOutputArray _param, OutputArray JtErr_, OutputArray JtJ_, double& errnorm)
{ {
@ -943,9 +938,11 @@ static double stereoCalibrateImpl(
} }
for(int k = 0; k < 2; k++ ) for(int k = 0; k < 2; k++ )
{ {
A[k] = Matx33d(param_m(idx + k*NINTRINSIC+0), 0, param_m(idx + k*NINTRINSIC+2), double fx = param_m(idx + k*NINTRINSIC+0), fy = param_m(idx + k*NINTRINSIC+1);
0, param_m(idx + k*NINTRINSIC+1), param_m(idx + k*NINTRINSIC+3), double cx = param_m(idx + k*NINTRINSIC+2), cy = param_m(idx + k*NINTRINSIC+3);
0, 0, 1); A[k] = Matx33d(fx, 0, cx,
0, fy, cy,
0, 0, 1);
for(int j = 0; j < 14; j++) for(int j = 0; j < 14; j++)
dk[k][j] = param_m(idx + k*NINTRINSIC+4+j); dk[k][j] = param_m(idx + k*NINTRINSIC+4+j);
} }
@ -966,8 +963,11 @@ static double stereoCalibrateImpl(
else else
composeRT( om[0], T[0], om_LR, T_LR, om[1], T[1] ); composeRT( om[0], T[0], om_LR, T_LR, om[1], T[1] );
Mat objpt_i(1, ni, CV_64FC3, objectPoints.ptr<double>() + ptPos*3); Mat objpt_i = objectPoints(Range::all(), Range(ptPos, ptPos + ni));
err.resize(ni*2); Je.resize(ni*2); J_LR.resize(ni*2); Ji.resize(ni*2); Mat err = errBuf (Range(0, ni*2), Range::all());
Mat Je = JeBuf (Range(0, ni*2), Range::all());
Mat J_LR = J_LRBuf(Range(0, ni*2), Range::all());
Mat Ji = JiBuf (Range(0, ni*2), Range::all());
Mat tmpImagePoints = err.reshape(2, 1); Mat tmpImagePoints = err.reshape(2, 1);
Mat dpdf = Ji.colRange(0, 2); Mat dpdf = Ji.colRange(0, 2);
@ -978,7 +978,7 @@ static double stereoCalibrateImpl(
for(int k = 0; k < 2; k++ ) for(int k = 0; k < 2; k++ )
{ {
Mat imgpt_ik(1, ni, CV_64FC2, imagePoints[k].ptr<double>() + ptPos*2); Mat imgpt_ik = imagePoints[k](Range::all(), Range(ptPos, ptPos + ni));
if( JtJ_.needed() || JtErr_.needed() ) if( JtJ_.needed() || JtErr_.needed() )
projectPoints(objpt_i, om[k], T[k], A[k], Dist[k], projectPoints(objpt_i, om[k], T[k], A[k], Dist[k],
@ -1001,23 +1001,35 @@ static double stereoCalibrateImpl(
// convert de3/{dr3,dt3} => de3{dr1,dt1} & de3{dr2,dt2} // convert de3/{dr3,dt3} => de3{dr1,dt1} & de3{dr2,dt2}
for(int p = 0; p < ni*2; p++ ) for(int p = 0; p < ni*2; p++ )
{ {
Mat de3dr3( 1, 3, CV_64F, Je.ptr(p)); Matx13d de3dr3, de3dt3, de3dr2, de3dt2, de3dr1, de3dt1;
Mat de3dt3( 1, 3, CV_64F, de3dr3.ptr<double>() + 3 ); for(int j = 0; j < 3; j++)
Mat de3dr2( 1, 3, CV_64F, J_LR.ptr(p) ); de3dr3(j) = Je.at<double>(p, j);
Mat de3dt2( 1, 3, CV_64F, de3dr2.ptr<double>() + 3 );
double _de3dr1[3], _de3dt1[3];
Mat de3dr1( 1, 3, CV_64F, _de3dr1 );
Mat de3dt1( 1, 3, CV_64F, _de3dt1 );
gemm(de3dr3, dr3dr1, 1, noArray(), 0, de3dr1); for(int j = 0; j < 3; j++)
gemm(de3dt3, dt3dt1, 1, noArray(), 0, de3dt1); de3dt3(j) = Je.at<double>(p, 3+j);
gemm(de3dr3, dr3dr2, 1, noArray(), 0, de3dr2); for(int j = 0; j < 3; j++)
gemm(de3dt3, dt3dr2, 1, de3dr2, 1, de3dr2); de3dr2(j) = J_LR.at<double>(p, j);
gemm(de3dt3, dt3dt2, 1, noArray(), 0, de3dt2);
de3dr1.copyTo(de3dr3); for(int j = 0; j < 3; j++)
de3dt1.copyTo(de3dt3); de3dt2(j) = J_LR.at<double>(p, 3+j);
de3dr1 = de3dr3 * dr3dr1;
de3dt1 = de3dt3 * dt3dt1;
de3dr2 = de3dr3 * dr3dr2 + de3dt3 * dt3dr2;
de3dt2 = de3dt3 * dt3dt2;
for(int j = 0; j < 3; j++)
Je.at<double>(p, j) = de3dr1(j);
for(int j = 0; j < 3; j++)
Je.at<double>(p, 3+j) = de3dt1(j);
for(int j = 0; j < 3; j++)
J_LR.at<double>(p, j) = de3dr2(j);
for(int j = 0; j < 3; j++)
J_LR.at<double>(p, 3+j) = de3dt2(j);
} }
JtJ(Rect(0, 0, 6, 6)) += J_LR.t()*J_LR; JtJ(Rect(0, 0, 6, 6)) += J_LR.t()*J_LR;
@ -1041,8 +1053,8 @@ static double stereoCalibrateImpl(
} }
double viewErr = norm(err, NORM_L2SQR); double viewErr = norm(err, NORM_L2SQR);
if(perViewErr) if(!perViewErr.empty())
perViewErr->at<double>(i, k) = std::sqrt(viewErr/ni); perViewErr.at<double>(i, k) = std::sqrt(viewErr/ni);
reprojErr += viewErr; reprojErr += viewErr;
} }
@ -1071,11 +1083,11 @@ static double stereoCalibrateImpl(
Vec3d T_LR(param[3], param[4], param[5]); Vec3d T_LR(param[3], param[4], param[5]);
Matx33d R_LR; Matx33d R_LR;
Rodrigues( om_LR, R_LR ); Rodrigues( om_LR, R_LR );
if( matR->rows == 1 || matR->cols == 1 ) if( matR.rows == 1 || matR.cols == 1 )
om_LR.convertTo(*matR, matR->depth()); om_LR.convertTo(matR, matR.depth());
else else
R_LR.convertTo(*matR, matR->depth()); R_LR.convertTo(matR, matR.depth());
T_LR.convertTo(*matT, matT->depth()); T_LR.convertTo(matT, matT.depth());
if( recomputeIntrinsics ) if( recomputeIntrinsics )
{ {
@ -1092,19 +1104,19 @@ static double stereoCalibrateImpl(
} }
} }
if( matE || matF ) if( !matE.empty() || !matF.empty() )
{ {
Matx33d Tx(0, -T_LR[2], T_LR[1], Matx33d Tx(0, -T_LR[2], T_LR[1],
T_LR[2], 0, -T_LR[0], T_LR[2], 0, -T_LR[0],
-T_LR[1], T_LR[0], 0); -T_LR[1], T_LR[0], 0);
Matx33d E = Tx*R_LR; Matx33d E = Tx*R_LR;
if (matE) if( !matE.empty() )
E.convertTo(*matE, matE->depth()); E.convertTo(matE, matE.depth());
if( matF ) if( !matF.empty())
{ {
Matx33d iA0 = A[0].inv(), iA1 = A[1].inv(); Matx33d iA0 = A[0].inv(), iA1 = A[1].inv();
Matx33d F = iA1.t()*E*iA0; Matx33d F = iA1.t() * E * iA0;
F.convertTo(*matF, matF->depth(), fabs(F(2,2)) > 0 ? 1./F(2,2) : 1.); F.convertTo(matF, matF.depth(), fabs(F(2,2)) > 0 ? 1./F(2,2) : 1.);
} }
} }
@ -1581,8 +1593,8 @@ double stereoCalibrate( InputArrayOfArrays _objectPoints,
double err = stereoCalibrateImpl(objPt, imgPt, imgPt2, npoints, cameraMatrix1, double err = stereoCalibrateImpl(objPt, imgPt, imgPt2, npoints, cameraMatrix1,
distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize,
&matR, &matT, E_needed ? &matE : NULL, F_needed ? &matF : NULL, matR, matT, matE, matF,
errors_needed ? &matErr : NULL, flags, criteria); matErr, flags, criteria);
cameraMatrix1.copyTo(_cameraMatrix1); cameraMatrix1.copyTo(_cameraMatrix1);
cameraMatrix2.copyTo(_cameraMatrix2); cameraMatrix2.copyTo(_cameraMatrix2);
distCoeffs1.copyTo(_distCoeffs1); distCoeffs1.copyTo(_distCoeffs1);