mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 06:53:50 +08:00
Merge pull request #22754 from mshabunin:c-cleanup
C-API cleanup for OpenCV 5.x (imgproc, highgui) * imgproc: C-API cleanup * imgproc: increase cvtColor test diff threshold * imgproc: C-API cleanup pt.2 * imgproc: C-API cleanup pt.3 * imgproc: C-API cleanup pt.4 * imgproc: C-API cleanup pt.5 * imgproc: C-API cleanup pt.5 * imgproc: C-API cleanup pt.6 * highgui: C-API cleanup * highgui: C-API cleanup pt.2 * highgui: C-API cleanup pt.3 * highgui: C-API cleanup pt.3 * imgproc: C-API cleanup pt.7 * fixup! highgui: C-API cleanup pt.3 * fixup! imgproc: C-API cleanup pt.6 * imgproc: C-API cleanup pt.8 * imgproc: C-API cleanup pt.9 * fixup! imgproc: C-API cleanup pt.9 * fixup! imgproc: C-API cleanup pt.9 * fixup! imgproc: C-API cleanup pt.9 * fixup! imgproc: C-API cleanup pt.9 * fixup! imgproc: C-API cleanup pt.9 * fixup! imgproc: C-API cleanup pt.9
This commit is contained in:
parent
d49958141e
commit
8a62b03761
@ -204,9 +204,9 @@ receives three arguments:
|
||||
|
||||
We can choose any of three shapes for our kernel:
|
||||
|
||||
- Rectangular box: CV_SHAPE_RECT
|
||||
- Cross: CV_SHAPE_CROSS
|
||||
- Ellipse: CV_SHAPE_ELLIPSE
|
||||
- Rectangular box: Imgproc.SHAPE_RECT
|
||||
- Cross: Imgproc.SHAPE_CROSS
|
||||
- Ellipse: Imgproc.SHAPE_ELLIPSE
|
||||
|
||||
Together with the shape we specify the size of our kernel and the *anchor point*. If the anchor point is not
|
||||
specified, it is assumed to be in the center.
|
||||
|
@ -27,19 +27,19 @@ Theory
|
||||
(\f$d(H_{1}, H_{2})\f$) to express how well both histograms match.
|
||||
- OpenCV implements the function @ref cv::compareHist to perform a comparison. It also offers 4
|
||||
different metrics to compute the matching:
|
||||
-# **Correlation ( CV_COMP_CORREL )**
|
||||
-# **Correlation ( cv::HISTCMP_CORREL )**
|
||||
\f[d(H_1,H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f]
|
||||
where
|
||||
\f[\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\f]
|
||||
and \f$N\f$ is the total number of histogram bins.
|
||||
|
||||
-# **Chi-Square ( CV_COMP_CHISQR )**
|
||||
-# **Chi-Square ( cv::HISTCMP_CHISQR )**
|
||||
\f[d(H_1,H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f]
|
||||
|
||||
-# **Intersection ( method=CV_COMP_INTERSECT )**
|
||||
-# **Intersection ( method=cv::HISTCMP_INTERSECT )**
|
||||
\f[d(H_1,H_2) = \sum _I \min (H_1(I), H_2(I))\f]
|
||||
|
||||
-# **Bhattacharyya distance ( CV_COMP_BHATTACHARYYA )**
|
||||
-# **Bhattacharyya distance ( cv::HISTCMP_BHATTACHARYYA )**
|
||||
\f[d(H_1,H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f]
|
||||
|
||||
Code
|
||||
|
@ -998,7 +998,7 @@ TEST(DISABLED_Calib3d_InitInverseRectificationMap, accuracy) { CV_InitInverseRec
|
||||
////////////////////////////// undistort /////////////////////////////////
|
||||
|
||||
static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& mapy,
|
||||
Mat* mask=0, int interpolation=CV_INTER_LINEAR )
|
||||
Mat* mask=0, int interpolation=cv::INTER_LINEAR )
|
||||
{
|
||||
int x, y, k;
|
||||
int drows = dst.rows, dcols = dst.cols;
|
||||
@ -1009,7 +1009,7 @@ static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& ma
|
||||
int step = (int)(src.step / CV_ELEM_SIZE(depth));
|
||||
int delta;
|
||||
|
||||
if( interpolation != CV_INTER_CUBIC )
|
||||
if( interpolation != cv::INTER_CUBIC )
|
||||
{
|
||||
delta = 0;
|
||||
scols -= 1; srows -= 1;
|
||||
@ -1318,7 +1318,7 @@ void CV_UndistortTest::get_test_array_types_and_sizes( int test_case_idx, vector
|
||||
sizes[INPUT][2] = cvtest::randInt(rng)%2 ? cvSize(4,1) : cvSize(1,4);
|
||||
types[INPUT][3] = types[INPUT][1];
|
||||
sizes[INPUT][3] = sizes[INPUT][1];
|
||||
interpolation = CV_INTER_LINEAR;
|
||||
interpolation = cv::INTER_LINEAR;
|
||||
}
|
||||
|
||||
|
||||
|
@ -102,8 +102,6 @@ namespace cv {
|
||||
|
||||
#define MAX_CONTOUR_APPROX 7
|
||||
|
||||
#define USE_CV_FINDCONTOURS // switch between findContours() and legacy C API
|
||||
#ifdef USE_CV_FINDCONTOURS
|
||||
struct QuadCountour {
|
||||
Point pt[4];
|
||||
int parent_contour;
|
||||
@ -114,13 +112,6 @@ struct QuadCountour {
|
||||
pt[0] = pt_[0]; pt[1] = pt_[1]; pt[2] = pt_[2]; pt[3] = pt_[3];
|
||||
}
|
||||
};
|
||||
#else
|
||||
struct CvContourEx
|
||||
{
|
||||
CV_CONTOUR_FIELDS()
|
||||
int counter;
|
||||
};
|
||||
#endif
|
||||
|
||||
/** This structure stores information about the chessboard corner.*/
|
||||
struct ChessBoardCorner
|
||||
@ -547,13 +538,7 @@ bool findChessboardCorners(InputArray image_, Size pattern_size,
|
||||
rectangle( thresh_img_new, Point(0,0), Point(thresh_img_new.cols-1, thresh_img_new.rows-1), Scalar(255,255,255), 3, LINE_8);
|
||||
|
||||
detector.reset();
|
||||
|
||||
#ifdef USE_CV_FINDCONTOURS
|
||||
Mat binarized_img = thresh_img_new;
|
||||
#else
|
||||
Mat binarized_img = thresh_img_new.clone(); // make clone because cvFindContours modifies the source image
|
||||
#endif
|
||||
detector.generateQuads(binarized_img, flags);
|
||||
detector.generateQuads(thresh_img_new, flags);
|
||||
DPRINTF("Quad count: %d/%d", detector.all_quads_count, (pattern_size.width/2+1)*(pattern_size.height/2+1));
|
||||
SHOW_QUADS("New quads", thresh_img_new, &detector.all_quads[0], detector.all_quads_count);
|
||||
if (detector.processQuads(out_corners, prev_sqr_size))
|
||||
@ -618,13 +603,7 @@ bool findChessboardCorners(InputArray image_, Size pattern_size,
|
||||
rectangle( thresh_img, Point(0,0), Point(thresh_img.cols-1, thresh_img.rows-1), Scalar(255,255,255), 3, LINE_8);
|
||||
|
||||
detector.reset();
|
||||
|
||||
#ifdef USE_CV_FINDCONTOURS
|
||||
Mat binarized_img = thresh_img;
|
||||
#else
|
||||
Mat binarized_img = (useAdaptive) ? thresh_img : thresh_img.clone(); // make clone because cvFindContours modifies the source image
|
||||
#endif
|
||||
detector.generateQuads(binarized_img, flags);
|
||||
detector.generateQuads(thresh_img, flags);
|
||||
DPRINTF("Quad count: %d/%d", detector.all_quads_count, (pattern_size.width/2+1)*(pattern_size.height/2+1));
|
||||
SHOW_QUADS("Old quads", thresh_img, &detector.all_quads[0], detector.all_quads_count);
|
||||
if (detector.processQuads(out_corners, prev_sqr_size))
|
||||
@ -1371,7 +1350,6 @@ int ChessBoardDetector::checkQuadGroup(std::vector<ChessBoardQuad*>& quad_group,
|
||||
|
||||
for (int j = 0; j < 4; ++j)
|
||||
{
|
||||
//cvLine( debug_img, cvPointFrom32f(q->corners[j]->pt), cvPointFrom32f(q->corners[(j+1)&3]->pt), color, 1, CV_AA, 0 );
|
||||
if (q->neighbors[j])
|
||||
{
|
||||
int next_j = (j + 1) & 3;
|
||||
@ -1460,7 +1438,6 @@ int ChessBoardDetector::checkQuadGroup(std::vector<ChessBoardQuad*>& quad_group,
|
||||
goto finalize;
|
||||
|
||||
cur->row = 0;
|
||||
//cvCircle( debug_img, cvPointFrom32f(cur->pt), 3, cvScalar(0,255,0), -1, 8, 0 );
|
||||
|
||||
first = below; // remember the first corner in the next row
|
||||
|
||||
@ -1469,7 +1446,6 @@ int ChessBoardDetector::checkQuadGroup(std::vector<ChessBoardQuad*>& quad_group,
|
||||
{
|
||||
right->row = 0;
|
||||
out_corners.push_back(right);
|
||||
//cvCircle( debug_img, cvPointFrom32f(right->pt), 3, cvScalar(0,255-j*10,0), -1, 8, 0 );
|
||||
if( right->count == 2 )
|
||||
break;
|
||||
if( right->count != 3 || (int)out_corners.size() >= std::max(pattern_size.width,pattern_size.height) )
|
||||
@ -1514,7 +1490,6 @@ int ChessBoardDetector::checkQuadGroup(std::vector<ChessBoardQuad*>& quad_group,
|
||||
{
|
||||
cur->row = i;
|
||||
out_corners.push_back(cur);
|
||||
//cvCircle( debug_img, cvPointFrom32f(cur->pt), 3, cvScalar(0,0,255-j*10), -1, 8, 0 );
|
||||
if (cur->count == 2 + (i < height-1) && j > 0)
|
||||
break;
|
||||
|
||||
@ -1759,7 +1734,6 @@ void ChessBoardDetector::generateQuads(const Mat& image_, int flags)
|
||||
int min_size = 25; //cvRound( image->cols * image->rows * .03 * 0.01 * 0.92 );
|
||||
|
||||
bool filterQuads = (flags & CALIB_CB_FILTER_QUADS) != 0;
|
||||
#ifdef USE_CV_FINDCONTOURS // use findContours
|
||||
|
||||
std::vector<std::vector<Point> > contours;
|
||||
std::vector<Vec4i> hierarchy;
|
||||
@ -1874,122 +1848,6 @@ void ChessBoardDetector::generateQuads(const Mat& image_, int flags)
|
||||
}
|
||||
}
|
||||
|
||||
#else // use legacy API: cvStartFindContours / cvFindNextContour / cvEndFindContours
|
||||
|
||||
CvMat image_old = cvMat(image_), *image = &image_old;
|
||||
|
||||
CvContourEx* board = 0;
|
||||
|
||||
// create temporary storage for contours and the sequence of pointers to found quadrangles
|
||||
Ptr<CvMemStorage> temp_storage(cvCreateMemStorage(0));
|
||||
CvSeq *root = cvCreateSeq(0, sizeof(CvSeq), sizeof(CvSeq*), temp_storage);
|
||||
|
||||
// initialize contour retrieving routine
|
||||
CvContourScanner scanner = cvStartFindContours(image, temp_storage, sizeof(CvContourEx),
|
||||
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
|
||||
|
||||
// get all the contours one by one
|
||||
CvSeq* src_contour = NULL;
|
||||
while ((src_contour = cvFindNextContour(scanner)) != NULL)
|
||||
{
|
||||
CvSeq *dst_contour = 0;
|
||||
CvRect rect = ((CvContour*)src_contour)->rect;
|
||||
|
||||
// reject contours with too small perimeter
|
||||
if( CV_IS_SEQ_HOLE(src_contour) && rect.width*rect.height >= min_size )
|
||||
{
|
||||
const int min_approx_level = 1, max_approx_level = MAX_CONTOUR_APPROX;
|
||||
for (int approx_level = min_approx_level; approx_level <= max_approx_level; approx_level++ )
|
||||
{
|
||||
dst_contour = cvApproxPoly( src_contour, sizeof(CvContour), temp_storage,
|
||||
CV_POLY_APPROX_DP, (float)approx_level );
|
||||
if( dst_contour->total == 4 )
|
||||
break;
|
||||
|
||||
// we call this again on its own output, because sometimes
|
||||
// cvApproxPoly() does not simplify as much as it should.
|
||||
dst_contour = cvApproxPoly( dst_contour, sizeof(CvContour), temp_storage,
|
||||
CV_POLY_APPROX_DP, (float)approx_level );
|
||||
|
||||
if( dst_contour->total == 4 )
|
||||
break;
|
||||
}
|
||||
|
||||
// reject non-quadrangles
|
||||
if( dst_contour->total == 4 && cvCheckContourConvexity(dst_contour) )
|
||||
{
|
||||
Point2i pt[4];
|
||||
double p = cvContourPerimeter(dst_contour);
|
||||
double area = fabs(cvContourArea(dst_contour, CV_WHOLE_SEQ));
|
||||
|
||||
for (int i = 0; i < 4; ++i)
|
||||
pt[i] = *(CvPoint*)cvGetSeqElem(dst_contour, i);
|
||||
CV_LOG_VERBOSE(NULL, 9, "... contours(" << root->total << " added):" << pt[0] << " " << pt[1] << " " << pt[2] << " " << pt[3]);
|
||||
|
||||
double d1 = sqrt(normL2Sqr<double>(pt[0] - pt[2]));
|
||||
double d2 = sqrt(normL2Sqr<double>(pt[1] - pt[3]));
|
||||
|
||||
// philipg. Only accept those quadrangles which are more square
|
||||
// than rectangular and which are big enough
|
||||
double d3 = sqrt(normL2Sqr<double>(pt[0] - pt[1]));
|
||||
double d4 = sqrt(normL2Sqr<double>(pt[1] - pt[2]));
|
||||
if (!filterQuads ||
|
||||
(d3*4 > d4 && d4*4 > d3 && d3*d4 < area*1.5 && area > min_size &&
|
||||
d1 >= 0.15 * p && d2 >= 0.15 * p))
|
||||
{
|
||||
CvContourEx* parent = (CvContourEx*)(src_contour->v_prev);
|
||||
parent->counter++;
|
||||
if( !board || board->counter < parent->counter )
|
||||
board = parent;
|
||||
dst_contour->v_prev = (CvSeq*)parent;
|
||||
//for( i = 0; i < 4; i++ ) cvLine( debug_img, pt[i], pt[(i+1)&3], cvScalar(200,255,255), 1, CV_AA, 0 );
|
||||
cvSeqPush( root, &dst_contour );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// finish contour retrieving
|
||||
cvEndFindContours( &scanner );
|
||||
|
||||
// allocate quad & corner buffers
|
||||
int total = root->total;
|
||||
size_t max_quad_buf_size = std::max((size_t)2, (size_t)total * 3);
|
||||
all_quads.allocate(max_quad_buf_size);
|
||||
all_corners.allocate(max_quad_buf_size * 4);
|
||||
|
||||
// Create array of quads structures
|
||||
for (int idx = 0; idx < total; ++idx)
|
||||
{
|
||||
/* CvSeq* */src_contour = *(CvSeq**)cvGetSeqElem(root, idx);
|
||||
if (filterQuads && src_contour->v_prev != (CvSeq*)board)
|
||||
continue;
|
||||
|
||||
int quad_idx = quad_count++;
|
||||
ChessBoardQuad& q = all_quads[quad_idx];
|
||||
|
||||
// reset group ID
|
||||
q = ChessBoardQuad();
|
||||
CV_Assert(src_contour->total == 4);
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
Point* onePoint = (Point*)cvGetSeqElem(src_contour, i);
|
||||
CV_Assert(onePoint != NULL);
|
||||
Point2f pt(*onePoint);
|
||||
ChessBoardCorner& corner = all_corners[quad_idx*4 + i];
|
||||
|
||||
corner = ChessBoardCorner(pt);
|
||||
q.corners[i] = &corner;
|
||||
}
|
||||
q.edge_len = FLT_MAX;
|
||||
for (int i = 0; i < 4; ++i)
|
||||
{
|
||||
float d = normL2Sqr<float>(q.corners[i]->pt - q.corners[(i+1)&3]->pt);
|
||||
q.edge_len = std::min(q.edge_len, d);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
all_quads_count = quad_count;
|
||||
|
||||
CV_LOG_VERBOSE(NULL, 3, "Total quad contours: " << total);
|
||||
|
@ -609,8 +609,8 @@ Below is an example that utilizes BufferPool with StackAllocator:
|
||||
GpuMat d_src2 = pool2.getBuffer(1024, 1024, CV_8UC1); // 1MB
|
||||
GpuMat d_dst2 = pool2.getBuffer(1024, 1024, CV_8UC3); // 3MB
|
||||
|
||||
cvtColor(d_src1, d_dst1, CV_GRAY2BGR, 0, stream1);
|
||||
cvtColor(d_src2, d_dst2, CV_GRAY2BGR, 0, stream2);
|
||||
cvtColor(d_src1, d_dst1, cv::COLOR_GRAY2BGR, 0, stream1);
|
||||
cvtColor(d_src2, d_dst2, cv::COLOR_GRAY2BGR, 0, stream2);
|
||||
}
|
||||
@endcode
|
||||
|
||||
@ -675,8 +675,8 @@ and the corresponding memory is automatically returned to the pool for later usa
|
||||
d_src1.setTo(Scalar(i), stream1);
|
||||
d_src2.setTo(Scalar(i), stream2);
|
||||
|
||||
cvtColor(d_src1, d_dst1, CV_GRAY2BGR, 0, stream1);
|
||||
cvtColor(d_src2, d_dst2, CV_GRAY2BGR, 0, stream2);
|
||||
cvtColor(d_src1, d_dst1, cv::COLOR_GRAY2BGR, 0, stream1);
|
||||
cvtColor(d_src2, d_dst2, cv::COLOR_GRAY2BGR, 0, stream2);
|
||||
// The order of destruction of the local variables is:
|
||||
// d_dst2 => d_src2 => d_dst1 => d_src1
|
||||
// LIFO rule is satisfied, this code runs without error
|
||||
|
@ -954,10 +954,6 @@ public:
|
||||
//! the full constructor
|
||||
Moments(double m00, double m10, double m01, double m20, double m11,
|
||||
double m02, double m30, double m21, double m12, double m03 );
|
||||
////! the conversion from CvMoments
|
||||
//Moments( const CvMoments& moments );
|
||||
////! the conversion to CvMoments
|
||||
//operator CvMoments() const;
|
||||
|
||||
//! @name spatial moments
|
||||
//! @{
|
||||
|
@ -1418,7 +1418,7 @@ types.
|
||||
*/
|
||||
GAPI_EXPORTS GMat threshold(const GMat& src, const GScalar& thresh, const GScalar& maxval, int type);
|
||||
/** @overload
|
||||
This function applicable for all threshold types except CV_THRESH_OTSU and CV_THRESH_TRIANGLE
|
||||
This function applicable for all threshold types except cv::THRESH_OTSU and cv::THRESH_TRIANGLE
|
||||
@note Function textual ID is "org.opencv.core.matrixop.thresholdOT"
|
||||
*/
|
||||
GAPI_EXPORTS_W std::tuple<GMat, GScalar> threshold(const GMat& src, const GScalar& maxval, int type);
|
||||
|
@ -167,8 +167,6 @@ It provides easy interface to:
|
||||
cv::createTrackbar("Twin brother", windowName, &state, 100, callbackTwin);
|
||||
}
|
||||
@endcode
|
||||
|
||||
@defgroup highgui_c C API
|
||||
@}
|
||||
*/
|
||||
|
||||
@ -797,7 +795,7 @@ CV_EXPORTS_W void displayOverlay(const String& winname, const String& text, int
|
||||
|
||||
The function displayStatusBar displays useful information/tips on top of the window for a certain
|
||||
amount of time *delayms* . This information is displayed on the window statusbar (the window must be
|
||||
created with the CV_GUI_EXPANDED flags).
|
||||
created with the cv::WINDOW_GUI_EXPANDED flags).
|
||||
|
||||
@param winname Name of the window.
|
||||
@param text Text to write on the window statusbar.
|
||||
|
@ -1,251 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_HIGHGUI_H
|
||||
#define OPENCV_HIGHGUI_H
|
||||
|
||||
#include "opencv2/core/core_c.h"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif /* __cplusplus */
|
||||
|
||||
/** @addtogroup highgui_c
|
||||
@{
|
||||
*/
|
||||
|
||||
/****************************************************************************************\
|
||||
* Basic GUI functions *
|
||||
\****************************************************************************************/
|
||||
//YV
|
||||
//-----------New for Qt
|
||||
/* For font */
|
||||
enum { CV_FONT_LIGHT = 25,//QFont::Light,
|
||||
CV_FONT_NORMAL = 50,//QFont::Normal,
|
||||
CV_FONT_DEMIBOLD = 63,//QFont::DemiBold,
|
||||
CV_FONT_BOLD = 75,//QFont::Bold,
|
||||
CV_FONT_BLACK = 87 //QFont::Black
|
||||
};
|
||||
|
||||
enum { CV_STYLE_NORMAL = 0,//QFont::StyleNormal,
|
||||
CV_STYLE_ITALIC = 1,//QFont::StyleItalic,
|
||||
CV_STYLE_OBLIQUE = 2 //QFont::StyleOblique
|
||||
};
|
||||
/* ---------*/
|
||||
|
||||
//for color cvScalar(blue_component, green_component, red_component[, alpha_component])
|
||||
//and alpha= 0 <-> 0xFF (not transparent <-> transparent)
|
||||
CVAPI(CvFont) cvFontQt(const char* nameFont, int pointSize CV_DEFAULT(-1), CvScalar color CV_DEFAULT(cvScalarAll(0)), int weight CV_DEFAULT(CV_FONT_NORMAL), int style CV_DEFAULT(CV_STYLE_NORMAL), int spacing CV_DEFAULT(0));
|
||||
|
||||
CVAPI(void) cvAddText(const CvArr* img, const char* text, CvPoint org, CvFont *arg2);
|
||||
|
||||
CVAPI(void) cvDisplayOverlay(const char* name, const char* text, int delayms CV_DEFAULT(0));
|
||||
CVAPI(void) cvDisplayStatusBar(const char* name, const char* text, int delayms CV_DEFAULT(0));
|
||||
|
||||
CVAPI(void) cvSaveWindowParameters(const char* name);
|
||||
CVAPI(void) cvLoadWindowParameters(const char* name);
|
||||
CVAPI(int) cvStartLoop(int (*pt2Func)(int argc, char *argv[]), int argc, char* argv[]);
|
||||
CVAPI(void) cvStopLoop( void );
|
||||
|
||||
typedef void (CV_CDECL *CvButtonCallback)(int state, void* userdata);
|
||||
enum {CV_PUSH_BUTTON = 0, CV_CHECKBOX = 1, CV_RADIOBOX = 2};
|
||||
CVAPI(int) cvCreateButton( const char* button_name CV_DEFAULT(NULL),CvButtonCallback on_change CV_DEFAULT(NULL), void* userdata CV_DEFAULT(NULL) , int button_type CV_DEFAULT(CV_PUSH_BUTTON), int initial_button_state CV_DEFAULT(0));
|
||||
//----------------------
|
||||
|
||||
|
||||
/* this function is used to set some external parameters in case of X Window */
|
||||
CVAPI(int) cvInitSystem( int argc, char** argv );
|
||||
|
||||
CVAPI(int) cvStartWindowThread( void );
|
||||
|
||||
// --------- YV ---------
|
||||
enum
|
||||
{
|
||||
//These 3 flags are used by cvSet/GetWindowProperty
|
||||
CV_WND_PROP_FULLSCREEN = 0, //to change/get window's fullscreen property
|
||||
CV_WND_PROP_AUTOSIZE = 1, //to change/get window's autosize property
|
||||
CV_WND_PROP_ASPECTRATIO= 2, //to change/get window's aspectratio property
|
||||
CV_WND_PROP_OPENGL = 3, //to change/get window's opengl support
|
||||
CV_WND_PROP_VISIBLE = 4,
|
||||
|
||||
//These 2 flags are used by cvNamedWindow and cvSet/GetWindowProperty
|
||||
CV_WINDOW_NORMAL = 0x00000000, //the user can resize the window (no constraint) / also use to switch a fullscreen window to a normal size
|
||||
CV_WINDOW_AUTOSIZE = 0x00000001, //the user cannot resize the window, the size is constrainted by the image displayed
|
||||
CV_WINDOW_OPENGL = 0x00001000, //window with opengl support
|
||||
|
||||
//Those flags are only for Qt
|
||||
CV_GUI_EXPANDED = 0x00000000, //status bar and tool bar
|
||||
CV_GUI_NORMAL = 0x00000010, //old fashious way
|
||||
|
||||
//These 3 flags are used by cvNamedWindow and cvSet/GetWindowProperty
|
||||
CV_WINDOW_FULLSCREEN = 1,//change the window to fullscreen
|
||||
CV_WINDOW_FREERATIO = 0x00000100,//the image expends as much as it can (no ratio constraint)
|
||||
CV_WINDOW_KEEPRATIO = 0x00000000//the ration image is respected.
|
||||
};
|
||||
|
||||
/* create window */
|
||||
CVAPI(int) cvNamedWindow( const char* name, int flags CV_DEFAULT(CV_WINDOW_AUTOSIZE) );
|
||||
|
||||
/* Set and Get Property of the window */
|
||||
CVAPI(void) cvSetWindowProperty(const char* name, int prop_id, double prop_value);
|
||||
CVAPI(double) cvGetWindowProperty(const char* name, int prop_id);
|
||||
|
||||
/* display image within window (highgui windows remember their content) */
|
||||
CVAPI(void) cvShowImage( const char* name, const CvArr* image );
|
||||
|
||||
/* resize/move window */
|
||||
CVAPI(void) cvResizeWindow( const char* name, int width, int height );
|
||||
CVAPI(void) cvMoveWindow( const char* name, int x, int y );
|
||||
|
||||
|
||||
/* destroy window and all the trackers associated with it */
|
||||
CVAPI(void) cvDestroyWindow( const char* name );
|
||||
|
||||
CVAPI(void) cvDestroyAllWindows(void);
|
||||
|
||||
/* get native window handle (HWND in case of Win32 and Widget in case of X Window) */
|
||||
CVAPI(void*) cvGetWindowHandle( const char* name );
|
||||
|
||||
/* get name of highgui window given its native handle */
|
||||
CVAPI(const char*) cvGetWindowName( void* window_handle );
|
||||
|
||||
|
||||
typedef void (CV_CDECL *CvTrackbarCallback)(int pos);
|
||||
|
||||
/* create trackbar and display it on top of given window, set callback */
|
||||
CVAPI(int) cvCreateTrackbar( const char* trackbar_name, const char* window_name,
|
||||
int* value, int count, CvTrackbarCallback on_change CV_DEFAULT(NULL));
|
||||
|
||||
typedef void (CV_CDECL *CvTrackbarCallback2)(int pos, void* userdata);
|
||||
|
||||
CVAPI(int) cvCreateTrackbar2( const char* trackbar_name, const char* window_name,
|
||||
int* value, int count, CvTrackbarCallback2 on_change,
|
||||
void* userdata CV_DEFAULT(0));
|
||||
|
||||
/* retrieve or set trackbar position */
|
||||
CVAPI(int) cvGetTrackbarPos( const char* trackbar_name, const char* window_name );
|
||||
CVAPI(void) cvSetTrackbarPos( const char* trackbar_name, const char* window_name, int pos );
|
||||
CVAPI(void) cvSetTrackbarMax(const char* trackbar_name, const char* window_name, int maxval);
|
||||
CVAPI(void) cvSetTrackbarMin(const char* trackbar_name, const char* window_name, int minval);
|
||||
|
||||
enum
|
||||
{
|
||||
CV_EVENT_MOUSEMOVE =0,
|
||||
CV_EVENT_LBUTTONDOWN =1,
|
||||
CV_EVENT_RBUTTONDOWN =2,
|
||||
CV_EVENT_MBUTTONDOWN =3,
|
||||
CV_EVENT_LBUTTONUP =4,
|
||||
CV_EVENT_RBUTTONUP =5,
|
||||
CV_EVENT_MBUTTONUP =6,
|
||||
CV_EVENT_LBUTTONDBLCLK =7,
|
||||
CV_EVENT_RBUTTONDBLCLK =8,
|
||||
CV_EVENT_MBUTTONDBLCLK =9,
|
||||
CV_EVENT_MOUSEWHEEL =10,
|
||||
CV_EVENT_MOUSEHWHEEL =11
|
||||
};
|
||||
|
||||
enum
|
||||
{
|
||||
CV_EVENT_FLAG_LBUTTON =1,
|
||||
CV_EVENT_FLAG_RBUTTON =2,
|
||||
CV_EVENT_FLAG_MBUTTON =4,
|
||||
CV_EVENT_FLAG_CTRLKEY =8,
|
||||
CV_EVENT_FLAG_SHIFTKEY =16,
|
||||
CV_EVENT_FLAG_ALTKEY =32
|
||||
};
|
||||
|
||||
|
||||
#define CV_GET_WHEEL_DELTA(flags) ((short)((flags >> 16) & 0xffff)) // upper 16 bits
|
||||
|
||||
typedef void (CV_CDECL *CvMouseCallback )(int event, int x, int y, int flags, void* param);
|
||||
|
||||
/* assign callback for mouse events */
|
||||
CVAPI(void) cvSetMouseCallback( const char* window_name, CvMouseCallback on_mouse,
|
||||
void* param CV_DEFAULT(NULL));
|
||||
|
||||
/* wait for key event infinitely (delay<=0) or for "delay" milliseconds */
|
||||
CVAPI(int) cvWaitKey(int delay CV_DEFAULT(0));
|
||||
|
||||
// OpenGL support
|
||||
|
||||
typedef void (CV_CDECL *CvOpenGlDrawCallback)(void* userdata);
|
||||
CVAPI(void) cvSetOpenGlDrawCallback(const char* window_name, CvOpenGlDrawCallback callback, void* userdata CV_DEFAULT(NULL));
|
||||
|
||||
CVAPI(void) cvSetOpenGlContext(const char* window_name);
|
||||
CVAPI(void) cvUpdateWindow(const char* window_name);
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
|
||||
* Obsolete functions/synonyms *
|
||||
\****************************************************************************************/
|
||||
|
||||
#define cvAddSearchPath(path)
|
||||
#define cvvInitSystem cvInitSystem
|
||||
#define cvvNamedWindow cvNamedWindow
|
||||
#define cvvShowImage cvShowImage
|
||||
#define cvvResizeWindow cvResizeWindow
|
||||
#define cvvDestroyWindow cvDestroyWindow
|
||||
#define cvvCreateTrackbar cvCreateTrackbar
|
||||
#define cvvAddSearchPath cvAddSearchPath
|
||||
#define cvvWaitKey(name) cvWaitKey(0)
|
||||
#define cvvWaitKeyEx(name,delay) cvWaitKey(delay)
|
||||
#define HG_AUTOSIZE CV_WINDOW_AUTOSIZE
|
||||
#define set_preprocess_func cvSetPreprocessFuncWin32
|
||||
#define set_postprocess_func cvSetPostprocessFuncWin32
|
||||
|
||||
#if defined _WIN32
|
||||
|
||||
CVAPI(void) cvSetPreprocessFuncWin32_(const void* callback);
|
||||
CVAPI(void) cvSetPostprocessFuncWin32_(const void* callback);
|
||||
#define cvSetPreprocessFuncWin32(callback) cvSetPreprocessFuncWin32_((const void*)(callback))
|
||||
#define cvSetPostprocessFuncWin32(callback) cvSetPostprocessFuncWin32_((const void*)(callback))
|
||||
|
||||
#endif
|
||||
|
||||
/** @} highgui_c */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
@ -58,7 +58,6 @@
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/highgui/highgui_c.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
@ -89,6 +88,34 @@
|
||||
#define CV_WINDOW_MAGIC_VAL 0x00420042
|
||||
#define CV_TRACKBAR_MAGIC_VAL 0x00420043
|
||||
|
||||
// Obsolete but widely used types and functions hidden here
|
||||
typedef void (CV_CDECL *CvTrackbarCallback)(int pos);
|
||||
int namedWindowImpl(const char* name, int flags = cv::WINDOW_AUTOSIZE);
|
||||
void showImageImpl( const char* name, const CvArr* image );
|
||||
void resizeWindowImpl( const char* name, int width, int height );
|
||||
void moveWindowImpl( const char* name, int x, int y );
|
||||
void destroyWindowImpl(const char* name);
|
||||
void destroyAllWindowsImpl(void);
|
||||
int waitKeyImpl(int delay);
|
||||
|
||||
int getTrackbarPosImpl( const char* trackbar_name, const char* window_name );
|
||||
void setTrackbarPosImpl( const char* trackbar_name, const char* window_name, int pos );
|
||||
void setTrackbarMaxImpl(const char* trackbar_name, const char* window_name, int maxval);
|
||||
void setTrackbarMinImpl(const char* trackbar_name, const char* window_name, int minval);
|
||||
typedef void (CV_CDECL *CvTrackbarCallback2)(int pos, void* userdata);
|
||||
int createTrackbar2Impl( const char* trackbar_name, const char* window_name,
|
||||
int* value, int count, CvTrackbarCallback2 on_change,
|
||||
void* userdata CV_DEFAULT(0));
|
||||
|
||||
typedef void (CV_CDECL *CvMouseCallback )(int event, int x, int y, int flags, void* param);
|
||||
void setMouseCallbackImpl( const char* window_name, CvMouseCallback on_mouse, void* param);
|
||||
|
||||
typedef void (CV_CDECL *CvOpenGlDrawCallback)(void* userdata);
|
||||
void setOpenGLDrawCallbackImpl(const char* window_name, CvOpenGlDrawCallback callback, void* userdata);
|
||||
void setOpenGLContextImpl(const char* window_name);
|
||||
void updateWindowImpl(const char* window_name);
|
||||
|
||||
|
||||
//Yannick Verdie 2010, Max Kostin 2015
|
||||
void cvSetModeWindow_W32(const char* name, double prop_value);
|
||||
void cvSetModeWindow_GTK(const char* name, double prop_value);
|
||||
|
@ -187,10 +187,10 @@ static void deprecateNotFoundNoOpBehavior()
|
||||
#define CV_NOT_FOUND_DEPRECATION deprecateNotFoundNoOpBehavior()
|
||||
#endif
|
||||
|
||||
CV_IMPL void cvSetWindowProperty(const char* name, int prop_id, double prop_value)
|
||||
void cv::setWindowProperty(const String& name, int prop_id, double prop_value)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_Assert(name);
|
||||
CV_Assert(!name.empty());
|
||||
|
||||
{
|
||||
auto window = findWindow_(name);
|
||||
@ -217,34 +217,34 @@ CV_IMPL void cvSetWindowProperty(const char* name, int prop_id, double prop_valu
|
||||
switch(prop_id)
|
||||
{
|
||||
//change between fullscreen or not.
|
||||
case CV_WND_PROP_FULLSCREEN:
|
||||
case cv::WND_PROP_FULLSCREEN:
|
||||
|
||||
if (prop_value != CV_WINDOW_NORMAL && prop_value != CV_WINDOW_FULLSCREEN) // bad argument
|
||||
if (prop_value != cv::WINDOW_NORMAL && prop_value != cv::WINDOW_FULLSCREEN) // bad argument
|
||||
break;
|
||||
|
||||
#if defined (HAVE_QT)
|
||||
cvSetModeWindow_QT(name,prop_value);
|
||||
cvSetModeWindow_QT(name.c_str(),prop_value);
|
||||
#elif defined(HAVE_WIN32UI)
|
||||
cvSetModeWindow_W32(name,prop_value);
|
||||
cvSetModeWindow_W32(name.c_str(),prop_value);
|
||||
#elif defined (HAVE_GTK)
|
||||
cvSetModeWindow_GTK(name,prop_value);
|
||||
cvSetModeWindow_GTK(name.c_str(),prop_value);
|
||||
#elif defined (HAVE_COCOA)
|
||||
cvSetModeWindow_COCOA(name,prop_value);
|
||||
cvSetModeWindow_COCOA(name.c_str(),prop_value);
|
||||
#elif defined (WINRT)
|
||||
cvSetModeWindow_WinRT(name, prop_value);
|
||||
cvSetModeWindow_WinRT(name.c_str(), prop_value);
|
||||
#endif
|
||||
|
||||
break;
|
||||
|
||||
case CV_WND_PROP_AUTOSIZE:
|
||||
case cv::WND_PROP_AUTOSIZE:
|
||||
#if defined (HAVE_QT)
|
||||
cvSetPropWindow_QT(name,prop_value);
|
||||
cvSetPropWindow_QT(name.c_str(),prop_value);
|
||||
#endif
|
||||
break;
|
||||
|
||||
case CV_WND_PROP_ASPECTRATIO:
|
||||
case cv::WND_PROP_ASPECT_RATIO:
|
||||
#if defined (HAVE_QT)
|
||||
cvSetRatioWindow_QT(name,prop_value);
|
||||
cvSetRatioWindow_QT(name.c_str(),prop_value);
|
||||
#endif
|
||||
break;
|
||||
|
||||
@ -252,9 +252,9 @@ CV_IMPL void cvSetWindowProperty(const char* name, int prop_id, double prop_valu
|
||||
#if defined (HAVE_QT)
|
||||
// nothing
|
||||
#elif defined(HAVE_WIN32UI)
|
||||
cvSetPropTopmost_W32(name, (prop_value != 0 ? true : false));
|
||||
cvSetPropTopmost_W32(name.c_str(), (prop_value != 0 ? true : false));
|
||||
#elif defined(HAVE_COCOA)
|
||||
cvSetPropTopmost_COCOA(name, (prop_value != 0 ? true : false));
|
||||
cvSetPropTopmost_COCOA(name.c_str(), (prop_value != 0 ? true : false));
|
||||
#endif
|
||||
break;
|
||||
|
||||
@ -262,7 +262,7 @@ CV_IMPL void cvSetWindowProperty(const char* name, int prop_id, double prop_valu
|
||||
#if defined (HAVE_QT)
|
||||
// nothing
|
||||
#elif defined (HAVE_WIN32UI)
|
||||
cvSetPropVsync_W32(name, (prop_value != 0));
|
||||
cvSetPropVsync_W32(name.c_str(), (prop_value != 0));
|
||||
#else
|
||||
// not implemented yet for other toolkits
|
||||
#endif
|
||||
@ -273,11 +273,10 @@ CV_IMPL void cvSetWindowProperty(const char* name, int prop_id, double prop_valu
|
||||
#endif
|
||||
}
|
||||
|
||||
/* return -1 if error */
|
||||
CV_IMPL double cvGetWindowProperty(const char* name, int prop_id)
|
||||
double cv::getWindowProperty(const String& name, int prop_id)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_Assert(name);
|
||||
CV_Assert(!name.empty());
|
||||
|
||||
{
|
||||
auto window = findWindow_(name);
|
||||
@ -305,67 +304,67 @@ CV_IMPL double cvGetWindowProperty(const char* name, int prop_id)
|
||||
#else
|
||||
switch(prop_id)
|
||||
{
|
||||
case CV_WND_PROP_FULLSCREEN:
|
||||
case cv::WND_PROP_FULLSCREEN:
|
||||
|
||||
#if defined (HAVE_QT)
|
||||
return cvGetModeWindow_QT(name);
|
||||
return cvGetModeWindow_QT(name.c_str());
|
||||
#elif defined(HAVE_WIN32UI)
|
||||
return cvGetModeWindow_W32(name);
|
||||
return cvGetModeWindow_W32(name.c_str());
|
||||
#elif defined (HAVE_GTK)
|
||||
return cvGetModeWindow_GTK(name);
|
||||
return cvGetModeWindow_GTK(name.c_str());
|
||||
#elif defined (HAVE_COCOA)
|
||||
return cvGetModeWindow_COCOA(name);
|
||||
return cvGetModeWindow_COCOA(name.c_str());
|
||||
#elif defined (WINRT)
|
||||
return cvGetModeWindow_WinRT(name);
|
||||
return cvGetModeWindow_WinRT(name.c_str());
|
||||
#else
|
||||
return -1;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case CV_WND_PROP_AUTOSIZE:
|
||||
case cv::WND_PROP_AUTOSIZE:
|
||||
|
||||
#if defined (HAVE_QT)
|
||||
return cvGetPropWindow_QT(name);
|
||||
return cvGetPropWindow_QT(name.c_str());
|
||||
#elif defined(HAVE_WIN32UI)
|
||||
return cvGetPropWindowAutoSize_W32(name);
|
||||
return cvGetPropWindowAutoSize_W32(name.c_str());
|
||||
#elif defined (HAVE_GTK)
|
||||
return cvGetPropWindowAutoSize_GTK(name);
|
||||
return cvGetPropWindowAutoSize_GTK(name.c_str());
|
||||
#else
|
||||
return -1;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case CV_WND_PROP_ASPECTRATIO:
|
||||
case cv::WND_PROP_ASPECT_RATIO:
|
||||
|
||||
#if defined (HAVE_QT)
|
||||
return cvGetRatioWindow_QT(name);
|
||||
return cvGetRatioWindow_QT(name.c_str());
|
||||
#elif defined(HAVE_WIN32UI)
|
||||
return cvGetRatioWindow_W32(name);
|
||||
return cvGetRatioWindow_W32(name.c_str());
|
||||
#elif defined (HAVE_GTK)
|
||||
return cvGetRatioWindow_GTK(name);
|
||||
return cvGetRatioWindow_GTK(name.c_str());
|
||||
#else
|
||||
return -1;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case CV_WND_PROP_OPENGL:
|
||||
case cv::WND_PROP_OPENGL:
|
||||
|
||||
#if defined (HAVE_QT)
|
||||
return cvGetOpenGlProp_QT(name);
|
||||
return cvGetOpenGlProp_QT(name.c_str());
|
||||
#elif defined(HAVE_WIN32UI)
|
||||
return cvGetOpenGlProp_W32(name);
|
||||
return cvGetOpenGlProp_W32(name.c_str());
|
||||
#elif defined (HAVE_GTK)
|
||||
return cvGetOpenGlProp_GTK(name);
|
||||
return cvGetOpenGlProp_GTK(name.c_str());
|
||||
#else
|
||||
return -1;
|
||||
#endif
|
||||
break;
|
||||
|
||||
case CV_WND_PROP_VISIBLE:
|
||||
case cv::WND_PROP_VISIBLE:
|
||||
#if defined (HAVE_QT)
|
||||
return cvGetPropVisible_QT(name);
|
||||
return cvGetPropVisible_QT(name.c_str());
|
||||
#elif defined(HAVE_WIN32UI)
|
||||
return cvGetPropVisible_W32(name);
|
||||
return cvGetPropVisible_W32(name.c_str());
|
||||
#else
|
||||
return -1;
|
||||
#endif
|
||||
@ -375,9 +374,9 @@ CV_IMPL double cvGetWindowProperty(const char* name, int prop_id)
|
||||
#if defined (HAVE_QT)
|
||||
return -1;
|
||||
#elif defined(HAVE_WIN32UI)
|
||||
return cvGetPropTopmost_W32(name);
|
||||
return cvGetPropTopmost_W32(name.c_str());
|
||||
#elif defined(HAVE_COCOA)
|
||||
return cvGetPropTopmost_COCOA(name);
|
||||
return cvGetPropTopmost_COCOA(name.c_str());
|
||||
#else
|
||||
return -1;
|
||||
#endif
|
||||
@ -387,7 +386,7 @@ CV_IMPL double cvGetWindowProperty(const char* name, int prop_id)
|
||||
#if defined (HAVE_QT)
|
||||
return -1;
|
||||
#elif defined (HAVE_WIN32UI)
|
||||
return cvGetPropVsync_W32(name);
|
||||
return cvGetPropVsync_W32(name.c_str());
|
||||
#else
|
||||
return -1;
|
||||
#endif
|
||||
@ -478,7 +477,7 @@ void cv::namedWindow( const String& winname, int flags )
|
||||
}
|
||||
}
|
||||
|
||||
cvNamedWindow( winname.c_str(), flags );
|
||||
namedWindowImpl( winname.c_str(), flags );
|
||||
}
|
||||
|
||||
void cv::destroyWindow( const String& winname )
|
||||
@ -495,7 +494,7 @@ void cv::destroyWindow( const String& winname )
|
||||
}
|
||||
}
|
||||
|
||||
cvDestroyWindow( winname.c_str() );
|
||||
destroyWindowImpl( winname.c_str() );
|
||||
}
|
||||
|
||||
void cv::destroyAllWindows()
|
||||
@ -513,7 +512,7 @@ void cv::destroyAllWindows()
|
||||
}
|
||||
}
|
||||
|
||||
cvDestroyAllWindows();
|
||||
destroyAllWindowsImpl();
|
||||
}
|
||||
|
||||
void cv::resizeWindow( const String& winname, int width, int height )
|
||||
@ -541,14 +540,14 @@ void cv::resizeWindow( const String& winname, int width, int height )
|
||||
}
|
||||
return;
|
||||
#else
|
||||
cvResizeWindow( winname.c_str(), width, height );
|
||||
resizeWindowImpl( winname.c_str(), width, height );
|
||||
#endif
|
||||
}
|
||||
|
||||
void cv::resizeWindow(const String& winname, const cv::Size& size)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
cvResizeWindow(winname.c_str(), size.width, size.height);
|
||||
resizeWindowImpl(winname.c_str(), size.width, size.height);
|
||||
}
|
||||
|
||||
void cv::moveWindow( const String& winname, int x, int y )
|
||||
@ -576,7 +575,7 @@ void cv::moveWindow( const String& winname, int x, int y )
|
||||
}
|
||||
return;
|
||||
#else
|
||||
cvMoveWindow( winname.c_str(), x, y );
|
||||
moveWindowImpl( winname.c_str(), x, y );
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -622,17 +621,7 @@ void cv::setWindowTitle(const String& winname, const String& title)
|
||||
#endif
|
||||
}
|
||||
|
||||
void cv::setWindowProperty(const String& winname, int prop_id, double prop_value)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
cvSetWindowProperty( winname.c_str(), prop_id, prop_value);
|
||||
}
|
||||
|
||||
double cv::getWindowProperty(const String& winname, int prop_id)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
return cvGetWindowProperty(winname.c_str(), prop_id);
|
||||
}
|
||||
|
||||
int cv::waitKeyEx(int delay)
|
||||
{
|
||||
@ -647,7 +636,7 @@ int cv::waitKeyEx(int delay)
|
||||
}
|
||||
}
|
||||
|
||||
return cvWaitKey(delay);
|
||||
return waitKeyImpl(delay);
|
||||
}
|
||||
|
||||
int cv::waitKey(int delay)
|
||||
@ -686,7 +675,7 @@ int cv::pollKey()
|
||||
return pollKey_W32();
|
||||
#else
|
||||
// fallback. please implement a proper polling function
|
||||
return cvWaitKey(1);
|
||||
return waitKeyImpl(1);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -746,7 +735,7 @@ int cv::createTrackbar(const String& trackbarName, const String& winName,
|
||||
}
|
||||
return 0;
|
||||
#else
|
||||
return cvCreateTrackbar2(trackbarName.c_str(), winName.c_str(),
|
||||
return createTrackbar2Impl(trackbarName.c_str(), winName.c_str(),
|
||||
value, count, callback, userdata);
|
||||
#endif
|
||||
}
|
||||
@ -779,7 +768,7 @@ void cv::setTrackbarPos( const String& trackbarName, const String& winName, int
|
||||
}
|
||||
return;
|
||||
#else
|
||||
cvSetTrackbarPos(trackbarName.c_str(), winName.c_str(), value );
|
||||
setTrackbarPosImpl(trackbarName.c_str(), winName.c_str(), value );
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -813,7 +802,7 @@ void cv::setTrackbarMax(const String& trackbarName, const String& winName, int m
|
||||
}
|
||||
return;
|
||||
#else
|
||||
cvSetTrackbarMax(trackbarName.c_str(), winName.c_str(), maxval);
|
||||
setTrackbarMaxImpl(trackbarName.c_str(), winName.c_str(), maxval);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -847,7 +836,7 @@ void cv::setTrackbarMin(const String& trackbarName, const String& winName, int m
|
||||
}
|
||||
return;
|
||||
#else
|
||||
cvSetTrackbarMin(trackbarName.c_str(), winName.c_str(), minval);
|
||||
setTrackbarMinImpl(trackbarName.c_str(), winName.c_str(), minval);
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -879,7 +868,7 @@ int cv::getTrackbarPos( const String& trackbarName, const String& winName )
|
||||
}
|
||||
return -1;
|
||||
#else
|
||||
return cvGetTrackbarPos(trackbarName.c_str(), winName.c_str());
|
||||
return getTrackbarPosImpl(trackbarName.c_str(), winName.c_str());
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -909,40 +898,42 @@ void cv::setMouseCallback( const String& windowName, MouseCallback onMouse, void
|
||||
}
|
||||
return;
|
||||
#else
|
||||
cvSetMouseCallback(windowName.c_str(), onMouse, param);
|
||||
setMouseCallbackImpl(windowName.c_str(), onMouse, param);
|
||||
#endif
|
||||
}
|
||||
|
||||
int cv::getMouseWheelDelta( int flags )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
return CV_GET_WHEEL_DELTA(flags);
|
||||
return ((short)((flags >> 16) & 0xffff)); // upper 16 bits
|
||||
}
|
||||
|
||||
#if !defined (HAVE_GTK)
|
||||
int cv::startWindowThread()
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
return cvStartWindowThread();
|
||||
return 0;
|
||||
}
|
||||
#endif // !GTK
|
||||
|
||||
// OpenGL support
|
||||
|
||||
void cv::setOpenGlDrawCallback(const String& name, OpenGlDrawCallback callback, void* userdata)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
cvSetOpenGlDrawCallback(name.c_str(), callback, userdata);
|
||||
setOpenGLDrawCallbackImpl(name.c_str(), callback, userdata);
|
||||
}
|
||||
|
||||
void cv::setOpenGlContext(const String& windowName)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
cvSetOpenGlContext(windowName.c_str());
|
||||
setOpenGLContextImpl(windowName.c_str());
|
||||
}
|
||||
|
||||
void cv::updateWindow(const String& windowName)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
cvUpdateWindow(windowName.c_str());
|
||||
updateWindowImpl(windowName.c_str());
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
@ -1003,7 +994,7 @@ void cv::imshow( const String& winname, InputArray _img )
|
||||
{
|
||||
Mat img = _img.getMat();
|
||||
CvMat c_img = cvMat(img);
|
||||
cvShowImage(winname.c_str(), &c_img);
|
||||
showImageImpl(winname.c_str(), &c_img);
|
||||
}
|
||||
#else
|
||||
const double useGl = getWindowProperty(winname, WND_PROP_OPENGL);
|
||||
@ -1012,7 +1003,7 @@ void cv::imshow( const String& winname, InputArray _img )
|
||||
{
|
||||
Mat img = _img.getMat();
|
||||
CvMat c_img = cvMat(img);
|
||||
cvShowImage(winname.c_str(), &c_img);
|
||||
showImageImpl(winname.c_str(), &c_img);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -1089,86 +1080,31 @@ void cv::imshow(const String& winname, const ogl::Texture2D& _tex)
|
||||
#endif
|
||||
}
|
||||
|
||||
// Without OpenGL
|
||||
//========================= OpenGL fallback =========================
|
||||
|
||||
#ifndef HAVE_OPENGL
|
||||
|
||||
CV_IMPL void cvSetOpenGlDrawCallback(const char*, CvOpenGlDrawCallback, void*)
|
||||
void setOpenGLDrawCallbackImpl(const char*, CvOpenGlDrawCallback, void*)
|
||||
{
|
||||
CV_Error(CV_OpenGlNotSupported, "The library is compiled without OpenGL support");
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetOpenGlContext(const char*)
|
||||
void setOpenGLContextImpl(const char*)
|
||||
{
|
||||
CV_Error(CV_OpenGlNotSupported, "The library is compiled without OpenGL support");
|
||||
}
|
||||
|
||||
CV_IMPL void cvUpdateWindow(const char*)
|
||||
void updateWindowImpl(const char*)
|
||||
{
|
||||
CV_Error(CV_OpenGlNotSupported, "The library is compiled without OpenGL support");
|
||||
}
|
||||
|
||||
#endif // !HAVE_OPENGL
|
||||
|
||||
#if defined (HAVE_QT)
|
||||
//========================= Qt fallback =========================
|
||||
|
||||
cv::QtFont cv::fontQt(const String& nameFont, int pointSize, Scalar color, int weight, int style, int spacing)
|
||||
{
|
||||
CvFont f = cvFontQt(nameFont.c_str(), pointSize, cvScalar(color), weight, style, spacing);
|
||||
void* pf = &f; // to suppress strict-aliasing
|
||||
return *(cv::QtFont*)pf;
|
||||
}
|
||||
|
||||
void cv::addText( const Mat& img, const String& text, Point org, const QtFont& font)
|
||||
{
|
||||
CvMat _img = cvMat(img);
|
||||
cvAddText( &_img, text.c_str(), cvPoint(org), (CvFont*)&font);
|
||||
}
|
||||
|
||||
void cv::addText( const Mat& img, const String& text, Point org, const String& nameFont,
|
||||
int pointSize, Scalar color, int weight, int style, int spacing)
|
||||
{
|
||||
CvFont f = cvFontQt(nameFont.c_str(), pointSize, cvScalar(color), weight, style, spacing);
|
||||
CvMat _img = cvMat(img);
|
||||
cvAddText( &_img, text.c_str(), cvPoint(org), &f);
|
||||
}
|
||||
|
||||
void cv::displayStatusBar(const String& name, const String& text, int delayms)
|
||||
{
|
||||
cvDisplayStatusBar(name.c_str(),text.c_str(), delayms);
|
||||
}
|
||||
|
||||
void cv::displayOverlay(const String& name, const String& text, int delayms)
|
||||
{
|
||||
cvDisplayOverlay(name.c_str(),text.c_str(), delayms);
|
||||
}
|
||||
|
||||
int cv::startLoop(int (*pt2Func)(int argc, char *argv[]), int argc, char* argv[])
|
||||
{
|
||||
return cvStartLoop(pt2Func, argc, argv);
|
||||
}
|
||||
|
||||
void cv::stopLoop()
|
||||
{
|
||||
cvStopLoop();
|
||||
}
|
||||
|
||||
void cv::saveWindowParameters(const String& windowName)
|
||||
{
|
||||
cvSaveWindowParameters(windowName.c_str());
|
||||
}
|
||||
|
||||
void cv::loadWindowParameters(const String& windowName)
|
||||
{
|
||||
cvLoadWindowParameters(windowName.c_str());
|
||||
}
|
||||
|
||||
int cv::createButton(const String& button_name, ButtonCallback on_change, void* userdata, int button_type , bool initial_button_state )
|
||||
{
|
||||
return cvCreateButton(button_name.c_str(), on_change, userdata, button_type , initial_button_state );
|
||||
}
|
||||
|
||||
#else
|
||||
// moved to window_QT.cpp
|
||||
#ifndef HAVE_QT
|
||||
|
||||
static const char* NO_QT_ERR_MSG = "The library is compiled without QT support";
|
||||
|
||||
@ -1222,16 +1158,13 @@ int cv::createButton(const String&, ButtonCallback, void*, int , bool )
|
||||
CV_Error(CV_StsNotImplemented, NO_QT_ERR_MSG);
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif // !HAVE_QT
|
||||
|
||||
#if defined (HAVE_WIN32UI) // see window_w32.cpp
|
||||
#elif defined (HAVE_GTK) // see window_gtk.cpp
|
||||
#elif defined (HAVE_COCOA) // see window_cocoa.mm
|
||||
#elif defined (HAVE_QT) // see window_QT.cpp
|
||||
#elif defined (HAVE_WAYLAND) // see window_wayland.cpp
|
||||
#elif defined (WINRT) && !defined (WINRT_8_0) // see window_winrt.cpp
|
||||
|
||||
#else
|
||||
//========================= NO GUI fallback =========================
|
||||
|
||||
#if !defined (HAVE_WIN32UI) && !defined (HAVE_GTK) && !defined (HAVE_COCOA) && !defined (HAVE_QT) \
|
||||
&& !defined (HAVE_WAYLAND) && !defined (WINRT) && !defined (WINRT_8_0)
|
||||
|
||||
// No windowing system present at compile time ;-(
|
||||
//
|
||||
@ -1248,148 +1181,73 @@ int cv::createButton(const String&, ButtonCallback, void*, int , bool )
|
||||
funcname, __FILE__, __LINE__)
|
||||
|
||||
|
||||
CV_IMPL int cvNamedWindow( const char*, int )
|
||||
int namedWindowImpl( const char*, int )
|
||||
{
|
||||
CV_NO_GUI_ERROR("cvNamedWindow");
|
||||
CV_NO_GUI_ERROR("namedWindowImpl");
|
||||
}
|
||||
|
||||
CV_IMPL void cvDestroyWindow( const char* )
|
||||
void destroyWindowImpl( const char* )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvDestroyWindow" );
|
||||
CV_NO_GUI_ERROR( "destroyWindowImpl" );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvDestroyAllWindows( void )
|
||||
void destroyAllWindowsImpl( void )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvDestroyAllWindows" );
|
||||
CV_NO_GUI_ERROR( "destroyAllWindowsImpl" );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvShowImage( const char*, const CvArr* )
|
||||
void showImageImpl( const char*, const CvArr* )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvShowImage" );
|
||||
CV_NO_GUI_ERROR( "showImageImpl" );
|
||||
}
|
||||
|
||||
CV_IMPL void cvResizeWindow( const char*, int, int )
|
||||
void resizeWindowImpl( const char*, int, int )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvResizeWindow" );
|
||||
CV_NO_GUI_ERROR( "resizeWindowImpl" );
|
||||
}
|
||||
|
||||
CV_IMPL void cvMoveWindow( const char*, int, int )
|
||||
void moveWindowImpl( const char*, int, int )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvMoveWindow" );
|
||||
CV_NO_GUI_ERROR( "moveWindowImpl" );
|
||||
}
|
||||
|
||||
CV_IMPL int
|
||||
cvCreateTrackbar( const char*, const char*,
|
||||
int*, int, CvTrackbarCallback )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvCreateTrackbar" );
|
||||
}
|
||||
|
||||
CV_IMPL int
|
||||
cvCreateTrackbar2( const char* /*trackbar_name*/, const char* /*window_name*/,
|
||||
int createTrackbar2Impl( const char* /*trackbar_name*/, const char* /*window_name*/,
|
||||
int* /*val*/, int /*count*/, CvTrackbarCallback2 /*on_notify2*/,
|
||||
void* /*userdata*/ )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvCreateTrackbar2" );
|
||||
CV_NO_GUI_ERROR( "createTrackbar2Impl" );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvSetMouseCallback( const char*, CvMouseCallback, void* )
|
||||
void setMouseCallbackImpl( const char*, CvMouseCallback, void* )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvSetMouseCallback" );
|
||||
CV_NO_GUI_ERROR( "setMouseCallbackImpl" );
|
||||
}
|
||||
|
||||
CV_IMPL int cvGetTrackbarPos( const char*, const char* )
|
||||
int getTrackbarPosImpl( const char*, const char* )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvGetTrackbarPos" );
|
||||
CV_NO_GUI_ERROR( "getTrackbarPosImpl" );
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarPos( const char*, const char*, int )
|
||||
void setTrackbarPosImpl( const char*, const char*, int )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvSetTrackbarPos" );
|
||||
CV_NO_GUI_ERROR( "setTrackbarPosImpl" );
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarMax(const char*, const char*, int)
|
||||
void setTrackbarMaxImpl(const char*, const char*, int)
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvSetTrackbarMax" );
|
||||
CV_NO_GUI_ERROR( "setTrackbarMaxImpl" );
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarMin(const char*, const char*, int)
|
||||
void setTrackbarMinImpl(const char*, const char*, int)
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvSetTrackbarMin" );
|
||||
CV_NO_GUI_ERROR( "setTrackbarMinImpl" );
|
||||
}
|
||||
|
||||
CV_IMPL void* cvGetWindowHandle( const char* )
|
||||
int waitKeyImpl( int )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvGetWindowHandle" );
|
||||
CV_NO_GUI_ERROR( "waitKeyImpl" );
|
||||
}
|
||||
|
||||
CV_IMPL const char* cvGetWindowName( void* )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvGetWindowName" );
|
||||
}
|
||||
|
||||
CV_IMPL int cvWaitKey( int )
|
||||
{
|
||||
CV_NO_GUI_ERROR( "cvWaitKey" );
|
||||
}
|
||||
|
||||
CV_IMPL int cvInitSystem( int , char** )
|
||||
{
|
||||
|
||||
CV_NO_GUI_ERROR( "cvInitSystem" );
|
||||
}
|
||||
|
||||
CV_IMPL int cvStartWindowThread()
|
||||
{
|
||||
|
||||
CV_NO_GUI_ERROR( "cvStartWindowThread" );
|
||||
}
|
||||
|
||||
//-------- Qt ---------
|
||||
CV_IMPL void cvAddText( const CvArr*, const char*, CvPoint , CvFont* )
|
||||
{
|
||||
CV_NO_GUI_ERROR("cvAddText");
|
||||
}
|
||||
|
||||
CV_IMPL void cvDisplayStatusBar(const char* , const char* , int )
|
||||
{
|
||||
CV_NO_GUI_ERROR("cvDisplayStatusBar");
|
||||
}
|
||||
|
||||
CV_IMPL void cvDisplayOverlay(const char* , const char* , int )
|
||||
{
|
||||
CV_NO_GUI_ERROR("cvNamedWindow");
|
||||
}
|
||||
|
||||
CV_IMPL int cvStartLoop(int (*)(int argc, char *argv[]), int , char* argv[])
|
||||
{
|
||||
CV_UNUSED(argv);
|
||||
CV_NO_GUI_ERROR("cvStartLoop");
|
||||
}
|
||||
|
||||
CV_IMPL void cvStopLoop()
|
||||
{
|
||||
CV_NO_GUI_ERROR("cvStopLoop");
|
||||
}
|
||||
|
||||
CV_IMPL void cvSaveWindowParameters(const char* )
|
||||
{
|
||||
CV_NO_GUI_ERROR("cvSaveWindowParameters");
|
||||
}
|
||||
|
||||
// CV_IMPL void cvLoadWindowParameterss(const char* name)
|
||||
// {
|
||||
// CV_NO_GUI_ERROR("cvLoadWindowParameters");
|
||||
// }
|
||||
|
||||
CV_IMPL int cvCreateButton(const char*, void (*)(int, void*), void*, int, int)
|
||||
{
|
||||
CV_NO_GUI_ERROR("cvCreateButton");
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif // NO_GUI
|
||||
|
||||
/* End of file. */
|
||||
|
@ -124,40 +124,120 @@ Qt::ConnectionType autoBlockingConnection() {
|
||||
: Qt::DirectConnection;
|
||||
}
|
||||
|
||||
CV_IMPL CvFont cvFontQt(const char* nameFont, int pointSize,CvScalar color,int weight,int style, int spacing)
|
||||
cv::QtFont cv::fontQt(const String& nameFont, int pointSize, Scalar color, int weight, int style, int spacing)
|
||||
{
|
||||
/*
|
||||
//nameFont <- only Qt
|
||||
//CvScalar color <- only Qt (blue_component, green_component, red\_component[, alpha_component])
|
||||
int font_face;//<- style in Qt
|
||||
const int* ascii;
|
||||
const int* greek;
|
||||
const int* cyrillic;
|
||||
float hscale, vscale;
|
||||
float shear;
|
||||
int thickness;//<- weight in Qt
|
||||
float dx;//spacing letter in Qt (0 default) in pixel
|
||||
int line_type;//<- pointSize in Qt
|
||||
*/
|
||||
CvFont f = {nameFont,color,style,NULL,NULL,NULL,0,0,0,weight, (float)spacing, pointSize};
|
||||
return f;
|
||||
QtFont res = {
|
||||
nameFont.c_str(), color, style, NULL, NULL, NULL, 0,0,0, weight, (float)spacing, pointSize
|
||||
};
|
||||
return res;
|
||||
}
|
||||
|
||||
void cv::addText( const Mat& img, const String& text, Point org, const QtFont& font)
|
||||
{
|
||||
|
||||
CV_IMPL void cvAddText(const CvArr* img, const char* text, CvPoint org, CvFont* font)
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
CvMat _img = cvMat(img);
|
||||
QMetaObject::invokeMethod(
|
||||
guiMainThread,
|
||||
"putText",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(void*, (void*)&_img),
|
||||
Q_ARG(QString,QString::fromUtf8(text.c_str())),
|
||||
Q_ARG(QPoint, QPoint(org.x,org.y)),
|
||||
Q_ARG(void*,(void*)&font)
|
||||
);
|
||||
}
|
||||
|
||||
void cv::addText( const Mat& img, const String& text, Point org, const String& nameFont,
|
||||
int pointSize, Scalar color, int weight, int style, int spacing)
|
||||
{
|
||||
cv::QtFont f = cv::fontQt(nameFont.c_str(), pointSize, cvScalar(color), weight, style, spacing);
|
||||
cv::addText(img, text, org, f);
|
||||
}
|
||||
|
||||
void cv::displayStatusBar(const String& name, const String& text, int delayms)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"putText",
|
||||
"displayStatusBar",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(void*, (void*) img),
|
||||
Q_ARG(QString,QString::fromUtf8(text)),
|
||||
Q_ARG(QPoint, QPoint(org.x,org.y)),
|
||||
Q_ARG(void*,(void*) font));
|
||||
Q_ARG(QString, QString(name.c_str())),
|
||||
Q_ARG(QString, QString(text.c_str())),
|
||||
Q_ARG(int, delayms));
|
||||
|
||||
}
|
||||
|
||||
void cv::displayOverlay(const String& name, const String& text, int delayms)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"displayInfo",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(QString, QString(name.c_str())),
|
||||
Q_ARG(QString, QString(text.c_str())),
|
||||
Q_ARG(int, delayms));
|
||||
}
|
||||
|
||||
//Yannick Verdie
|
||||
//This function is experimental and some functions (such as cvSet/getWindowProperty will not work)
|
||||
//We recommend not using this function for now
|
||||
int cv::startLoop(int (*pt2Func)(int argc, char *argv[]), int argc, char* argv[])
|
||||
{
|
||||
multiThreads = true;
|
||||
QFuture<int> future = QtConcurrent::run(pt2Func, argc, argv);
|
||||
return guiMainThread->start();
|
||||
}
|
||||
|
||||
void cv::stopLoop()
|
||||
{
|
||||
qApp->exit();
|
||||
}
|
||||
|
||||
void cv::saveWindowParameters(const String& windowName)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"saveWindowParameters",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(QString, QString(windowName.c_str())));
|
||||
}
|
||||
|
||||
void cv::loadWindowParameters(const String& windowName)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"loadWindowParameters",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(QString, QString(windowName.c_str())));
|
||||
|
||||
}
|
||||
|
||||
int cv::createButton(const String& button_name, ButtonCallback on_change, void* userdata, int button_type , bool initial_button_state )
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"addButton",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(QString, QString(button_name.c_str())),
|
||||
Q_ARG(int, button_type),
|
||||
Q_ARG(int, initial_button_state ? 1 : 0),
|
||||
Q_ARG(void*, (void*)on_change),
|
||||
Q_ARG(void*, userdata));
|
||||
|
||||
return 1;//dummy value
|
||||
}
|
||||
|
||||
double cvGetRatioWindow_QT(const char* name)
|
||||
{
|
||||
@ -287,60 +367,7 @@ double cvGetModeWindow_QT(const char* name)
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvDisplayOverlay(const char* name, const char* text, int delayms)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"displayInfo",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(QString, QString(name)),
|
||||
Q_ARG(QString, QString(text)),
|
||||
Q_ARG(int, delayms));
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvSaveWindowParameters(const char* name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"saveWindowParameters",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(QString, QString(name)));
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvLoadWindowParameters(const char* name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"loadWindowParameters",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(QString, QString(name)));
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvDisplayStatusBar(const char* name, const char* text, int delayms)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"displayStatusBar",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(QString, QString(name)),
|
||||
Q_ARG(QString, QString(text)),
|
||||
Q_ARG(int, delayms));
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvWaitKey(int delay)
|
||||
int waitKeyImpl(int delay)
|
||||
{
|
||||
int result = -1;
|
||||
|
||||
@ -414,24 +441,6 @@ CV_IMPL int cvWaitKey(int delay)
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
//Yannick Verdie
|
||||
//This function is experimental and some functions (such as cvSet/getWindowProperty will not work)
|
||||
//We recommend not using this function for now
|
||||
CV_IMPL int cvStartLoop(int (*pt2Func)(int argc, char *argv[]), int argc, char* argv[])
|
||||
{
|
||||
multiThreads = true;
|
||||
QFuture<int> future = QtConcurrent::run(pt2Func, argc, argv);
|
||||
return guiMainThread->start();
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvStopLoop()
|
||||
{
|
||||
qApp->exit();
|
||||
}
|
||||
|
||||
|
||||
static CvWindow* icvFindWindowByName(QString name)
|
||||
{
|
||||
CvWindow* window = 0;
|
||||
@ -494,10 +503,10 @@ static CvTrackbar* icvFindTrackBarByName(const char* name_trackbar, const char*
|
||||
if (!w)
|
||||
CV_Error(CV_StsNullPtr, "NULL window handler");
|
||||
|
||||
if (w->param_gui_mode == CV_GUI_NORMAL)
|
||||
if (w->param_gui_mode == cv::WINDOW_GUI_NORMAL)
|
||||
return (CvTrackbar*) icvFindBarByName(w->myBarLayout, nameQt, type_CvTrackbar);
|
||||
|
||||
if (w->param_gui_mode == CV_GUI_EXPANDED)
|
||||
if (w->param_gui_mode == cv::WINDOW_GUI_EXPANDED)
|
||||
{
|
||||
CvBar* result = icvFindBarByName(w->myBarLayout, nameQt, type_CvTrackbar);
|
||||
|
||||
@ -545,15 +554,7 @@ static int icvInitSystem(int* c, char** v)
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvInitSystem(int, char**)
|
||||
{
|
||||
icvInitSystem(¶meterSystemC, parameterSystemV);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvNamedWindow(const char* name, int flags)
|
||||
int namedWindowImpl(const char* name, int flags)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
guiMainThread = new GuiReceiver;
|
||||
@ -572,7 +573,7 @@ CV_IMPL int cvNamedWindow(const char* name, int flags)
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvDestroyWindow(const char* name)
|
||||
void destroyWindowImpl(const char* name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
@ -584,7 +585,7 @@ CV_IMPL void cvDestroyWindow(const char* name)
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvDestroyAllWindows()
|
||||
void destroyAllWindowsImpl()
|
||||
{
|
||||
if (!guiMainThread)
|
||||
return;
|
||||
@ -595,25 +596,7 @@ CV_IMPL void cvDestroyAllWindows()
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void* cvGetWindowHandle(const char* name)
|
||||
{
|
||||
if (!name)
|
||||
CV_Error( CV_StsNullPtr, "NULL name string" );
|
||||
|
||||
return (void*) icvFindWindowByName(QLatin1String(name));
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL const char* cvGetWindowName(void* window_handle)
|
||||
{
|
||||
if( !window_handle )
|
||||
CV_Error( CV_StsNullPtr, "NULL window handler" );
|
||||
|
||||
return ((CvWindow*)window_handle)->objectName().toLatin1().data();
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvMoveWindow(const char* name, int x, int y)
|
||||
void moveWindowImpl(const char* name, int x, int y)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
@ -625,7 +608,7 @@ CV_IMPL void cvMoveWindow(const char* name, int x, int y)
|
||||
Q_ARG(int, y));
|
||||
}
|
||||
|
||||
CV_IMPL void cvResizeWindow(const char* name, int width, int height)
|
||||
void resizeWindowImpl(const char* name, int width, int height)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
@ -638,7 +621,7 @@ CV_IMPL void cvResizeWindow(const char* name, int width, int height)
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvCreateTrackbar2(const char* name_bar, const char* window_name, int* val, int count, CvTrackbarCallback2 on_notify, void* userdata)
|
||||
int createTrackbar2Impl(const char* name_bar, const char* window_name, int* val, int count, CvTrackbarCallback2 on_notify, void* userdata)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
@ -656,53 +639,7 @@ CV_IMPL int cvCreateTrackbar2(const char* name_bar, const char* window_name, int
|
||||
return 1; //dummy value
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvStartWindowThread()
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvCreateTrackbar(const char* name_bar, const char* window_name, int* value, int count, CvTrackbarCallback on_change)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"addSlider",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(QString, QString(name_bar)),
|
||||
Q_ARG(QString, QString(window_name)),
|
||||
Q_ARG(void*, (void*)value),
|
||||
Q_ARG(int, count),
|
||||
Q_ARG(void*, (void*)on_change));
|
||||
|
||||
return 1; //dummy value
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvCreateButton(const char* button_name, CvButtonCallback on_change, void* userdata, int button_type, int initial_button_state)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
if (initial_button_state < 0 || initial_button_state > 1)
|
||||
return 0;
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"addButton",
|
||||
autoBlockingConnection(),
|
||||
Q_ARG(QString, QString(button_name)),
|
||||
Q_ARG(int, button_type),
|
||||
Q_ARG(int, initial_button_state),
|
||||
Q_ARG(void*, (void*)on_change),
|
||||
Q_ARG(void*, userdata));
|
||||
|
||||
return 1;//dummy value
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvGetTrackbarPos(const char* name_bar, const char* window_name)
|
||||
int getTrackbarPosImpl(const char* name_bar, const char* window_name)
|
||||
{
|
||||
int result = -1;
|
||||
|
||||
@ -715,7 +652,7 @@ CV_IMPL int cvGetTrackbarPos(const char* name_bar, const char* window_name)
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvSetTrackbarPos(const char* name_bar, const char* window_name, int pos)
|
||||
void setTrackbarPosImpl(const char* name_bar, const char* window_name, int pos)
|
||||
{
|
||||
QPointer<CvTrackbar> t = icvFindTrackBarByName(name_bar, window_name);
|
||||
|
||||
@ -724,7 +661,7 @@ CV_IMPL void cvSetTrackbarPos(const char* name_bar, const char* window_name, int
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvSetTrackbarMax(const char* name_bar, const char* window_name, int maxval)
|
||||
void setTrackbarMaxImpl(const char* name_bar, const char* window_name, int maxval)
|
||||
{
|
||||
QPointer<CvTrackbar> t = icvFindTrackBarByName(name_bar, window_name);
|
||||
if (t)
|
||||
@ -734,7 +671,7 @@ CV_IMPL void cvSetTrackbarMax(const char* name_bar, const char* window_name, int
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvSetTrackbarMin(const char* name_bar, const char* window_name, int minval)
|
||||
void setTrackbarMinImpl(const char* name_bar, const char* window_name, int minval)
|
||||
{
|
||||
QPointer<CvTrackbar> t = icvFindTrackBarByName(name_bar, window_name);
|
||||
if (t)
|
||||
@ -745,7 +682,7 @@ CV_IMPL void cvSetTrackbarMin(const char* name_bar, const char* window_name, int
|
||||
|
||||
|
||||
/* assign callback for mouse events */
|
||||
CV_IMPL void cvSetMouseCallback(const char* window_name, CvMouseCallback on_mouse, void* param)
|
||||
void setMouseCallbackImpl(const char* window_name, CvMouseCallback on_mouse, void* param)
|
||||
{
|
||||
QPointer<CvWindow> w = icvFindWindowByName(QLatin1String(window_name));
|
||||
|
||||
@ -757,7 +694,7 @@ CV_IMPL void cvSetMouseCallback(const char* window_name, CvMouseCallback on_mous
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvShowImage(const char* name, const CvArr* arr)
|
||||
void showImageImpl(const char* name, const CvArr* arr)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
guiMainThread = new GuiReceiver;
|
||||
@ -777,7 +714,7 @@ CV_IMPL void cvShowImage(const char* name, const CvArr* arr)
|
||||
|
||||
#ifdef HAVE_QT_OPENGL
|
||||
|
||||
CV_IMPL void cvSetOpenGlDrawCallback(const char* window_name, CvOpenGlDrawCallback callback, void* userdata)
|
||||
void setOpenGLDrawCallbackImpl(const char* window_name, CvOpenGlDrawCallback callback, void* userdata)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
@ -791,7 +728,7 @@ CV_IMPL void cvSetOpenGlDrawCallback(const char* window_name, CvOpenGlDrawCallba
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvSetOpenGlContext(const char* window_name)
|
||||
void setOpenGLContextImpl(const char* window_name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
@ -803,7 +740,7 @@ CV_IMPL void cvSetOpenGlContext(const char* window_name)
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvUpdateWindow(const char* window_name)
|
||||
void updateWindowImpl(const char* window_name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
@ -889,7 +826,7 @@ void GuiReceiver::putText(void* arr, QString text, QPoint org, void* arg2)
|
||||
|
||||
QImage qimg(mat->data.ptr, mat->cols, mat->rows, mat->step, QImage::Format_RGB888);
|
||||
|
||||
CvFont* font = (CvFont*)arg2;
|
||||
QtFont* font = (QtFont*)arg2;
|
||||
|
||||
QPainter qp(&qimg);
|
||||
if (font)
|
||||
@ -989,7 +926,7 @@ void GuiReceiver::setWindowTitle(QString name, QString title)
|
||||
|
||||
if (!w)
|
||||
{
|
||||
cvNamedWindow(name.toLatin1().data());
|
||||
namedWindowImpl(name.toLatin1().data());
|
||||
w = icvFindWindowByName(name);
|
||||
}
|
||||
|
||||
@ -1016,7 +953,7 @@ double GuiReceiver::isFullScreen(QString name)
|
||||
if (!w)
|
||||
return -1;
|
||||
|
||||
return w->isFullScreen() ? CV_WINDOW_FULLSCREEN : CV_WINDOW_NORMAL;
|
||||
return w->isFullScreen() ? cv::WINDOW_FULLSCREEN : cv::WINDOW_NORMAL;
|
||||
}
|
||||
|
||||
|
||||
@ -1046,7 +983,7 @@ void GuiReceiver::createWindow(QString name, int flags)
|
||||
|
||||
nb_windows++;
|
||||
new CvWindow(name, flags);
|
||||
cvWaitKey(1);
|
||||
waitKeyImpl(1);
|
||||
}
|
||||
|
||||
|
||||
@ -1080,7 +1017,7 @@ void GuiReceiver::showImage(QString name, void* arr)
|
||||
|
||||
if (!w) //as observed in the previous implementation (W32, GTK), create a new window is the pointer returned is null
|
||||
{
|
||||
cvNamedWindow(name.toLatin1().data());
|
||||
namedWindowImpl(name.toLatin1().data());
|
||||
w = icvFindWindowByName(name);
|
||||
}
|
||||
|
||||
@ -1228,7 +1165,7 @@ void GuiReceiver::addButton(QString button_name, int button_type, int initial_bu
|
||||
// unset buttonbar flag
|
||||
button_type = button_type & ~cv::QT_NEW_BUTTONBAR;
|
||||
|
||||
b->addButton(button_name, (CvButtonCallback) on_change, userdata, button_type, initial_button_state);
|
||||
b->addButton(button_name, (ButtonCallback) on_change, userdata, button_type, initial_button_state);
|
||||
}
|
||||
|
||||
|
||||
@ -1491,7 +1428,7 @@ void CvButtonbar::setLabel()
|
||||
}
|
||||
|
||||
|
||||
void CvButtonbar::addButton(QString name, CvButtonCallback call, void* userdata, int button_type, int initial_button_state)
|
||||
void CvButtonbar::addButton(QString name, cv::ButtonCallback call, void* userdata, int button_type, int initial_button_state)
|
||||
{
|
||||
QString button_name = name;
|
||||
|
||||
@ -1500,13 +1437,13 @@ void CvButtonbar::addButton(QString name, CvButtonCallback call, void* userdata,
|
||||
|
||||
QPointer<QAbstractButton> button;
|
||||
|
||||
if (button_type == CV_PUSH_BUTTON)
|
||||
if (button_type == cv::QT_PUSH_BUTTON)
|
||||
button = (QAbstractButton*) new CvPushButton(this, button_name,call, userdata);
|
||||
|
||||
if (button_type == CV_CHECKBOX)
|
||||
if (button_type == cv::QT_CHECKBOX)
|
||||
button = (QAbstractButton*) new CvCheckBox(this, button_name,call, userdata, initial_button_state);
|
||||
|
||||
if (button_type == CV_RADIOBOX)
|
||||
if (button_type == cv::QT_RADIOBOX)
|
||||
{
|
||||
button = (QAbstractButton*) new CvRadioButton(this, button_name,call, userdata, initial_button_state);
|
||||
group_button->addButton(button);
|
||||
@ -1514,7 +1451,7 @@ void CvButtonbar::addButton(QString name, CvButtonCallback call, void* userdata,
|
||||
|
||||
if (button)
|
||||
{
|
||||
if (button_type == CV_PUSH_BUTTON)
|
||||
if (button_type == cv::QT_PUSH_BUTTON)
|
||||
QObject::connect(button, SIGNAL(clicked(bool)), button, SLOT(callCallBack(bool)));
|
||||
else
|
||||
QObject::connect(button, SIGNAL(toggled(bool)), button, SLOT(callCallBack(bool)));
|
||||
@ -1529,7 +1466,7 @@ void CvButtonbar::addButton(QString name, CvButtonCallback call, void* userdata,
|
||||
|
||||
|
||||
//buttons here
|
||||
CvPushButton::CvPushButton(CvButtonbar* arg1, QString arg2, CvButtonCallback arg3, void* arg4)
|
||||
CvPushButton::CvPushButton(CvButtonbar* arg1, QString arg2, ButtonCallback arg3, void* arg4)
|
||||
{
|
||||
myparent = arg1;
|
||||
button_name = arg2;
|
||||
@ -1551,7 +1488,7 @@ void CvPushButton::callCallBack(bool checked)
|
||||
}
|
||||
|
||||
|
||||
CvCheckBox::CvCheckBox(CvButtonbar* arg1, QString arg2, CvButtonCallback arg3, void* arg4, int initial_button_state)
|
||||
CvCheckBox::CvCheckBox(CvButtonbar* arg1, QString arg2, ButtonCallback arg3, void* arg4, int initial_button_state)
|
||||
{
|
||||
myparent = arg1;
|
||||
button_name = arg2;
|
||||
@ -1574,7 +1511,7 @@ void CvCheckBox::callCallBack(bool checked)
|
||||
}
|
||||
|
||||
|
||||
CvRadioButton::CvRadioButton(CvButtonbar* arg1, QString arg2, CvButtonCallback arg3, void* arg4, int initial_button_state)
|
||||
CvRadioButton::CvRadioButton(CvButtonbar* arg1, QString arg2, ButtonCallback arg3, void* arg4, int initial_button_state)
|
||||
{
|
||||
myparent = arg1;
|
||||
button_name = arg2;
|
||||
@ -1701,19 +1638,19 @@ CvWindow::CvWindow(QString name, int arg2)
|
||||
|
||||
//3: my view
|
||||
#ifndef HAVE_QT_OPENGL
|
||||
if (arg2 & CV_WINDOW_OPENGL)
|
||||
if (arg2 & cv::WINDOW_OPENGL)
|
||||
CV_Error( CV_OpenGlNotSupported, "Library was built without OpenGL support" );
|
||||
mode_display = CV_MODE_NORMAL;
|
||||
#else
|
||||
mode_display = arg2 & CV_WINDOW_OPENGL ? CV_MODE_OPENGL : CV_MODE_NORMAL;
|
||||
mode_display = arg2 & cv::WINDOW_OPENGL ? CV_MODE_OPENGL : CV_MODE_NORMAL;
|
||||
if (mode_display == CV_MODE_OPENGL)
|
||||
param_gui_mode = CV_GUI_NORMAL;
|
||||
param_gui_mode = cv::WINDOW_GUI_NORMAL;
|
||||
#endif
|
||||
createView();
|
||||
|
||||
//4: shortcuts and actions
|
||||
//5: toolBar and statusbar
|
||||
if (param_gui_mode == CV_GUI_EXPANDED)
|
||||
if (param_gui_mode == cv::WINDOW_GUI_EXPANDED)
|
||||
{
|
||||
createActions();
|
||||
createShortcuts();
|
||||
@ -1836,13 +1773,13 @@ void CvWindow::setPropWindow(int flags)
|
||||
|
||||
switch(flags)
|
||||
{
|
||||
case CV_WINDOW_NORMAL:
|
||||
case cv::WINDOW_NORMAL:
|
||||
myGlobalLayout->setSizeConstraint(QLayout::SetMinAndMaxSize);
|
||||
param_flags = flags;
|
||||
|
||||
break;
|
||||
|
||||
case CV_WINDOW_AUTOSIZE:
|
||||
case cv::WINDOW_AUTOSIZE:
|
||||
myGlobalLayout->setSizeConstraint(QLayout::SetFixedSize);
|
||||
param_flags = flags;
|
||||
|
||||
@ -1855,14 +1792,14 @@ void CvWindow::setPropWindow(int flags)
|
||||
|
||||
void CvWindow::toggleFullScreen(int flags)
|
||||
{
|
||||
if (isFullScreen() && flags == CV_WINDOW_NORMAL)
|
||||
if (isFullScreen() && flags == cv::WINDOW_NORMAL)
|
||||
{
|
||||
showTools();
|
||||
showNormal();
|
||||
return;
|
||||
}
|
||||
|
||||
if (!isFullScreen() && flags == CV_WINDOW_FULLSCREEN)
|
||||
if (!isFullScreen() && flags == cv::WINDOW_FULLSCREEN)
|
||||
{
|
||||
hideTools();
|
||||
showFullScreen();
|
||||
@ -2012,9 +1949,9 @@ void CvWindow::createGlobalLayout()
|
||||
#endif
|
||||
setMinimumSize(1, 1);
|
||||
|
||||
if (param_flags == CV_WINDOW_AUTOSIZE)
|
||||
if (param_flags == cv::WINDOW_AUTOSIZE)
|
||||
myGlobalLayout->setSizeConstraint(QLayout::SetFixedSize);
|
||||
else if (param_flags == CV_WINDOW_NORMAL)
|
||||
else if (param_flags == cv::WINDOW_NORMAL)
|
||||
myGlobalLayout->setSizeConstraint(QLayout::SetMinAndMaxSize);
|
||||
}
|
||||
|
||||
@ -2463,23 +2400,23 @@ void OCVViewPort::icvmouseHandler(QMouseEvent* evnt, type_mouse_event category,
|
||||
// icvmouseHandler called with flags == 0 where it really need.
|
||||
//flags = 0;
|
||||
if(modifiers & Qt::ShiftModifier)
|
||||
flags |= CV_EVENT_FLAG_SHIFTKEY;
|
||||
flags |= cv::EVENT_FLAG_SHIFTKEY;
|
||||
if(modifiers & Qt::ControlModifier)
|
||||
flags |= CV_EVENT_FLAG_CTRLKEY;
|
||||
flags |= cv::EVENT_FLAG_CTRLKEY;
|
||||
if(modifiers & Qt::AltModifier)
|
||||
flags |= CV_EVENT_FLAG_ALTKEY;
|
||||
flags |= cv::EVENT_FLAG_ALTKEY;
|
||||
|
||||
if(buttons & Qt::LeftButton)
|
||||
flags |= CV_EVENT_FLAG_LBUTTON;
|
||||
flags |= cv::EVENT_FLAG_LBUTTON;
|
||||
if(buttons & Qt::RightButton)
|
||||
flags |= CV_EVENT_FLAG_RBUTTON;
|
||||
flags |= cv::EVENT_FLAG_RBUTTON;
|
||||
if(buttons & Qt_MiddleButton)
|
||||
flags |= CV_EVENT_FLAG_MBUTTON;
|
||||
flags |= cv::EVENT_FLAG_MBUTTON;
|
||||
|
||||
if (cv_event == -1) {
|
||||
if (category == mouse_wheel) {
|
||||
QWheelEvent *we = (QWheelEvent *) evnt;
|
||||
cv_event = ((wheelEventOrientation(we) == Qt::Vertical) ? CV_EVENT_MOUSEWHEEL : CV_EVENT_MOUSEHWHEEL);
|
||||
cv_event = ((wheelEventOrientation(we) == Qt::Vertical) ? cv::EVENT_MOUSEWHEEL : cv::EVENT_MOUSEHWHEEL);
|
||||
flags |= (wheelEventDelta(we) & 0xffff)<<16;
|
||||
return;
|
||||
}
|
||||
@ -2487,18 +2424,18 @@ void OCVViewPort::icvmouseHandler(QMouseEvent* evnt, type_mouse_event category,
|
||||
{
|
||||
case Qt::LeftButton:
|
||||
cv_event = tableMouseButtons[category][0];
|
||||
flags |= CV_EVENT_FLAG_LBUTTON;
|
||||
flags |= cv::EVENT_FLAG_LBUTTON;
|
||||
break;
|
||||
case Qt::RightButton:
|
||||
cv_event = tableMouseButtons[category][1];
|
||||
flags |= CV_EVENT_FLAG_RBUTTON;
|
||||
flags |= cv::EVENT_FLAG_RBUTTON;
|
||||
break;
|
||||
case Qt_MiddleButton:
|
||||
cv_event = tableMouseButtons[category][2];
|
||||
flags |= CV_EVENT_FLAG_MBUTTON;
|
||||
flags |= cv::EVENT_FLAG_MBUTTON;
|
||||
break;
|
||||
default:
|
||||
cv_event = CV_EVENT_MOUSEMOVE;
|
||||
cv_event = cv::EVENT_MOUSEMOVE;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -2603,7 +2540,7 @@ void DefaultViewPort::setRatio(int flags)
|
||||
return;
|
||||
|
||||
//if valid flags
|
||||
if (flags == CV_WINDOW_FREERATIO || flags == CV_WINDOW_KEEPRATIO)
|
||||
if (flags == cv::WINDOW_FREERATIO || flags == cv::WINDOW_KEEPRATIO)
|
||||
{
|
||||
centralWidget->param_ratio_mode = flags;
|
||||
param_keepRatio = flags;
|
||||
@ -2814,7 +2751,7 @@ void DefaultViewPort::resizeEvent(QResizeEvent* evnt)
|
||||
ratioX = width() / float(image2Draw_mat->cols);
|
||||
ratioY = height() / float(image2Draw_mat->rows);
|
||||
|
||||
if (param_keepRatio == CV_WINDOW_KEEPRATIO)//to keep the same aspect ratio
|
||||
if (param_keepRatio == cv::WINDOW_KEEPRATIO)//to keep the same aspect ratio
|
||||
{
|
||||
QSize newSize = QSize(image2Draw_mat->cols, image2Draw_mat->rows);
|
||||
newSize.scale(evnt->size(), Qt::KeepAspectRatio);
|
||||
|
@ -182,7 +182,7 @@ class CvButtonbar : public CvBar
|
||||
public:
|
||||
CvButtonbar(QWidget* arg, QString bar_name);
|
||||
|
||||
void addButton(QString button_name, CvButtonCallback call, void* userdata, int button_type, int initial_button_state);
|
||||
void addButton(QString button_name, cv::ButtonCallback call, void* userdata, int button_type, int initial_button_state);
|
||||
|
||||
private:
|
||||
void setLabel();
|
||||
@ -196,12 +196,12 @@ class CvPushButton : public QPushButton
|
||||
{
|
||||
Q_OBJECT
|
||||
public:
|
||||
CvPushButton(CvButtonbar* par, QString button_name, CvButtonCallback call, void* userdata);
|
||||
CvPushButton(CvButtonbar* par, QString button_name, cv::ButtonCallback call, void* userdata);
|
||||
|
||||
private:
|
||||
CvButtonbar* myparent;
|
||||
QString button_name ;
|
||||
CvButtonCallback callback;
|
||||
cv::ButtonCallback callback;
|
||||
void* userdata;
|
||||
|
||||
private slots:
|
||||
@ -213,12 +213,12 @@ class CvCheckBox : public QCheckBox
|
||||
{
|
||||
Q_OBJECT
|
||||
public:
|
||||
CvCheckBox(CvButtonbar* par, QString button_name, CvButtonCallback call, void* userdata, int initial_button_state);
|
||||
CvCheckBox(CvButtonbar* par, QString button_name, cv::ButtonCallback call, void* userdata, int initial_button_state);
|
||||
|
||||
private:
|
||||
CvButtonbar* myparent;
|
||||
QString button_name ;
|
||||
CvButtonCallback callback;
|
||||
cv::ButtonCallback callback;
|
||||
void* userdata;
|
||||
|
||||
private slots:
|
||||
@ -230,12 +230,12 @@ class CvRadioButton : public QRadioButton
|
||||
{
|
||||
Q_OBJECT
|
||||
public:
|
||||
CvRadioButton(CvButtonbar* par, QString button_name, CvButtonCallback call, void* userdata, int initial_button_state);
|
||||
CvRadioButton(CvButtonbar* par, QString button_name, cv::ButtonCallback call, void* userdata, int initial_button_state);
|
||||
|
||||
private:
|
||||
CvButtonbar* myparent;
|
||||
QString button_name ;
|
||||
CvButtonCallback callback;
|
||||
cv::ButtonCallback callback;
|
||||
void* userdata;
|
||||
|
||||
private slots:
|
||||
@ -297,7 +297,7 @@ class CvWindow : public CvWinModel
|
||||
{
|
||||
Q_OBJECT
|
||||
public:
|
||||
CvWindow(QString arg2, int flag = CV_WINDOW_NORMAL);
|
||||
CvWindow(QString arg2, int flag = cv::WINDOW_NORMAL);
|
||||
~CvWindow();
|
||||
|
||||
void setMouseCallBack(CvMouseCallback m, void* param);
|
||||
@ -384,10 +384,10 @@ private slots:
|
||||
|
||||
enum type_mouse_event { mouse_up = 0, mouse_down = 1, mouse_dbclick = 2, mouse_move = 3, mouse_wheel = 4 };
|
||||
static const int tableMouseButtons[][3]={
|
||||
{CV_EVENT_LBUTTONUP, CV_EVENT_RBUTTONUP, CV_EVENT_MBUTTONUP}, //mouse_up
|
||||
{CV_EVENT_LBUTTONDOWN, CV_EVENT_RBUTTONDOWN, CV_EVENT_MBUTTONDOWN}, //mouse_down
|
||||
{CV_EVENT_LBUTTONDBLCLK, CV_EVENT_RBUTTONDBLCLK, CV_EVENT_MBUTTONDBLCLK}, //mouse_dbclick
|
||||
{CV_EVENT_MOUSEMOVE, CV_EVENT_MOUSEMOVE, CV_EVENT_MOUSEMOVE}, //mouse_move
|
||||
{cv::EVENT_LBUTTONUP, cv::EVENT_RBUTTONUP, cv::EVENT_MBUTTONUP}, //mouse_up
|
||||
{cv::EVENT_LBUTTONDOWN, cv::EVENT_RBUTTONDOWN, cv::EVENT_MBUTTONDOWN}, //mouse_down
|
||||
{cv::EVENT_LBUTTONDBLCLK, cv::EVENT_RBUTTONDBLCLK, cv::EVENT_MBUTTONDBLCLK}, //mouse_dbclick
|
||||
{cv::EVENT_MOUSEMOVE, cv::EVENT_MOUSEMOVE, cv::EVENT_MOUSEMOVE}, //mouse_move
|
||||
{0, 0, 0} //mouse_wheel, to prevent exceptions in code
|
||||
};
|
||||
|
||||
|
@ -48,26 +48,21 @@
|
||||
#if TARGET_OS_IPHONE || TARGET_IPHONE_SIMULATOR
|
||||
/*** begin IPhone OS Stubs ***/
|
||||
// When highgui functions are referred to on iPhone OS, they will fail silently.
|
||||
CV_IMPL int cvInitSystem( int argc, char** argv) { return 0;}
|
||||
CV_IMPL int cvStartWindowThread(){ return 0; }
|
||||
CV_IMPL void cvDestroyWindow( const char* name) {}
|
||||
CV_IMPL void cvDestroyAllWindows( void ) {}
|
||||
CV_IMPL void cvShowImage( const char* name, const CvArr* arr) {}
|
||||
CV_IMPL void cvResizeWindow( const char* name, int width, int height) {}
|
||||
CV_IMPL void cvMoveWindow( const char* name, int x, int y){}
|
||||
CV_IMPL int cvCreateTrackbar (const char* trackbar_name,const char* window_name,
|
||||
int* val, int count, CvTrackbarCallback on_notify) {return 0;}
|
||||
CV_IMPL int cvCreateTrackbar2(const char* trackbar_name,const char* window_name,
|
||||
static int cocoa_InitSystem( int argc, char** argv) { return 0;}
|
||||
void destroyWindowImpl( const char* name) {}
|
||||
void destroyAllWindowsImpl( void ) {}
|
||||
void showImageImpl( const char* name, const CvArr* arr) {}
|
||||
void resizeWindowImpl( const char* name, int width, int height) {}
|
||||
void moveWindowImpl( const char* name, int x, int y){}
|
||||
int createTrackbar2Impl(const char* trackbar_name,const char* window_name,
|
||||
int* val, int count, CvTrackbarCallback2 on_notify2, void* userdata) {return 0;}
|
||||
CV_IMPL void cvSetMouseCallback( const char* name, CvMouseCallback function, void* info) {}
|
||||
CV_IMPL int cvGetTrackbarPos( const char* trackbar_name, const char* window_name ) {return 0;}
|
||||
CV_IMPL void cvSetTrackbarPos(const char* trackbar_name, const char* window_name, int pos) {}
|
||||
CV_IMPL void cvSetTrackbarMax(const char* trackbar_name, const char* window_name, int maxval) {}
|
||||
CV_IMPL void cvSetTrackbarMin(const char* trackbar_name, const char* window_name, int minval) {}
|
||||
CV_IMPL void* cvGetWindowHandle( const char* name ) {return NULL;}
|
||||
CV_IMPL const char* cvGetWindowName( void* window_handle ) {return NULL;}
|
||||
CV_IMPL int cvNamedWindow( const char* name, int flags ) {return 0; }
|
||||
CV_IMPL int cvWaitKey (int maxWait) {return 0;}
|
||||
void setMouseCallbackImpl( const char* name, CvMouseCallback function, void* info) {}
|
||||
int getTrackbarPosImpl( const char* trackbar_name, const char* window_name ) {return 0;}
|
||||
void setTrackbarPosImpl(const char* trackbar_name, const char* window_name, int pos) {}
|
||||
void setTrackbarMaxImpl(const char* trackbar_name, const char* window_name, int maxval) {}
|
||||
void setTrackbarMinImpl(const char* trackbar_name, const char* window_name, int minval) {}
|
||||
int namedWindowImpl( const char* name, int flags ) {return 0; }
|
||||
int waitKeyImpl (int maxWait) {return 0;}
|
||||
//*** end IphoneOS Stubs ***/
|
||||
#else
|
||||
|
||||
@ -137,16 +132,16 @@ static bool wasInitialized = false;
|
||||
//cout << "icvCocoaCleanup" << endl;
|
||||
if( application )
|
||||
{
|
||||
cvDestroyAllWindows();
|
||||
destroyAllWindowsImpl();
|
||||
//[application terminate:nil];
|
||||
application = 0;
|
||||
[pool release];
|
||||
}
|
||||
}*/
|
||||
|
||||
CV_IMPL int cvInitSystem( int , char** )
|
||||
static int cocoa_InitSystem( int , char** )
|
||||
{
|
||||
//cout << "cvInitSystem" << endl;
|
||||
//cout << "cocoa_InitSystem" << endl;
|
||||
wasInitialized = true;
|
||||
|
||||
pool = [[NSAutoreleasePool alloc] init];
|
||||
@ -182,17 +177,11 @@ static CVWindow *cvGetWindow(const char *name) {
|
||||
return retval;
|
||||
}
|
||||
|
||||
CV_IMPL int cvStartWindowThread()
|
||||
{
|
||||
//cout << "cvStartWindowThread" << endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
CV_IMPL void cvDestroyWindow( const char* name)
|
||||
void destroyWindowImpl( const char* name)
|
||||
{
|
||||
|
||||
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
|
||||
//cout << "cvDestroyWindow" << endl;
|
||||
//cout << "destroyWindowImpl" << endl;
|
||||
CVWindow *window = cvGetWindow(name);
|
||||
if(window) {
|
||||
[window close];
|
||||
@ -202,26 +191,26 @@ CV_IMPL void cvDestroyWindow( const char* name)
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvDestroyAllWindows( void )
|
||||
void destroyAllWindowsImpl( void )
|
||||
{
|
||||
//cout << "cvDestroyAllWindows" << endl;
|
||||
//cout << "destroyAllWindowsImpl" << endl;
|
||||
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
|
||||
NSDictionary* list = [NSDictionary dictionaryWithDictionary:windows];
|
||||
for(NSString *key in list) {
|
||||
cvDestroyWindow([key cStringUsingEncoding:NSASCIIStringEncoding]);
|
||||
destroyWindowImpl([key cStringUsingEncoding:NSASCIIStringEncoding]);
|
||||
}
|
||||
[localpool drain];
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvShowImage( const char* name, const CvArr* arr)
|
||||
void showImageImpl( const char* name, const CvArr* arr)
|
||||
{
|
||||
//cout << "cvShowImage" << endl;
|
||||
//cout << "showImageImpl" << endl;
|
||||
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
|
||||
CVWindow *window = cvGetWindow(name);
|
||||
if(!window)
|
||||
{
|
||||
cvNamedWindow(name, CV_WINDOW_AUTOSIZE);
|
||||
namedWindowImpl(name, cv::WINDOW_AUTOSIZE);
|
||||
window = cvGetWindow(name);
|
||||
}
|
||||
|
||||
@ -276,10 +265,10 @@ CV_IMPL void cvShowImage( const char* name, const CvArr* arr)
|
||||
[localpool drain];
|
||||
}
|
||||
|
||||
CV_IMPL void cvResizeWindow( const char* name, int width, int height)
|
||||
void resizeWindowImpl( const char* name, int width, int height)
|
||||
{
|
||||
|
||||
//cout << "cvResizeWindow" << endl;
|
||||
//cout << "resizeWindowImpl" << endl;
|
||||
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
|
||||
CVWindow *window = cvGetWindow(name);
|
||||
if(window && ![window autosize]) {
|
||||
@ -290,9 +279,9 @@ CV_IMPL void cvResizeWindow( const char* name, int width, int height)
|
||||
[localpool drain];
|
||||
}
|
||||
|
||||
CV_IMPL void cvMoveWindow( const char* name, int x, int y)
|
||||
void moveWindowImpl( const char* name, int x, int y)
|
||||
{
|
||||
CV_FUNCNAME("cvMoveWindow");
|
||||
CV_FUNCNAME("moveWindowImpl");
|
||||
__BEGIN__;
|
||||
|
||||
NSAutoreleasePool* localpool1 = [[NSAutoreleasePool alloc] init];
|
||||
@ -300,7 +289,7 @@ CV_IMPL void cvMoveWindow( const char* name, int x, int y)
|
||||
|
||||
if(name == NULL)
|
||||
CV_ERROR( CV_StsNullPtr, "NULL window name" );
|
||||
//cout << "cvMoveWindow"<< endl;
|
||||
//cout << "moveWindowImpl"<< endl;
|
||||
window = cvGetWindow(name);
|
||||
if(window) {
|
||||
if([window firstContent]) {
|
||||
@ -317,12 +306,12 @@ CV_IMPL void cvMoveWindow( const char* name, int x, int y)
|
||||
__END__;
|
||||
}
|
||||
|
||||
CV_IMPL int cvCreateTrackbar (const char* trackbar_name,
|
||||
static int cocoa_CreateTrackbar (const char* trackbar_name,
|
||||
const char* window_name,
|
||||
int* val, int count,
|
||||
CvTrackbarCallback on_notify)
|
||||
{
|
||||
CV_FUNCNAME("cvCreateTrackbar");
|
||||
CV_FUNCNAME("cocoa_CreateTrackbar");
|
||||
|
||||
|
||||
int result = 0;
|
||||
@ -336,7 +325,7 @@ CV_IMPL int cvCreateTrackbar (const char* trackbar_name,
|
||||
if(window_name == NULL)
|
||||
CV_ERROR( CV_StsNullPtr, "NULL window name" );
|
||||
|
||||
//cout << "cvCreateTrackbar" << endl ;
|
||||
//cout << "cocoa_CreateTrackbar" << endl ;
|
||||
window = cvGetWindow(window_name);
|
||||
if(window) {
|
||||
[window createSliderWithName:trackbar_name
|
||||
@ -351,15 +340,15 @@ CV_IMPL int cvCreateTrackbar (const char* trackbar_name,
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvCreateTrackbar2(const char* trackbar_name,
|
||||
int createTrackbar2Impl(const char* trackbar_name,
|
||||
const char* window_name,
|
||||
int* val, int count,
|
||||
CvTrackbarCallback2 on_notify2,
|
||||
void* userdata)
|
||||
{
|
||||
//cout <<"cvCreateTrackbar2" << endl;
|
||||
//cout <<"createTrackbar2Impl" << endl;
|
||||
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
|
||||
int res = cvCreateTrackbar(trackbar_name, window_name, val, count, NULL);
|
||||
int res = cocoa_CreateTrackbar(trackbar_name, window_name, val, count, NULL);
|
||||
if(res) {
|
||||
CVWindow *window = cvGetWindow(window_name);
|
||||
if (window && [window respondsToSelector:@selector(sliders)]) {
|
||||
@ -373,15 +362,14 @@ CV_IMPL int cvCreateTrackbar2(const char* trackbar_name,
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvSetMouseCallback( const char* name, CvMouseCallback function, void* info)
|
||||
void setMouseCallbackImpl( const char* name, CvMouseCallback function, void* info)
|
||||
{
|
||||
CV_FUNCNAME("cvSetMouseCallback");
|
||||
CV_FUNCNAME("setMouseCallbackImpl");
|
||||
|
||||
CVWindow *window = nil;
|
||||
NSAutoreleasePool* localpool3 = nil;
|
||||
__BEGIN__;
|
||||
//cout << "cvSetMouseCallback" << endl;
|
||||
//cout << "setMouseCallbackImpl" << endl;
|
||||
|
||||
if (localpool3 != nil) [localpool3 drain];
|
||||
localpool3 = [[NSAutoreleasePool alloc] init];
|
||||
@ -399,16 +387,16 @@ cvSetMouseCallback( const char* name, CvMouseCallback function, void* info)
|
||||
__END__;
|
||||
}
|
||||
|
||||
CV_IMPL int cvGetTrackbarPos( const char* trackbar_name, const char* window_name )
|
||||
int getTrackbarPosImpl( const char* trackbar_name, const char* window_name )
|
||||
{
|
||||
CV_FUNCNAME("cvGetTrackbarPos");
|
||||
CV_FUNCNAME("getTrackbarPosImpl");
|
||||
|
||||
CVWindow *window = nil;
|
||||
int pos = -1;
|
||||
NSAutoreleasePool* localpool4 = nil;
|
||||
__BEGIN__;
|
||||
|
||||
//cout << "cvGetTrackbarPos" << endl;
|
||||
//cout << "getTrackbarPosImpl" << endl;
|
||||
if(trackbar_name == NULL || window_name == NULL)
|
||||
CV_ERROR( CV_StsNullPtr, "NULL trackbar or window name" );
|
||||
|
||||
@ -427,16 +415,16 @@ cvSetMouseCallback( const char* name, CvMouseCallback function, void* info)
|
||||
return pos;
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarPos(const char* trackbar_name, const char* window_name, int pos)
|
||||
void setTrackbarPosImpl(const char* trackbar_name, const char* window_name, int pos)
|
||||
{
|
||||
CV_FUNCNAME("cvSetTrackbarPos");
|
||||
CV_FUNCNAME("setTrackbarPosImpl");
|
||||
|
||||
CVWindow *window = nil;
|
||||
CVSlider *slider = nil;
|
||||
NSAutoreleasePool* localpool5 = nil;
|
||||
|
||||
__BEGIN__;
|
||||
//cout << "cvSetTrackbarPos" << endl;
|
||||
//cout << "setTrackbarPosImpl" << endl;
|
||||
if(trackbar_name == NULL || window_name == NULL)
|
||||
CV_ERROR( CV_StsNullPtr, "NULL trackbar or window name" );
|
||||
|
||||
@ -458,16 +446,16 @@ CV_IMPL void cvSetTrackbarPos(const char* trackbar_name, const char* window_name
|
||||
__END__;
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarMax(const char* trackbar_name, const char* window_name, int maxval)
|
||||
void setTrackbarMaxImpl(const char* trackbar_name, const char* window_name, int maxval)
|
||||
{
|
||||
CV_FUNCNAME("cvSetTrackbarMax");
|
||||
CV_FUNCNAME("setTrackbarMaxImpl");
|
||||
|
||||
CVWindow *window = nil;
|
||||
CVSlider *slider = nil;
|
||||
NSAutoreleasePool* localpool5 = nil;
|
||||
|
||||
__BEGIN__;
|
||||
//cout << "cvSetTrackbarPos" << endl;
|
||||
//cout << "setTrackbarPosImpl" << endl;
|
||||
if(trackbar_name == NULL || window_name == NULL)
|
||||
CV_ERROR( CV_StsNullPtr, "NULL trackbar or window name" );
|
||||
|
||||
@ -490,9 +478,9 @@ CV_IMPL void cvSetTrackbarMax(const char* trackbar_name, const char* window_name
|
||||
__END__;
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarMin(const char* trackbar_name, const char* window_name, int minval)
|
||||
void setTrackbarMinImpl(const char* trackbar_name, const char* window_name, int minval)
|
||||
{
|
||||
CV_FUNCNAME("cvSetTrackbarMin");
|
||||
CV_FUNCNAME("setTrackbarMinImpl");
|
||||
|
||||
CVWindow *window = nil;
|
||||
CVSlider *slider = nil;
|
||||
@ -521,38 +509,17 @@ CV_IMPL void cvSetTrackbarMin(const char* trackbar_name, const char* window_name
|
||||
__END__;
|
||||
}
|
||||
|
||||
CV_IMPL void* cvGetWindowHandle( const char* name )
|
||||
{
|
||||
//cout << "cvGetWindowHandle" << endl;
|
||||
return cvGetWindow(name);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL const char* cvGetWindowName( void* window_handle )
|
||||
{
|
||||
//cout << "cvGetWindowName" << endl;
|
||||
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
|
||||
for(NSString *key in windows) {
|
||||
if([windows valueForKey:key] == window_handle) {
|
||||
[localpool drain];
|
||||
return [key UTF8String];
|
||||
}
|
||||
}
|
||||
[localpool drain];
|
||||
return 0;
|
||||
}
|
||||
|
||||
CV_IMPL int cvNamedWindow( const char* name, int flags )
|
||||
int namedWindowImpl( const char* name, int flags )
|
||||
{
|
||||
if( !wasInitialized )
|
||||
cvInitSystem(0, 0);
|
||||
cocoa_InitSystem(0, 0);
|
||||
|
||||
//cout << "cvNamedWindow" << endl;
|
||||
//cout << "namedWindowImpl" << endl;
|
||||
NSAutoreleasePool* localpool = [[NSAutoreleasePool alloc] init];
|
||||
CVWindow *window = cvGetWindow(name);
|
||||
if( window )
|
||||
{
|
||||
[window setAutosize:(flags == CV_WINDOW_AUTOSIZE)];
|
||||
[window setAutosize:(flags == cv::WINDOW_AUTOSIZE)];
|
||||
[localpool drain];
|
||||
return 0;
|
||||
}
|
||||
@ -590,7 +557,7 @@ CV_IMPL int cvNamedWindow( const char* name, int flags )
|
||||
[window setTitle:windowName];
|
||||
[window makeKeyAndOrderFront:nil];
|
||||
|
||||
[window setAutosize:(flags == CV_WINDOW_AUTOSIZE)];
|
||||
[window setAutosize:(flags == cv::WINDOW_AUTOSIZE)];
|
||||
|
||||
[windows setValue:window forKey:windowName];
|
||||
|
||||
@ -598,9 +565,9 @@ CV_IMPL int cvNamedWindow( const char* name, int flags )
|
||||
return [windows count]-1;
|
||||
}
|
||||
|
||||
CV_IMPL int cvWaitKey (int maxWait)
|
||||
int waitKeyImpl (int maxWait)
|
||||
{
|
||||
//cout << "cvWaitKey" << endl;
|
||||
//cout << "waitKeyImpl" << endl;
|
||||
int returnCode = -1;
|
||||
NSAutoreleasePool *localpool = [[NSAutoreleasePool alloc] init];
|
||||
double start = [[NSDate date] timeIntervalSince1970];
|
||||
@ -721,15 +688,15 @@ void cvSetModeWindow_COCOA( const char* name, double prop_value )
|
||||
localpool = [[NSAutoreleasePool alloc] init];
|
||||
|
||||
fullscreenOptions = [NSDictionary dictionaryWithObject:[NSNumber numberWithBool:YES] forKey:NSFullScreenModeSetting];
|
||||
if ( [[window contentView] isInFullScreenMode] && prop_value==CV_WINDOW_NORMAL )
|
||||
if ( [[window contentView] isInFullScreenMode] && prop_value==cv::WINDOW_NORMAL )
|
||||
{
|
||||
[[window contentView] exitFullScreenModeWithOptions:fullscreenOptions];
|
||||
window.status=CV_WINDOW_NORMAL;
|
||||
window.status=cv::WINDOW_NORMAL;
|
||||
}
|
||||
else if( ![[window contentView] isInFullScreenMode] && prop_value==CV_WINDOW_FULLSCREEN )
|
||||
else if( ![[window contentView] isInFullScreenMode] && prop_value==cv::WINDOW_FULLSCREEN )
|
||||
{
|
||||
[[window contentView] enterFullScreenMode:[NSScreen mainScreen] withOptions:fullscreenOptions];
|
||||
window.status=CV_WINDOW_FULLSCREEN;
|
||||
window.status=cv::WINDOW_FULLSCREEN;
|
||||
}
|
||||
|
||||
[localpool drain];
|
||||
@ -879,20 +846,20 @@ static NSSize constrainAspectRatio(NSSize base, NSSize constraint) {
|
||||
return;
|
||||
|
||||
int flags = 0;
|
||||
if([event modifierFlags] & NSShiftKeyMask) flags |= CV_EVENT_FLAG_SHIFTKEY;
|
||||
if([event modifierFlags] & NSControlKeyMask) flags |= CV_EVENT_FLAG_CTRLKEY;
|
||||
if([event modifierFlags] & NSAlternateKeyMask) flags |= CV_EVENT_FLAG_ALTKEY;
|
||||
if([event modifierFlags] & NSShiftKeyMask) flags |= cv::EVENT_FLAG_SHIFTKEY;
|
||||
if([event modifierFlags] & NSControlKeyMask) flags |= cv::EVENT_FLAG_CTRLKEY;
|
||||
if([event modifierFlags] & NSAlternateKeyMask) flags |= cv::EVENT_FLAG_ALTKEY;
|
||||
|
||||
if([event type] == NSLeftMouseDown) {[self cvSendMouseEvent:event type:CV_EVENT_LBUTTONDOWN flags:flags | CV_EVENT_FLAG_LBUTTON];}
|
||||
if([event type] == NSLeftMouseUp) {[self cvSendMouseEvent:event type:CV_EVENT_LBUTTONUP flags:flags | CV_EVENT_FLAG_LBUTTON];}
|
||||
if([event type] == NSRightMouseDown){[self cvSendMouseEvent:event type:CV_EVENT_RBUTTONDOWN flags:flags | CV_EVENT_FLAG_RBUTTON];}
|
||||
if([event type] == NSRightMouseUp) {[self cvSendMouseEvent:event type:CV_EVENT_RBUTTONUP flags:flags | CV_EVENT_FLAG_RBUTTON];}
|
||||
if([event type] == NSOtherMouseDown){[self cvSendMouseEvent:event type:CV_EVENT_MBUTTONDOWN flags:flags];}
|
||||
if([event type] == NSOtherMouseUp) {[self cvSendMouseEvent:event type:CV_EVENT_MBUTTONUP flags:flags];}
|
||||
if([event type] == NSMouseMoved) {[self cvSendMouseEvent:event type:CV_EVENT_MOUSEMOVE flags:flags];}
|
||||
if([event type] == NSLeftMouseDragged) {[self cvSendMouseEvent:event type:CV_EVENT_MOUSEMOVE flags:flags | CV_EVENT_FLAG_LBUTTON];}
|
||||
if([event type] == NSRightMouseDragged) {[self cvSendMouseEvent:event type:CV_EVENT_MOUSEMOVE flags:flags | CV_EVENT_FLAG_RBUTTON];}
|
||||
if([event type] == NSOtherMouseDragged) {[self cvSendMouseEvent:event type:CV_EVENT_MOUSEMOVE flags:flags | CV_EVENT_FLAG_MBUTTON];}
|
||||
if([event type] == NSLeftMouseDown) {[self cvSendMouseEvent:event type:cv::EVENT_LBUTTONDOWN flags:flags | cv::EVENT_FLAG_LBUTTON];}
|
||||
if([event type] == NSLeftMouseUp) {[self cvSendMouseEvent:event type:cv::EVENT_LBUTTONUP flags:flags | cv::EVENT_FLAG_LBUTTON];}
|
||||
if([event type] == NSRightMouseDown){[self cvSendMouseEvent:event type:cv::EVENT_RBUTTONDOWN flags:flags | cv::EVENT_FLAG_RBUTTON];}
|
||||
if([event type] == NSRightMouseUp) {[self cvSendMouseEvent:event type:cv::EVENT_RBUTTONUP flags:flags | cv::EVENT_FLAG_RBUTTON];}
|
||||
if([event type] == NSOtherMouseDown){[self cvSendMouseEvent:event type:cv::EVENT_MBUTTONDOWN flags:flags];}
|
||||
if([event type] == NSOtherMouseUp) {[self cvSendMouseEvent:event type:cv::EVENT_MBUTTONUP flags:flags];}
|
||||
if([event type] == NSMouseMoved) {[self cvSendMouseEvent:event type:cv::EVENT_MOUSEMOVE flags:flags];}
|
||||
if([event type] == NSLeftMouseDragged) {[self cvSendMouseEvent:event type:cv::EVENT_MOUSEMOVE flags:flags | cv::EVENT_FLAG_LBUTTON];}
|
||||
if([event type] == NSRightMouseDragged) {[self cvSendMouseEvent:event type:cv::EVENT_MOUSEMOVE flags:flags | cv::EVENT_FLAG_RBUTTON];}
|
||||
if([event type] == NSOtherMouseDragged) {[self cvSendMouseEvent:event type:cv::EVENT_MOUSEMOVE flags:flags | cv::EVENT_FLAG_MBUTTON];}
|
||||
}
|
||||
- (void)keyDown:(NSEvent *)theEvent {
|
||||
//cout << "keyDown" << endl;
|
||||
|
@ -71,6 +71,7 @@
|
||||
#endif
|
||||
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
#include "opencv2/core/utils/trace.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
using namespace cv;
|
||||
@ -150,7 +151,8 @@ void cvImageWidgetSetImage(CvImageWidget * widget, const CvArr *arr)
|
||||
CV_Assert(origin == 0);
|
||||
convertToShow(cv::cvarrToMat(arr), widget->original_image);
|
||||
if(widget->scaled_image){
|
||||
cvResize( widget->original_image, widget->scaled_image, CV_INTER_AREA );
|
||||
cv::Mat dst = cv::cvarrToMat(widget->scaled_image);
|
||||
cv::resize(cv::cvarrToMat(widget->original_image), dst, dst.size(), 0, 0, cv::INTER_AREA );
|
||||
}
|
||||
|
||||
// window does not refresh without this
|
||||
@ -268,7 +270,7 @@ cvImageWidget_get_preferred_width (GtkWidget *widget, gint *minimal_width, gint
|
||||
CvImageWidget * image_widget = CV_IMAGE_WIDGET( widget );
|
||||
|
||||
if(image_widget->original_image != NULL) {
|
||||
*minimal_width = (image_widget->flags & CV_WINDOW_AUTOSIZE) != CV_WINDOW_AUTOSIZE ?
|
||||
*minimal_width = (image_widget->flags & cv::WINDOW_AUTOSIZE) != cv::WINDOW_AUTOSIZE ?
|
||||
gdk_window_get_width(gtk_widget_get_window(widget)) : image_widget->original_image->cols;
|
||||
}
|
||||
else {
|
||||
@ -292,7 +294,7 @@ cvImageWidget_get_preferred_height (GtkWidget *widget, gint *minimal_height, gin
|
||||
CvImageWidget * image_widget = CV_IMAGE_WIDGET( widget );
|
||||
|
||||
if(image_widget->original_image != NULL) {
|
||||
*minimal_height = (image_widget->flags & CV_WINDOW_AUTOSIZE) != CV_WINDOW_AUTOSIZE ?
|
||||
*minimal_height = (image_widget->flags & cv::WINDOW_AUTOSIZE) != cv::WINDOW_AUTOSIZE ?
|
||||
gdk_window_get_height(gtk_widget_get_window(widget)) : image_widget->original_image->rows;
|
||||
}
|
||||
else {
|
||||
@ -316,9 +318,9 @@ cvImageWidget_size_request (GtkWidget *widget,
|
||||
CvImageWidget * image_widget = CV_IMAGE_WIDGET( widget );
|
||||
|
||||
//printf("cvImageWidget_size_request ");
|
||||
// the case the first time cvShowImage called or when AUTOSIZE
|
||||
// the case the first time showImageImpl called or when AUTOSIZE
|
||||
if( image_widget->original_image &&
|
||||
((image_widget->flags & CV_WINDOW_AUTOSIZE) ||
|
||||
((image_widget->flags & cv::WINDOW_AUTOSIZE) ||
|
||||
(image_widget->flags & CV_WINDOW_NO_IMAGE)))
|
||||
{
|
||||
//printf("original ");
|
||||
@ -331,7 +333,7 @@ cvImageWidget_size_request (GtkWidget *widget,
|
||||
requisition->width = image_widget->scaled_image->cols;
|
||||
requisition->height = image_widget->scaled_image->rows;
|
||||
}
|
||||
// the case before cvShowImage called
|
||||
// the case before showImageImpl called
|
||||
else{
|
||||
//printf("default ");
|
||||
requisition->width = 320;
|
||||
@ -347,7 +349,7 @@ static void cvImageWidget_set_size(GtkWidget * widget, int max_width, int max_he
|
||||
//printf("cvImageWidget_set_size %d %d\n", max_width, max_height);
|
||||
|
||||
// don't allow to set the size
|
||||
if(image_widget->flags & CV_WINDOW_AUTOSIZE) return;
|
||||
if(image_widget->flags & cv::WINDOW_AUTOSIZE) return;
|
||||
if(!image_widget->original_image) return;
|
||||
|
||||
CvSize scaled_image_size = cvImageWidget_calc_size( image_widget->original_image->cols,
|
||||
@ -386,7 +388,7 @@ cvImageWidget_size_allocate (GtkWidget *widget,
|
||||
image_widget = CV_IMAGE_WIDGET (widget);
|
||||
|
||||
|
||||
if( (image_widget->flags & CV_WINDOW_AUTOSIZE)==0 && image_widget->original_image ){
|
||||
if( (image_widget->flags & cv::WINDOW_AUTOSIZE)==0 && image_widget->original_image ){
|
||||
// (re) allocated scaled image
|
||||
if( image_widget->flags & CV_WINDOW_NO_IMAGE ){
|
||||
cvImageWidget_set_size( widget, image_widget->original_image->cols,
|
||||
@ -395,7 +397,10 @@ cvImageWidget_size_allocate (GtkWidget *widget,
|
||||
else{
|
||||
cvImageWidget_set_size( widget, allocation->width, allocation->height );
|
||||
}
|
||||
cvResize( image_widget->original_image, image_widget->scaled_image, CV_INTER_AREA );
|
||||
{
|
||||
cv::Mat dst = cv::cvarrToMat(image_widget->scaled_image);
|
||||
cv::resize( cv::cvarrToMat(image_widget->original_image), dst, dst.size(), 0, 0, cv::INTER_AREA );
|
||||
}
|
||||
}
|
||||
|
||||
if (gtk_widget_get_realized (widget))
|
||||
@ -403,7 +408,7 @@ cvImageWidget_size_allocate (GtkWidget *widget,
|
||||
image_widget = CV_IMAGE_WIDGET (widget);
|
||||
|
||||
if( image_widget->original_image &&
|
||||
((image_widget->flags & CV_WINDOW_AUTOSIZE) ||
|
||||
((image_widget->flags & cv::WINDOW_AUTOSIZE) ||
|
||||
(image_widget->flags & CV_WINDOW_NO_IMAGE)) )
|
||||
{
|
||||
#if defined (GTK_VERSION3)
|
||||
@ -620,7 +625,7 @@ std::vector< std::shared_ptr<CvWindow> >& getGTKWindows()
|
||||
return g_windows;
|
||||
}
|
||||
|
||||
CV_IMPL int cvInitSystem( int argc, char** argv )
|
||||
static int gtk_InitSystem( int argc, char** argv )
|
||||
{
|
||||
static int wasInitialized = 0;
|
||||
static bool hasError = false;
|
||||
@ -654,9 +659,10 @@ CV_IMPL int cvInitSystem( int argc, char** argv )
|
||||
return 0;
|
||||
}
|
||||
|
||||
CV_IMPL int cvStartWindowThread(){
|
||||
int cv::startWindowThread(){
|
||||
CV_TRACE_FUNCTION();
|
||||
#ifdef HAVE_GTHREAD
|
||||
cvInitSystem(0,NULL);
|
||||
gtk_InitSystem(0,NULL);
|
||||
if (!thread_started)
|
||||
{
|
||||
#if !GLIB_CHECK_VERSION(2, 32, 0) // https://github.com/GNOME/glib/blame/b4d58a7105bb9d75907233968bb534b38f9a6e43/glib/deprecated/gthread.h#L274
|
||||
@ -733,19 +739,6 @@ std::shared_ptr<CvWindow> icvFindWindowByName(const char* name)
|
||||
return icvFindWindowByName(std::string(name));
|
||||
}
|
||||
|
||||
|
||||
static CvWindow* icvWindowByWidget( GtkWidget* widget )
|
||||
{
|
||||
auto& g_windows = getGTKWindows();
|
||||
for (size_t i = 0; i < g_windows.size(); ++i)
|
||||
{
|
||||
CvWindow* window = g_windows[i].get();
|
||||
if (window->widget == widget || window->frame == widget || window->paned == widget)
|
||||
return window;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static Rect getImageRect_(const std::shared_ptr<CvWindow>& window);
|
||||
|
||||
CvRect cvGetWindowRect_GTK(const char* name)
|
||||
@ -824,7 +817,7 @@ void cvSetModeWindow_GTK( const char* name, double prop_value)//Yannick Verdie
|
||||
|
||||
static bool setModeWindow_(const std::shared_ptr<CvWindow>& window, int mode)
|
||||
{
|
||||
if (window->flags & CV_WINDOW_AUTOSIZE) //if the flag CV_WINDOW_AUTOSIZE is set
|
||||
if (window->flags & cv::WINDOW_AUTOSIZE) //if the flag cv::WINDOW_AUTOSIZE is set
|
||||
return false;
|
||||
|
||||
//so easy to do fullscreen here, Linux rocks !
|
||||
@ -832,17 +825,17 @@ static bool setModeWindow_(const std::shared_ptr<CvWindow>& window, int mode)
|
||||
if (window->status == mode)
|
||||
return true;
|
||||
|
||||
if (window->status==CV_WINDOW_FULLSCREEN && mode==CV_WINDOW_NORMAL)
|
||||
if (window->status==cv::WINDOW_FULLSCREEN && mode==cv::WINDOW_NORMAL)
|
||||
{
|
||||
gtk_window_unfullscreen(GTK_WINDOW(window->frame));
|
||||
window->status=CV_WINDOW_NORMAL;
|
||||
window->status=cv::WINDOW_NORMAL;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (window->status==CV_WINDOW_NORMAL && mode==CV_WINDOW_FULLSCREEN)
|
||||
if (window->status==cv::WINDOW_NORMAL && mode==cv::WINDOW_FULLSCREEN)
|
||||
{
|
||||
gtk_window_fullscreen(GTK_WINDOW(window->frame));
|
||||
window->status=CV_WINDOW_FULLSCREEN;
|
||||
window->status=cv::WINDOW_FULLSCREEN;
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -875,7 +868,7 @@ double cvGetPropWindowAutoSize_GTK(const char* name)
|
||||
if (!window)
|
||||
return -1; // keep silence here
|
||||
|
||||
double result = window->flags & CV_WINDOW_AUTOSIZE;
|
||||
double result = window->flags & cv::WINDOW_AUTOSIZE;
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -1098,9 +1091,10 @@ static gboolean cvImageWidget_expose(GtkWidget* widget, GdkEventExpose* event, g
|
||||
#endif //GTK_VERSION3
|
||||
|
||||
static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags);
|
||||
CV_IMPL int cvNamedWindow( const char* name, int flags )
|
||||
|
||||
int namedWindowImpl( const char* name, int flags )
|
||||
{
|
||||
cvInitSystem(name ? 1 : 0,(char**)&name);
|
||||
gtk_InitSystem(name ? 1 : 0,(char**)&name);
|
||||
CV_Assert(name && "NULL name string");
|
||||
|
||||
CV_LOCK_MUTEX();
|
||||
@ -1116,12 +1110,12 @@ CV_IMPL int cvNamedWindow( const char* name, int flags )
|
||||
|
||||
static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags)
|
||||
{
|
||||
cvInitSystem(0, NULL);
|
||||
gtk_InitSystem(0, NULL);
|
||||
|
||||
auto window_ptr = std::make_shared<CvWindow>(name);
|
||||
CvWindow* window = window_ptr.get();
|
||||
window->flags = flags;
|
||||
window->status = CV_WINDOW_NORMAL;//YV
|
||||
window->status = cv::WINDOW_NORMAL;//YV
|
||||
|
||||
window->frame = gtk_window_new( GTK_WINDOW_TOPLEVEL );
|
||||
|
||||
@ -1133,10 +1127,10 @@ static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags
|
||||
gtk_widget_show( window->paned );
|
||||
|
||||
#ifndef HAVE_OPENGL
|
||||
if (flags & CV_WINDOW_OPENGL)
|
||||
if (flags & cv::WINDOW_OPENGL)
|
||||
CV_Error( CV_OpenGlNotSupported, "Library was built without OpenGL support" );
|
||||
#else
|
||||
if (flags & CV_WINDOW_OPENGL)
|
||||
if (flags & cv::WINDOW_OPENGL)
|
||||
createGlContext(window);
|
||||
|
||||
window->glDrawCallback = 0;
|
||||
@ -1181,7 +1175,7 @@ static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags
|
||||
getGTKWindows().push_back(window_ptr);
|
||||
}
|
||||
|
||||
bool b_nautosize = ((flags & CV_WINDOW_AUTOSIZE) == 0);
|
||||
bool b_nautosize = ((flags & cv::WINDOW_AUTOSIZE) == 0);
|
||||
gtk_window_set_resizable( GTK_WINDOW(window->frame), b_nautosize );
|
||||
|
||||
// allow window to be resized
|
||||
@ -1195,7 +1189,7 @@ static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
if (window->useGl)
|
||||
cvSetOpenGlContext(name.c_str());
|
||||
setOpenGLContextImpl(name.c_str());
|
||||
#endif
|
||||
|
||||
return window_ptr;
|
||||
@ -1204,7 +1198,7 @@ static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
|
||||
CV_IMPL void cvSetOpenGlContext(const char* name)
|
||||
void setOpenGLContextImpl(const char* name)
|
||||
{
|
||||
GdkGLContext* glcontext;
|
||||
GdkGLDrawable* gldrawable;
|
||||
@ -1227,7 +1221,7 @@ CV_IMPL void cvSetOpenGlContext(const char* name)
|
||||
CV_Error( CV_OpenGlApiCallError, "Can't Activate The GL Rendering Context" );
|
||||
}
|
||||
|
||||
CV_IMPL void cvUpdateWindow(const char* name)
|
||||
void updateWindowImpl(const char* name)
|
||||
{
|
||||
CV_Assert(name && "NULL name string");
|
||||
|
||||
@ -1241,7 +1235,7 @@ CV_IMPL void cvUpdateWindow(const char* name)
|
||||
gtk_widget_queue_draw( GTK_WIDGET(window->widget) );
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetOpenGlDrawCallback(const char* name, CvOpenGlDrawCallback callback, void* userdata)
|
||||
void setOpenGLDrawCallbackImpl(const char* name, CvOpenGlDrawCallback callback, void* userdata)
|
||||
{
|
||||
CV_Assert(name && "NULL name string");
|
||||
|
||||
@ -1283,7 +1277,7 @@ static void checkLastWindow()
|
||||
#ifdef HAVE_GTHREAD
|
||||
if( thread_started )
|
||||
{
|
||||
// send key press signal to jump out of any waiting cvWaitKey's
|
||||
// send key press signal to jump out of any waiting waitKeyImpl's
|
||||
g_cond_broadcast( cond_have_key );
|
||||
}
|
||||
else
|
||||
@ -1324,7 +1318,7 @@ void icvDeleteWindow_( CvWindow* window )
|
||||
checkLastWindow();
|
||||
}
|
||||
|
||||
CV_IMPL void cvDestroyWindow( const char* name )
|
||||
void destroyWindowImpl( const char* name )
|
||||
{
|
||||
CV_Assert(name && "NULL name string");
|
||||
|
||||
@ -1347,8 +1341,7 @@ CV_IMPL void cvDestroyWindow( const char* name )
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvDestroyAllWindows( void )
|
||||
void destroyAllWindowsImpl( void )
|
||||
{
|
||||
CV_LOCK_MUTEX();
|
||||
|
||||
@ -1368,8 +1361,7 @@ cvDestroyAllWindows( void )
|
||||
// return window_size;
|
||||
// }
|
||||
|
||||
CV_IMPL void
|
||||
cvShowImage( const char* name, const CvArr* arr )
|
||||
void showImageImpl( const char* name, const CvArr* arr )
|
||||
{
|
||||
CV_Assert(name && "NULL name string");
|
||||
|
||||
@ -1378,7 +1370,7 @@ cvShowImage( const char* name, const CvArr* arr )
|
||||
auto window = icvFindWindowByName(name);
|
||||
if(!window)
|
||||
{
|
||||
cvNamedWindow(name, 1);
|
||||
namedWindowImpl(name, 1);
|
||||
window = icvFindWindowByName(name);
|
||||
}
|
||||
CV_Assert(window);
|
||||
@ -1399,7 +1391,7 @@ cvShowImage( const char* name, const CvArr* arr )
|
||||
}
|
||||
|
||||
static void resizeWindow_(const std::shared_ptr<CvWindow>& window, int width, int height);
|
||||
CV_IMPL void cvResizeWindow(const char* name, int width, int height )
|
||||
void resizeWindowImpl(const char* name, int width, int height )
|
||||
{
|
||||
CV_Assert(name && "NULL name string");
|
||||
|
||||
@ -1417,7 +1409,7 @@ void resizeWindow_(const std::shared_ptr<CvWindow>& window, int width, int heigh
|
||||
{
|
||||
CV_Assert(window);
|
||||
CvImageWidget* image_widget = CV_IMAGE_WIDGET( window->widget );
|
||||
//if(image_widget->flags & CV_WINDOW_AUTOSIZE)
|
||||
//if(image_widget->flags & cv::WINDOW_AUTOSIZE)
|
||||
//EXIT;
|
||||
|
||||
gtk_window_set_resizable( GTK_WINDOW(window->frame), 1 );
|
||||
@ -1429,7 +1421,7 @@ void resizeWindow_(const std::shared_ptr<CvWindow>& window, int width, int heigh
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvMoveWindow( const char* name, int x, int y )
|
||||
void moveWindowImpl( const char* name, int x, int y )
|
||||
{
|
||||
CV_Assert(name && "NULL name string");
|
||||
|
||||
@ -1528,16 +1520,7 @@ icvCreateTrackbar( const char* trackbar_name, const char* window_name,
|
||||
return 1;
|
||||
}
|
||||
|
||||
CV_IMPL int
|
||||
cvCreateTrackbar( const char* trackbar_name, const char* window_name,
|
||||
int* val, int count, CvTrackbarCallback on_notify )
|
||||
{
|
||||
return icvCreateTrackbar(trackbar_name, window_name, val, count,
|
||||
on_notify, 0, 0);
|
||||
}
|
||||
|
||||
CV_IMPL int
|
||||
cvCreateTrackbar2( const char* trackbar_name, const char* window_name,
|
||||
int createTrackbar2Impl( const char* trackbar_name, const char* window_name,
|
||||
int* val, int count, CvTrackbarCallback2 on_notify2,
|
||||
void* userdata )
|
||||
{
|
||||
@ -1592,8 +1575,7 @@ std::shared_ptr<CvTrackbar> createTrackbar_(
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvSetMouseCallback( const char* window_name, CvMouseCallback on_mouse, void* param )
|
||||
void setMouseCallbackImpl( const char* window_name, CvMouseCallback on_mouse, void* param )
|
||||
{
|
||||
CV_Assert(window_name && "NULL window name");
|
||||
|
||||
@ -1608,7 +1590,7 @@ cvSetMouseCallback( const char* window_name, CvMouseCallback on_mouse, void* par
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvGetTrackbarPos( const char* trackbar_name, const char* window_name )
|
||||
int getTrackbarPosImpl( const char* trackbar_name, const char* window_name )
|
||||
{
|
||||
CV_Assert(window_name && "NULL window name");
|
||||
CV_Assert(trackbar_name && "NULL trackbar name");
|
||||
@ -1627,7 +1609,7 @@ CV_IMPL int cvGetTrackbarPos( const char* trackbar_name, const char* window_name
|
||||
}
|
||||
|
||||
static void setTrackbarPos_(const std::shared_ptr<CvTrackbar>& trackbar, int pos);
|
||||
CV_IMPL void cvSetTrackbarPos( const char* trackbar_name, const char* window_name, int pos )
|
||||
void setTrackbarPosImpl( const char* trackbar_name, const char* window_name, int pos )
|
||||
{
|
||||
CV_Assert(window_name && "NULL window name");
|
||||
CV_Assert(trackbar_name && "NULL trackbar name");
|
||||
@ -1659,7 +1641,7 @@ static void setTrackbarPos_(const std::shared_ptr<CvTrackbar>& trackbar, int pos
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvSetTrackbarMax(const char* trackbar_name, const char* window_name, int maxval)
|
||||
void setTrackbarMaxImpl(const char* trackbar_name, const char* window_name, int maxval)
|
||||
{
|
||||
CV_Assert(window_name && "NULL window name");
|
||||
CV_Assert(trackbar_name && "NULL trackbar name");
|
||||
@ -1680,7 +1662,7 @@ CV_IMPL void cvSetTrackbarMax(const char* trackbar_name, const char* window_name
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvSetTrackbarMin(const char* trackbar_name, const char* window_name, int minval)
|
||||
void setTrackbarMinImpl(const char* trackbar_name, const char* window_name, int minval)
|
||||
{
|
||||
CV_Assert(window_name && "NULL window name");
|
||||
CV_Assert(trackbar_name && "NULL trackbar name");
|
||||
@ -1700,34 +1682,6 @@ CV_IMPL void cvSetTrackbarMin(const char* trackbar_name, const char* window_name
|
||||
gtk_range_set_range(GTK_RANGE(trackbar->widget), trackbar->minval, trackbar->maxval);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void* cvGetWindowHandle( const char* window_name )
|
||||
{
|
||||
CV_Assert(window_name && "NULL window name");
|
||||
|
||||
CV_LOCK_MUTEX();
|
||||
|
||||
const auto window = icvFindWindowByName(window_name);
|
||||
if(!window)
|
||||
return NULL;
|
||||
|
||||
return (void*)window->widget;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL const char* cvGetWindowName( void* window_handle )
|
||||
{
|
||||
CV_Assert(window_handle && "NULL window handle");
|
||||
|
||||
CV_LOCK_MUTEX();
|
||||
|
||||
CvWindow* window = icvWindowByWidget( (GtkWidget*)window_handle );
|
||||
if (window)
|
||||
return window->name.c_str();
|
||||
|
||||
return ""; // FIXME: NULL?
|
||||
}
|
||||
|
||||
static GtkFileFilter* icvMakeGtkFilter(const char* name, const char* patterns, GtkFileFilter* images)
|
||||
{
|
||||
GtkFileFilter* filter = gtk_file_filter_new();
|
||||
@ -1930,7 +1884,7 @@ static gboolean icvOnMouse( GtkWidget *widget, GdkEvent *event, gpointer user_da
|
||||
{
|
||||
GdkEventMotion* event_motion = (GdkEventMotion*)event;
|
||||
|
||||
cv_event = CV_EVENT_MOUSEMOVE;
|
||||
cv_event = cv::EVENT_MOUSEMOVE;
|
||||
pt32f.x = cvFloor(event_motion->x);
|
||||
pt32f.y = cvFloor(event_motion->y);
|
||||
state = event_motion->state;
|
||||
@ -1946,21 +1900,21 @@ static gboolean icvOnMouse( GtkWidget *widget, GdkEvent *event, gpointer user_da
|
||||
|
||||
if( event_button->type == GDK_BUTTON_PRESS )
|
||||
{
|
||||
cv_event = event_button->button == 1 ? CV_EVENT_LBUTTONDOWN :
|
||||
event_button->button == 2 ? CV_EVENT_MBUTTONDOWN :
|
||||
event_button->button == 3 ? CV_EVENT_RBUTTONDOWN : 0;
|
||||
cv_event = event_button->button == 1 ? cv::EVENT_LBUTTONDOWN :
|
||||
event_button->button == 2 ? cv::EVENT_MBUTTONDOWN :
|
||||
event_button->button == 3 ? cv::EVENT_RBUTTONDOWN : 0;
|
||||
}
|
||||
else if( event_button->type == GDK_BUTTON_RELEASE )
|
||||
{
|
||||
cv_event = event_button->button == 1 ? CV_EVENT_LBUTTONUP :
|
||||
event_button->button == 2 ? CV_EVENT_MBUTTONUP :
|
||||
event_button->button == 3 ? CV_EVENT_RBUTTONUP : 0;
|
||||
cv_event = event_button->button == 1 ? cv::EVENT_LBUTTONUP :
|
||||
event_button->button == 2 ? cv::EVENT_MBUTTONUP :
|
||||
event_button->button == 3 ? cv::EVENT_RBUTTONUP : 0;
|
||||
}
|
||||
else if( event_button->type == GDK_2BUTTON_PRESS )
|
||||
{
|
||||
cv_event = event_button->button == 1 ? CV_EVENT_LBUTTONDBLCLK :
|
||||
event_button->button == 2 ? CV_EVENT_MBUTTONDBLCLK :
|
||||
event_button->button == 3 ? CV_EVENT_RBUTTONDBLCLK : 0;
|
||||
cv_event = event_button->button == 1 ? cv::EVENT_LBUTTONDBLCLK :
|
||||
event_button->button == 2 ? cv::EVENT_MBUTTONDBLCLK :
|
||||
event_button->button == 3 ? cv::EVENT_RBUTTONDBLCLK : 0;
|
||||
}
|
||||
state = event_button->state;
|
||||
}
|
||||
@ -1973,9 +1927,9 @@ static gboolean icvOnMouse( GtkWidget *widget, GdkEvent *event, gpointer user_da
|
||||
#if defined(GTK_VERSION3_4)
|
||||
// NOTE: in current implementation doesn't possible to put into callback function delta_x and delta_y separately
|
||||
double delta = (event->scroll.delta_x + event->scroll.delta_y);
|
||||
cv_event = (event->scroll.delta_x==0) ? CV_EVENT_MOUSEWHEEL : CV_EVENT_MOUSEHWHEEL;
|
||||
cv_event = (event->scroll.delta_x==0) ? cv::EVENT_MOUSEWHEEL : cv::EVENT_MOUSEHWHEEL;
|
||||
#else
|
||||
cv_event = CV_EVENT_MOUSEWHEEL;
|
||||
cv_event = cv::EVENT_MOUSEWHEEL;
|
||||
#endif //GTK_VERSION3_4
|
||||
|
||||
state = event->scroll.state;
|
||||
@ -1985,11 +1939,11 @@ static gboolean icvOnMouse( GtkWidget *widget, GdkEvent *event, gpointer user_da
|
||||
case GDK_SCROLL_SMOOTH: flags |= (((int)delta << 16));
|
||||
break;
|
||||
#endif //GTK_VERSION3_4
|
||||
case GDK_SCROLL_LEFT: cv_event = CV_EVENT_MOUSEHWHEEL;
|
||||
case GDK_SCROLL_LEFT: cv_event = cv::EVENT_MOUSEHWHEEL;
|
||||
/* FALLTHRU */
|
||||
case GDK_SCROLL_UP: flags |= ~0xffff;
|
||||
break;
|
||||
case GDK_SCROLL_RIGHT: cv_event = CV_EVENT_MOUSEHWHEEL;
|
||||
case GDK_SCROLL_RIGHT: cv_event = cv::EVENT_MOUSEHWHEEL;
|
||||
/* FALLTHRU */
|
||||
case GDK_SCROLL_DOWN: flags |= (((int)1 << 16));
|
||||
break;
|
||||
@ -2000,7 +1954,7 @@ static gboolean icvOnMouse( GtkWidget *widget, GdkEvent *event, gpointer user_da
|
||||
if( cv_event >= 0 )
|
||||
{
|
||||
// scale point if image is scaled
|
||||
if( (image_widget->flags & CV_WINDOW_AUTOSIZE)==0 &&
|
||||
if( (image_widget->flags & cv::WINDOW_AUTOSIZE)==0 &&
|
||||
image_widget->original_image &&
|
||||
image_widget->scaled_image )
|
||||
{
|
||||
@ -2029,16 +1983,16 @@ static gboolean icvOnMouse( GtkWidget *widget, GdkEvent *event, gpointer user_da
|
||||
{
|
||||
// handle non-keyboard (mouse) modifiers first
|
||||
flags |=
|
||||
BIT_MAP(state, GDK_BUTTON1_MASK, CV_EVENT_FLAG_LBUTTON) |
|
||||
BIT_MAP(state, GDK_BUTTON2_MASK, CV_EVENT_FLAG_MBUTTON) |
|
||||
BIT_MAP(state, GDK_BUTTON3_MASK, CV_EVENT_FLAG_RBUTTON);
|
||||
BIT_MAP(state, GDK_BUTTON1_MASK, cv::EVENT_FLAG_LBUTTON) |
|
||||
BIT_MAP(state, GDK_BUTTON2_MASK, cv::EVENT_FLAG_MBUTTON) |
|
||||
BIT_MAP(state, GDK_BUTTON3_MASK, cv::EVENT_FLAG_RBUTTON);
|
||||
// keyboard modifiers
|
||||
state &= gtk_accelerator_get_default_mod_mask();
|
||||
flags |=
|
||||
BIT_MAP(state, GDK_SHIFT_MASK, CV_EVENT_FLAG_SHIFTKEY) |
|
||||
BIT_MAP(state, GDK_CONTROL_MASK, CV_EVENT_FLAG_CTRLKEY) |
|
||||
BIT_MAP(state, GDK_MOD1_MASK, CV_EVENT_FLAG_ALTKEY) |
|
||||
BIT_MAP(state, GDK_MOD2_MASK, CV_EVENT_FLAG_ALTKEY);
|
||||
BIT_MAP(state, GDK_SHIFT_MASK, cv::EVENT_FLAG_SHIFTKEY) |
|
||||
BIT_MAP(state, GDK_CONTROL_MASK, cv::EVENT_FLAG_CTRLKEY) |
|
||||
BIT_MAP(state, GDK_MOD1_MASK, cv::EVENT_FLAG_ALTKEY) |
|
||||
BIT_MAP(state, GDK_MOD2_MASK, cv::EVENT_FLAG_ALTKEY);
|
||||
window->on_mouse( cv_event, pt.x, pt.y, flags, window->on_mouse_param );
|
||||
}
|
||||
}
|
||||
@ -2054,7 +2008,7 @@ static gboolean icvAlarm( gpointer user_data )
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvWaitKey( int delay )
|
||||
int waitKeyImpl( int delay )
|
||||
{
|
||||
#ifdef HAVE_GTHREAD
|
||||
if (thread_started && g_thread_self() != window_thread)
|
||||
@ -2166,20 +2120,19 @@ public:
|
||||
{
|
||||
auto window = window_.lock();
|
||||
CV_Assert(window);
|
||||
// see cvGetWindowProperty
|
||||
switch (prop)
|
||||
{
|
||||
case CV_WND_PROP_FULLSCREEN:
|
||||
case cv::WND_PROP_FULLSCREEN:
|
||||
return (double)window->status;
|
||||
|
||||
case CV_WND_PROP_AUTOSIZE:
|
||||
return (window->flags & CV_WINDOW_AUTOSIZE) ? 1.0 : 0.0;
|
||||
case cv::WND_PROP_AUTOSIZE:
|
||||
return (window->flags & cv::WINDOW_AUTOSIZE) ? 1.0 : 0.0;
|
||||
|
||||
case CV_WND_PROP_ASPECTRATIO:
|
||||
case cv::WND_PROP_ASPECT_RATIO:
|
||||
return getRatioWindow_(window);
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
case CV_WND_PROP_OPENGL:
|
||||
case cv::WND_PROP_OPENGL:
|
||||
return window->useGl ? 1.0 : 0.0;
|
||||
#endif
|
||||
|
||||
@ -2193,11 +2146,10 @@ public:
|
||||
{
|
||||
auto window = window_.lock();
|
||||
CV_Assert(window);
|
||||
// see cvSetWindowProperty
|
||||
switch (prop)
|
||||
{
|
||||
case CV_WND_PROP_FULLSCREEN:
|
||||
if (value != CV_WINDOW_NORMAL && value != CV_WINDOW_FULLSCREEN) // bad arg
|
||||
case cv::WND_PROP_FULLSCREEN:
|
||||
if (value != cv::WINDOW_NORMAL && value != cv::WINDOW_FULLSCREEN) // bad arg
|
||||
break;
|
||||
setModeWindow_(window, value);
|
||||
return true;
|
||||
@ -2352,7 +2304,7 @@ public:
|
||||
|
||||
void destroyAllWindows() CV_OVERRIDE
|
||||
{
|
||||
cvDestroyAllWindows();
|
||||
destroyAllWindowsImpl();
|
||||
}
|
||||
|
||||
// namedWindow
|
||||
@ -2369,11 +2321,11 @@ public:
|
||||
|
||||
int waitKeyEx(int delay) CV_OVERRIDE
|
||||
{
|
||||
return cvWaitKey(delay);
|
||||
return waitKeyImpl(delay);
|
||||
}
|
||||
int pollKey() CV_OVERRIDE
|
||||
{
|
||||
return cvWaitKey(1); // TODO
|
||||
return waitKeyImpl(1); // TODO
|
||||
}
|
||||
}; // GTKBackendUI
|
||||
|
||||
|
@ -309,12 +309,12 @@ static const char* const mainHighGUIclassName = "Main HighGUI class";
|
||||
|
||||
static void icvCleanupHighgui()
|
||||
{
|
||||
cvDestroyAllWindows();
|
||||
destroyAllWindowsImpl();
|
||||
UnregisterClass(highGUIclassName, hg_hinstance);
|
||||
UnregisterClass(mainHighGUIclassName, hg_hinstance);
|
||||
}
|
||||
|
||||
CV_IMPL int cvInitSystem(int, char**)
|
||||
static int win32_InitSystem(int, char**)
|
||||
{
|
||||
static int wasInitialized = 0;
|
||||
|
||||
@ -355,11 +355,6 @@ CV_IMPL int cvInitSystem(int, char**)
|
||||
return 0;
|
||||
}
|
||||
|
||||
CV_IMPL int cvStartWindowThread(){
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static std::shared_ptr<CvWindow> icvWindowByHWND(HWND hwnd)
|
||||
{
|
||||
AutoLock lock(getWindowMutex());
|
||||
@ -587,7 +582,7 @@ void cvSetModeWindow_W32(const char* name, double prop_value)//Yannick Verdie
|
||||
|
||||
static bool setModeWindow_(CvWindow& window, int mode)
|
||||
{
|
||||
if (window.flags & CV_WINDOW_AUTOSIZE)//if the flag CV_WINDOW_AUTOSIZE is set
|
||||
if (window.flags & cv::WINDOW_AUTOSIZE)//if the flag cv::WINDOW_AUTOSIZE is set
|
||||
return false;
|
||||
|
||||
if (window.status == mode)
|
||||
@ -597,18 +592,18 @@ static bool setModeWindow_(CvWindow& window, int mode)
|
||||
DWORD dwStyle = (DWORD)GetWindowLongPtr(window.frame, GWL_STYLE);
|
||||
CvRect position;
|
||||
|
||||
if (window.status == CV_WINDOW_FULLSCREEN && mode == CV_WINDOW_NORMAL)
|
||||
if (window.status == cv::WINDOW_FULLSCREEN && mode == cv::WINDOW_NORMAL)
|
||||
{
|
||||
icvLoadWindowPos(window.name.c_str(), position);
|
||||
SetWindowLongPtr(window.frame, GWL_STYLE, dwStyle | WS_CAPTION | WS_THICKFRAME);
|
||||
|
||||
SetWindowPos(window.frame, HWND_TOP, position.x, position.y , position.width,position.height, SWP_NOZORDER | SWP_FRAMECHANGED);
|
||||
window.status=CV_WINDOW_NORMAL;
|
||||
window.status=cv::WINDOW_NORMAL;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
if (window.status == CV_WINDOW_NORMAL && mode == CV_WINDOW_FULLSCREEN)
|
||||
if (window.status == cv::WINDOW_NORMAL && mode == cv::WINDOW_FULLSCREEN)
|
||||
{
|
||||
//save dimension
|
||||
RECT rect = { 0 };
|
||||
@ -630,7 +625,7 @@ static bool setModeWindow_(CvWindow& window, int mode)
|
||||
SetWindowLongPtr(window.frame, GWL_STYLE, dwStyle & ~WS_CAPTION & ~WS_THICKFRAME);
|
||||
|
||||
SetWindowPos(window.frame, HWND_TOP, position.x, position.y , position.width,position.height, SWP_NOZORDER | SWP_FRAMECHANGED);
|
||||
window.status=CV_WINDOW_FULLSCREEN;
|
||||
window.status=cv::WINDOW_FULLSCREEN;
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -836,7 +831,7 @@ double cvGetPropWindowAutoSize_W32(const char* name)
|
||||
if (!window)
|
||||
CV_Error_(Error::StsNullPtr, ("NULL window: '%s'", name));
|
||||
|
||||
result = window->flags & CV_WINDOW_AUTOSIZE;
|
||||
result = window->flags & cv::WINDOW_AUTOSIZE;
|
||||
|
||||
return result;
|
||||
}
|
||||
@ -1018,9 +1013,9 @@ namespace
|
||||
|
||||
static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags);
|
||||
|
||||
CV_IMPL int cvNamedWindow(const char* name, int flags)
|
||||
int namedWindowImpl(const char* name, int flags)
|
||||
{
|
||||
CV_FUNCNAME("cvNamedWindow");
|
||||
CV_FUNCNAME("namedWindowImpl");
|
||||
|
||||
AutoLock lock(getWindowMutex());
|
||||
|
||||
@ -1042,7 +1037,7 @@ static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags
|
||||
{
|
||||
AutoLock lock(getWindowMutex());
|
||||
|
||||
cvInitSystem(0,0);
|
||||
win32_InitSystem(0,0);
|
||||
|
||||
HWND hWnd, mainhWnd;
|
||||
DWORD defStyle = WS_VISIBLE | WS_MINIMIZEBOX | WS_MAXIMIZEBOX | WS_SYSMENU;
|
||||
@ -1055,11 +1050,11 @@ static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags
|
||||
CvRect rect;
|
||||
icvLoadWindowPos(name.c_str(), rect);
|
||||
|
||||
if (!(flags & CV_WINDOW_AUTOSIZE))//YV add border in order to resize the window
|
||||
if (!(flags & cv::WINDOW_AUTOSIZE))//YV add border in order to resize the window
|
||||
defStyle |= WS_SIZEBOX;
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
if (flags & CV_WINDOW_OPENGL)
|
||||
if (flags & cv::WINDOW_OPENGL)
|
||||
defStyle |= WS_CLIPCHILDREN | WS_CLIPSIBLINGS;
|
||||
#endif
|
||||
|
||||
@ -1076,14 +1071,14 @@ static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags
|
||||
CV_Error(Error::StsError, "Frame window can not be created");
|
||||
|
||||
#ifndef HAVE_OPENGL
|
||||
if (flags & CV_WINDOW_OPENGL)
|
||||
if (flags & cv::WINDOW_OPENGL)
|
||||
CV_Error(Error::OpenGlNotSupported, "Library was built without OpenGL support");
|
||||
#else
|
||||
useGl = false;
|
||||
hGLDC = 0;
|
||||
hGLRC = 0;
|
||||
|
||||
if (flags & CV_WINDOW_OPENGL)
|
||||
if (flags & cv::WINDOW_OPENGL)
|
||||
createGlContext(hWnd, hGLDC, hGLRC, useGl);
|
||||
#endif
|
||||
|
||||
@ -1117,7 +1112,7 @@ static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags
|
||||
#endif
|
||||
|
||||
window->last_key = 0;
|
||||
window->status = CV_WINDOW_NORMAL;//YV
|
||||
window->status = cv::WINDOW_NORMAL;//YV
|
||||
|
||||
window->on_mouse = 0;
|
||||
window->on_mouse_param = 0;
|
||||
@ -1136,9 +1131,9 @@ static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
|
||||
CV_IMPL void cvSetOpenGlContext(const char* name)
|
||||
void setOpenGLContextImpl(const char* name)
|
||||
{
|
||||
CV_FUNCNAME("cvSetOpenGlContext");
|
||||
CV_FUNCNAME("setOpenGLContextImpl");
|
||||
|
||||
AutoLock lock(getWindowMutex());
|
||||
|
||||
@ -1156,9 +1151,9 @@ CV_IMPL void cvSetOpenGlContext(const char* name)
|
||||
CV_Error(Error::OpenGlApiCallError, "Can't Activate The GL Rendering Context");
|
||||
}
|
||||
|
||||
CV_IMPL void cvUpdateWindow(const char* name)
|
||||
void updateWindowImpl(const char* name)
|
||||
{
|
||||
CV_FUNCNAME("cvUpdateWindow");
|
||||
CV_FUNCNAME("updateWindowImpl");
|
||||
|
||||
AutoLock lock(getWindowMutex());
|
||||
|
||||
@ -1172,7 +1167,7 @@ CV_IMPL void cvUpdateWindow(const char* name)
|
||||
InvalidateRect(window->hwnd, 0, 0);
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetOpenGlDrawCallback(const char* name, CvOpenGlDrawCallback callback, void* userdata)
|
||||
void setOpenGLDrawCallbackImpl(const char* name, CvOpenGlDrawCallback callback, void* userdata)
|
||||
{
|
||||
CV_FUNCNAME("cvCreateOpenGLCallback");
|
||||
|
||||
@ -1247,9 +1242,9 @@ static void icvRemoveWindow(const std::shared_ptr<CvWindow>& window_)
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvDestroyWindow(const char* name)
|
||||
void destroyWindowImpl(const char* name)
|
||||
{
|
||||
CV_FUNCNAME("cvDestroyWindow");
|
||||
CV_FUNCNAME("destroyWindowImpl");
|
||||
|
||||
AutoLock lock(getWindowMutex());
|
||||
|
||||
@ -1338,7 +1333,7 @@ static void icvUpdateWindowPos(CvWindow& window)
|
||||
{
|
||||
RECT rect = { 0 };
|
||||
|
||||
if ((window.flags & CV_WINDOW_AUTOSIZE) && window.image)
|
||||
if ((window.flags & cv::WINDOW_AUTOSIZE) && window.image)
|
||||
{
|
||||
int i;
|
||||
SIZE size = {0,0};
|
||||
@ -1368,10 +1363,9 @@ static void icvUpdateWindowPos(CvWindow& window)
|
||||
|
||||
static void showImage_(CvWindow& window, const Mat& image);
|
||||
|
||||
CV_IMPL void
|
||||
cvShowImage(const char* name, const CvArr* arr)
|
||||
void showImageImpl(const char* name, const CvArr* arr)
|
||||
{
|
||||
CV_FUNCNAME("cvShowImage");
|
||||
CV_FUNCNAME("showImageImpl");
|
||||
|
||||
if (!name)
|
||||
CV_Error(Error::StsNullPtr, "NULL name");
|
||||
@ -1383,7 +1377,7 @@ cvShowImage(const char* name, const CvArr* arr)
|
||||
window = icvFindWindowByName(name);
|
||||
if (!window)
|
||||
{
|
||||
cvNamedWindow(name, CV_WINDOW_AUTOSIZE);
|
||||
namedWindowImpl(name, cv::WINDOW_AUTOSIZE);
|
||||
window = icvFindWindowByName(name);
|
||||
}
|
||||
}
|
||||
@ -1459,9 +1453,9 @@ static void showImage_(CvWindow& window, const Mat& image)
|
||||
|
||||
static void resizeWindow_(CvWindow& window, const Size& size);
|
||||
|
||||
CV_IMPL void cvResizeWindow(const char* name, int width, int height)
|
||||
void resizeWindowImpl(const char* name, int width, int height)
|
||||
{
|
||||
CV_FUNCNAME("cvResizeWindow");
|
||||
CV_FUNCNAME("resizeWindowImpl");
|
||||
|
||||
AutoLock lock(getWindowMutex());
|
||||
|
||||
@ -1501,9 +1495,9 @@ static void resizeWindow_(CvWindow& window, const Size& size)
|
||||
|
||||
static void moveWindow_(CvWindow& window, const Point& pt);
|
||||
|
||||
CV_IMPL void cvMoveWindow(const char* name, int x, int y)
|
||||
void moveWindowImpl(const char* name, int x, int y)
|
||||
{
|
||||
CV_FUNCNAME("cvMoveWindow");
|
||||
CV_FUNCNAME("moveWindowImpl");
|
||||
|
||||
AutoLock lock(getWindowMutex());
|
||||
|
||||
@ -1548,7 +1542,7 @@ MainWindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
|
||||
break;
|
||||
|
||||
case WM_GETMINMAXINFO:
|
||||
if (!(window.flags & CV_WINDOW_AUTOSIZE))
|
||||
if (!(window.flags & cv::WINDOW_AUTOSIZE))
|
||||
{
|
||||
MINMAXINFO* minmax = (MINMAXINFO*)lParam;
|
||||
RECT rect = { 0 };
|
||||
@ -1579,7 +1573,7 @@ MainWindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
|
||||
MoveWindow(window.toolbar.toolbar, 0, 0, pos->cx, rect.bottom - rect.top, TRUE);
|
||||
}
|
||||
|
||||
if (!(window.flags & CV_WINDOW_AUTOSIZE))
|
||||
if (!(window.flags & cv::WINDOW_AUTOSIZE))
|
||||
icvUpdateWindowPos(window);
|
||||
|
||||
break;
|
||||
@ -1624,13 +1618,13 @@ MainWindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
|
||||
case WM_MOUSEHWHEEL:
|
||||
if (window.on_mouse)
|
||||
{
|
||||
int flags = (wParam & MK_LBUTTON ? CV_EVENT_FLAG_LBUTTON : 0)|
|
||||
(wParam & MK_RBUTTON ? CV_EVENT_FLAG_RBUTTON : 0)|
|
||||
(wParam & MK_MBUTTON ? CV_EVENT_FLAG_MBUTTON : 0)|
|
||||
(wParam & MK_CONTROL ? CV_EVENT_FLAG_CTRLKEY : 0)|
|
||||
(wParam & MK_SHIFT ? CV_EVENT_FLAG_SHIFTKEY : 0)|
|
||||
(GetKeyState(VK_MENU) < 0 ? CV_EVENT_FLAG_ALTKEY : 0);
|
||||
int event = (uMsg == WM_MOUSEWHEEL ? CV_EVENT_MOUSEWHEEL : CV_EVENT_MOUSEHWHEEL);
|
||||
int flags = (wParam & MK_LBUTTON ? cv::EVENT_FLAG_LBUTTON : 0)|
|
||||
(wParam & MK_RBUTTON ? cv::EVENT_FLAG_RBUTTON : 0)|
|
||||
(wParam & MK_MBUTTON ? cv::EVENT_FLAG_MBUTTON : 0)|
|
||||
(wParam & MK_CONTROL ? cv::EVENT_FLAG_CTRLKEY : 0)|
|
||||
(wParam & MK_SHIFT ? cv::EVENT_FLAG_SHIFTKEY : 0)|
|
||||
(GetKeyState(VK_MENU) < 0 ? cv::EVENT_FLAG_ALTKEY : 0);
|
||||
int event = (uMsg == WM_MOUSEWHEEL ? cv::EVENT_MOUSEWHEEL : cv::EVENT_MOUSEHWHEEL);
|
||||
|
||||
// Set the wheel delta of mouse wheel to be in the upper word of 'event'
|
||||
int delta = GET_WHEEL_DELTA_WPARAM(wParam);
|
||||
@ -1822,22 +1816,22 @@ static LRESULT CALLBACK HighGUIProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM
|
||||
{
|
||||
POINT pt;
|
||||
|
||||
int flags = (wParam & MK_LBUTTON ? CV_EVENT_FLAG_LBUTTON : 0)|
|
||||
(wParam & MK_RBUTTON ? CV_EVENT_FLAG_RBUTTON : 0)|
|
||||
(wParam & MK_MBUTTON ? CV_EVENT_FLAG_MBUTTON : 0)|
|
||||
(wParam & MK_CONTROL ? CV_EVENT_FLAG_CTRLKEY : 0)|
|
||||
(wParam & MK_SHIFT ? CV_EVENT_FLAG_SHIFTKEY : 0)|
|
||||
(GetKeyState(VK_MENU) < 0 ? CV_EVENT_FLAG_ALTKEY : 0);
|
||||
int event = uMsg == WM_LBUTTONDOWN ? CV_EVENT_LBUTTONDOWN :
|
||||
uMsg == WM_RBUTTONDOWN ? CV_EVENT_RBUTTONDOWN :
|
||||
uMsg == WM_MBUTTONDOWN ? CV_EVENT_MBUTTONDOWN :
|
||||
uMsg == WM_LBUTTONUP ? CV_EVENT_LBUTTONUP :
|
||||
uMsg == WM_RBUTTONUP ? CV_EVENT_RBUTTONUP :
|
||||
uMsg == WM_MBUTTONUP ? CV_EVENT_MBUTTONUP :
|
||||
uMsg == WM_LBUTTONDBLCLK ? CV_EVENT_LBUTTONDBLCLK :
|
||||
uMsg == WM_RBUTTONDBLCLK ? CV_EVENT_RBUTTONDBLCLK :
|
||||
uMsg == WM_MBUTTONDBLCLK ? CV_EVENT_MBUTTONDBLCLK :
|
||||
CV_EVENT_MOUSEMOVE;
|
||||
int flags = (wParam & MK_LBUTTON ? cv::EVENT_FLAG_LBUTTON : 0)|
|
||||
(wParam & MK_RBUTTON ? cv::EVENT_FLAG_RBUTTON : 0)|
|
||||
(wParam & MK_MBUTTON ? cv::EVENT_FLAG_MBUTTON : 0)|
|
||||
(wParam & MK_CONTROL ? cv::EVENT_FLAG_CTRLKEY : 0)|
|
||||
(wParam & MK_SHIFT ? cv::EVENT_FLAG_SHIFTKEY : 0)|
|
||||
(GetKeyState(VK_MENU) < 0 ? cv::EVENT_FLAG_ALTKEY : 0);
|
||||
int event = uMsg == WM_LBUTTONDOWN ? cv::EVENT_LBUTTONDOWN :
|
||||
uMsg == WM_RBUTTONDOWN ? cv::EVENT_RBUTTONDOWN :
|
||||
uMsg == WM_MBUTTONDOWN ? cv::EVENT_MBUTTONDOWN :
|
||||
uMsg == WM_LBUTTONUP ? cv::EVENT_LBUTTONUP :
|
||||
uMsg == WM_RBUTTONUP ? cv::EVENT_RBUTTONUP :
|
||||
uMsg == WM_MBUTTONUP ? cv::EVENT_MBUTTONUP :
|
||||
uMsg == WM_LBUTTONDBLCLK ? cv::EVENT_LBUTTONDBLCLK :
|
||||
uMsg == WM_RBUTTONDBLCLK ? cv::EVENT_RBUTTONDBLCLK :
|
||||
uMsg == WM_MBUTTONDBLCLK ? cv::EVENT_MBUTTONDBLCLK :
|
||||
cv::EVENT_MOUSEMOVE;
|
||||
if (uMsg == WM_LBUTTONDOWN || uMsg == WM_RBUTTONDOWN || uMsg == WM_MBUTTONDOWN)
|
||||
SetCapture(hwnd);
|
||||
if (uMsg == WM_LBUTTONUP || uMsg == WM_RBUTTONUP || uMsg == WM_MBUTTONUP)
|
||||
@ -1846,7 +1840,7 @@ static LRESULT CALLBACK HighGUIProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM
|
||||
pt.x = GET_X_LPARAM(lParam);
|
||||
pt.y = GET_Y_LPARAM(lParam);
|
||||
|
||||
if (window.flags & CV_WINDOW_AUTOSIZE)
|
||||
if (window.flags & cv::WINDOW_AUTOSIZE)
|
||||
{
|
||||
// As user can't change window size, do not scale window coordinates. Underlying windowing system
|
||||
// may prevent full window from being displayed and in this case coordinates should not be scaled.
|
||||
@ -1908,7 +1902,7 @@ static LRESULT CALLBACK HighGUIProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM
|
||||
SetDIBColorTable(window.dc, 0, 255, table);
|
||||
}
|
||||
|
||||
if (window.flags & CV_WINDOW_AUTOSIZE)
|
||||
if (window.flags & cv::WINDOW_AUTOSIZE)
|
||||
{
|
||||
BitBlt(hdc, 0, 0, size.cx, size.cy, window.dc, 0, 0, SRCCOPY);
|
||||
}
|
||||
@ -2097,8 +2091,7 @@ static LRESULT CALLBACK HGToolbarProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARA
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvDestroyAllWindows(void)
|
||||
void destroyAllWindowsImpl(void)
|
||||
{
|
||||
std::vector< std::shared_ptr<CvWindow> > g_windows;
|
||||
{
|
||||
@ -2296,8 +2289,7 @@ int pollKey_W32()
|
||||
}
|
||||
}
|
||||
|
||||
CV_IMPL int
|
||||
cvWaitKey(int delay)
|
||||
int waitKeyImpl(int delay)
|
||||
{
|
||||
int64 time0 = cv::getTickCount();
|
||||
int64 timeEnd = time0 + (int64)(delay * 0.001f * cv::getTickFrequency());
|
||||
@ -2537,16 +2529,7 @@ std::shared_ptr<CvTrackbar> createTrackbar_(CvWindow& window, const std::string&
|
||||
return trackbar;
|
||||
}
|
||||
|
||||
CV_IMPL int
|
||||
cvCreateTrackbar(const char* trackbar_name, const char* window_name,
|
||||
int* val, int count, CvTrackbarCallback on_notify)
|
||||
{
|
||||
return icvCreateTrackbar(trackbar_name, window_name, val, count,
|
||||
on_notify, 0, 0);
|
||||
}
|
||||
|
||||
CV_IMPL int
|
||||
cvCreateTrackbar2(const char* trackbar_name, const char* window_name,
|
||||
int createTrackbar2Impl(const char* trackbar_name, const char* window_name,
|
||||
int* val, int count, CvTrackbarCallback2 on_notify2,
|
||||
void* userdata)
|
||||
{
|
||||
@ -2554,10 +2537,9 @@ cvCreateTrackbar2(const char* trackbar_name, const char* window_name,
|
||||
0, on_notify2, userdata);
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvSetMouseCallback(const char* name, CvMouseCallback on_mouse, void* param)
|
||||
void setMouseCallbackImpl(const char* name, CvMouseCallback on_mouse, void* param)
|
||||
{
|
||||
CV_FUNCNAME("cvSetMouseCallback");
|
||||
CV_FUNCNAME("setMouseCallbackImpl");
|
||||
|
||||
if (!name)
|
||||
CV_Error(Error::StsNullPtr, "NULL window name");
|
||||
@ -2573,9 +2555,9 @@ cvSetMouseCallback(const char* name, CvMouseCallback on_mouse, void* param)
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int cvGetTrackbarPos(const char* trackbar_name, const char* window_name)
|
||||
int getTrackbarPosImpl(const char* trackbar_name, const char* window_name)
|
||||
{
|
||||
CV_FUNCNAME("cvGetTrackbarPos");
|
||||
CV_FUNCNAME("getTrackbarPosImpl");
|
||||
|
||||
AutoLock lock(getWindowMutex());
|
||||
|
||||
@ -2594,9 +2576,9 @@ CV_IMPL int cvGetTrackbarPos(const char* trackbar_name, const char* window_name)
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvSetTrackbarPos(const char* trackbar_name, const char* window_name, int pos)
|
||||
void setTrackbarPosImpl(const char* trackbar_name, const char* window_name, int pos)
|
||||
{
|
||||
CV_FUNCNAME("cvSetTrackbarPos");
|
||||
CV_FUNCNAME("setTrackbarPosImpl");
|
||||
|
||||
AutoLock lock(getWindowMutex());
|
||||
|
||||
@ -2624,9 +2606,9 @@ CV_IMPL void cvSetTrackbarPos(const char* trackbar_name, const char* window_name
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvSetTrackbarMax(const char* trackbar_name, const char* window_name, int maxval)
|
||||
void setTrackbarMaxImpl(const char* trackbar_name, const char* window_name, int maxval)
|
||||
{
|
||||
CV_FUNCNAME("cvSetTrackbarMax");
|
||||
CV_FUNCNAME("setTrackbarMaxImpl");
|
||||
|
||||
if (trackbar_name == 0 || window_name == 0)
|
||||
{
|
||||
@ -2653,9 +2635,9 @@ CV_IMPL void cvSetTrackbarMax(const char* trackbar_name, const char* window_name
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvSetTrackbarMin(const char* trackbar_name, const char* window_name, int minval)
|
||||
void setTrackbarMinImpl(const char* trackbar_name, const char* window_name, int minval)
|
||||
{
|
||||
CV_FUNCNAME("cvSetTrackbarMin");
|
||||
CV_FUNCNAME("setTrackbarMinImpl");
|
||||
|
||||
if (trackbar_name == 0 || window_name == 0)
|
||||
{
|
||||
@ -2682,53 +2664,6 @@ CV_IMPL void cvSetTrackbarMin(const char* trackbar_name, const char* window_name
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void* cvGetWindowHandle(const char* window_name)
|
||||
{
|
||||
CV_FUNCNAME("cvGetWindowHandle");
|
||||
|
||||
AutoLock lock(getWindowMutex());
|
||||
|
||||
if (window_name == 0)
|
||||
CV_Error(Error::StsNullPtr, "NULL window name");
|
||||
|
||||
auto window = icvFindWindowByName(window_name);
|
||||
if (!window)
|
||||
CV_Error_(Error::StsNullPtr, ("NULL window: '%s'", window_name));
|
||||
|
||||
return (void*)window->hwnd;
|
||||
}
|
||||
|
||||
// FIXIT: result is not safe to use
|
||||
CV_IMPL const char* cvGetWindowName(void* window_handle)
|
||||
{
|
||||
CV_FUNCNAME("cvGetWindowName");
|
||||
|
||||
AutoLock lock(getWindowMutex());
|
||||
|
||||
if (window_handle == 0)
|
||||
CV_Error(Error::StsNullPtr, "NULL window handle");
|
||||
|
||||
auto window = icvWindowByHWND((HWND)window_handle);
|
||||
if (!window)
|
||||
CV_Error_(Error::StsNullPtr, ("NULL window: '%p'", window_handle));
|
||||
|
||||
return window->name.c_str();
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvSetPreprocessFuncWin32_(const void* callback)
|
||||
{
|
||||
hg_on_preprocess = (CvWin32WindowCallback)callback;
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvSetPostprocessFuncWin32_(const void* callback)
|
||||
{
|
||||
hg_on_postprocess = (CvWin32WindowCallback)callback;
|
||||
}
|
||||
|
||||
|
||||
|
||||
namespace cv { namespace impl {
|
||||
|
||||
@ -2789,7 +2724,6 @@ public:
|
||||
auto window_ptr = window_.lock();
|
||||
CV_Assert(window_ptr);
|
||||
CvWindow& window = *window_ptr;
|
||||
// see cvGetWindowProperty
|
||||
switch ((WindowPropertyFlags)prop)
|
||||
{
|
||||
case WND_PROP_FULLSCREEN:
|
||||
@ -2827,7 +2761,6 @@ public:
|
||||
auto window_ptr = window_.lock();
|
||||
CV_Assert(window_ptr);
|
||||
CvWindow& window = *window_ptr;
|
||||
// see cvSetWindowProperty
|
||||
switch ((WindowPropertyFlags)prop)
|
||||
{
|
||||
case WND_PROP_FULLSCREEN:
|
||||
@ -3007,7 +2940,7 @@ public:
|
||||
|
||||
void destroyAllWindows() CV_OVERRIDE
|
||||
{
|
||||
cvDestroyAllWindows();
|
||||
destroyAllWindowsImpl();
|
||||
}
|
||||
|
||||
// namedWindow
|
||||
@ -3024,7 +2957,7 @@ public:
|
||||
|
||||
int waitKeyEx(int delay) CV_OVERRIDE
|
||||
{
|
||||
return cvWaitKey(delay);
|
||||
return waitKeyImpl(delay);
|
||||
}
|
||||
int pollKey() CV_OVERRIDE
|
||||
{
|
||||
|
@ -1442,18 +1442,18 @@ cv::Rect cv_wl_titlebar::draw(void *data, cv::Size const &size, bool force) {
|
||||
cv::putText(
|
||||
buf_, window_->get_title(),
|
||||
origin, title_.face, title_.scale,
|
||||
CV_RGB(0xff, 0xff, 0xff), title_.thickness, CV_AA
|
||||
CV_RGB(0xff, 0xff, 0xff), title_.thickness, cv::LINE_AA
|
||||
);
|
||||
}
|
||||
|
||||
buf_(cv::Rect(btn_min_.tl(), cv::Size(titlebar_min_width, size.height))) = bg_color_;
|
||||
cv::line(buf_, btn_cls.tl(), btn_cls.br(), line_color_, 1, CV_AA);
|
||||
cv::line(buf_, btn_cls.tl(), btn_cls.br(), line_color_, 1, cv::LINE_AA);
|
||||
cv::line(buf_, btn_cls.tl() + cv::Point(btn_cls.width, 0), btn_cls.br() - cv::Point(btn_cls.width, 0),
|
||||
line_color_, 1, CV_AA);
|
||||
cv::rectangle(buf_, btn_max.tl(), btn_max.br(), line_color_, 1, CV_AA);
|
||||
line_color_, 1, cv::LINE_AA);
|
||||
cv::rectangle(buf_, btn_max.tl(), btn_max.br(), line_color_, 1, cv::LINE_AA);
|
||||
cv::line(buf_, cv::Point(btn_min_.x + 8, btn_min_.height / 2),
|
||||
cv::Point(btn_min_.x + btn_min_.width - 8, btn_min_.height / 2), line_color_, 1, CV_AA);
|
||||
cv::line(buf_, cv::Point(0, 0), cv::Point(buf_.size().width, 0), border_color_, 1, CV_AA);
|
||||
cv::Point(btn_min_.x + btn_min_.width - 8, btn_min_.height / 2), line_color_, 1, cv::LINE_AA);
|
||||
cv::line(buf_, cv::Point(0, 0), cv::Point(buf_.size().width, 0), border_color_, 1, cv::LINE_AA);
|
||||
|
||||
write_mat_to_xrgb8888(buf_, data);
|
||||
last_size_ = size;
|
||||
@ -1475,7 +1475,7 @@ cv_wl_viewer::cv_wl_viewer(cv_wl_window *window, int flags)
|
||||
void cv_wl_viewer::set_image(cv::Mat const &image) {
|
||||
if (image.type() == CV_8UC1) {
|
||||
cv::Mat bgr;
|
||||
cv::cvtColor(image, bgr, CV_GRAY2BGR);
|
||||
cv::cvtColor(image, bgr, cv::COLOR_GRAY2BGR);
|
||||
image_ = bgr.clone();
|
||||
} else {
|
||||
image_ = image.clone();
|
||||
@ -1509,7 +1509,7 @@ void cv_wl_viewer::get_preferred_height_for_width(int width, int &minimum, int &
|
||||
minimum = natural = image_.size().height;
|
||||
} else {
|
||||
natural = static_cast<int>(width * aspect_ratio(image_.size()));
|
||||
minimum = (flags_ & CV_WINDOW_FREERATIO ? 0 : natural);
|
||||
minimum = (flags_ & cv::WINDOW_FREERATIO ? 0 : natural);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1548,11 +1548,11 @@ cv::Rect cv_wl_viewer::draw(void *data, cv::Size const &size, bool force) {
|
||||
CV_Assert(image_.size() == size);
|
||||
write_mat_to_xrgb8888(image_, data);
|
||||
} else {
|
||||
if (flags_ & CV_WINDOW_FREERATIO) {
|
||||
if (flags_ & cv::WINDOW_FREERATIO) {
|
||||
cv::Mat resized;
|
||||
cv::resize(image_, resized, size);
|
||||
write_mat_to_xrgb8888(resized, data);
|
||||
} else /* CV_WINDOW_KEEPRATIO */ {
|
||||
} else /* cv::WINDOW_KEEPRATIO */ {
|
||||
auto rect = cv::Rect(cv::Point(0, 0), size);
|
||||
if (aspect_ratio(size) >= aspect_ratio(image_.size())) {
|
||||
rect.height = static_cast<int>(image_.size().height * ((double) rect.width / image_.size().width));
|
||||
@ -1657,12 +1657,12 @@ cv::Rect cv_wl_trackbar::draw(void *data, cv::Size const &size, bool force) {
|
||||
data_,
|
||||
(name_ + ": " + std::to_string(slider_.value)),
|
||||
bar_.text_orig, bar_.fontface, bar_.fontscale,
|
||||
CV_RGB(0x00, 0x00, 0x00), bar_.font_thickness, CV_AA);
|
||||
CV_RGB(0x00, 0x00, 0x00), bar_.font_thickness, cv::LINE_AA);
|
||||
|
||||
cv::line(data_, bar_.left, bar_.right, color_.bg, bar_.thickness + 3, CV_AA);
|
||||
cv::line(data_, bar_.left, bar_.right, color_.fg, bar_.thickness, CV_AA);
|
||||
cv::circle(data_, slider_.pos, slider_.radius, color_.fg, -1, CV_AA);
|
||||
cv::circle(data_, slider_.pos, slider_.radius, color_.bg, 1, CV_AA);
|
||||
cv::line(data_, bar_.left, bar_.right, color_.bg, bar_.thickness + 3, cv::LINE_AA);
|
||||
cv::line(data_, bar_.left, bar_.right, color_.fg, bar_.thickness, cv::LINE_AA);
|
||||
cv::circle(data_, slider_.pos, slider_.radius, color_.fg, -1, cv::LINE_AA);
|
||||
cv::circle(data_, slider_.pos, slider_.radius, color_.bg, 1, cv::LINE_AA);
|
||||
|
||||
write_mat_to_xrgb8888(data_, data);
|
||||
damage = cv::Rect(cv::Point(0, 0), size);
|
||||
@ -2310,57 +2310,33 @@ protected:
|
||||
|
||||
std::shared_ptr<cv_wl_core> CvWlCore::sInstance = nullptr;
|
||||
|
||||
CV_IMPL int cvStartWindowThread() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
CV_IMPL int cvNamedWindow(const char *name, int flags) {
|
||||
int namedWindowImpl(const char *name, int flags) {
|
||||
return CvWlCore::getInstance().create_window(name, flags);
|
||||
}
|
||||
|
||||
CV_IMPL void cvDestroyWindow(const char *name) {
|
||||
void destroyWindowImpl(const char *name) {
|
||||
CvWlCore::getInstance().destroy_window(name);
|
||||
}
|
||||
|
||||
CV_IMPL void cvDestroyAllWindows() {
|
||||
void destroyAllWindowsImpl() {
|
||||
CvWlCore::getInstance().destroy_all_windows();
|
||||
}
|
||||
|
||||
CV_IMPL void *cvGetWindowHandle(const char *name) {
|
||||
return CvWlCore::getInstance().get_window_handle(name);
|
||||
}
|
||||
|
||||
CV_IMPL const char *cvGetWindowName(void *window_handle) {
|
||||
return CvWlCore::getInstance().get_window_name(window_handle).c_str();
|
||||
}
|
||||
|
||||
CV_IMPL void cvMoveWindow(const char *name, int x, int y) {
|
||||
void moveWindowImpl(const char *name, int x, int y) {
|
||||
CV_UNUSED(name);
|
||||
CV_UNUSED(x);
|
||||
CV_UNUSED(y);
|
||||
CV_LOG_ONCE_WARNING(nullptr, "Function not implemented: User cannot move window surfaces in Wayland");
|
||||
}
|
||||
|
||||
CV_IMPL void cvResizeWindow(const char *name, int width, int height) {
|
||||
void resizeWindowImpl(const char *name, int width, int height) {
|
||||
if (auto window = CvWlCore::getInstance().get_window(name))
|
||||
window->show(cv::Size(width, height));
|
||||
else
|
||||
throw_system_error("Could not get window name", errno)
|
||||
}
|
||||
|
||||
CV_IMPL int cvCreateTrackbar(const char *name_bar, const char *window_name, int *value, int count,
|
||||
CvTrackbarCallback on_change) {
|
||||
CV_UNUSED(name_bar);
|
||||
CV_UNUSED(window_name);
|
||||
CV_UNUSED(value);
|
||||
CV_UNUSED(count);
|
||||
CV_UNUSED(on_change);
|
||||
CV_LOG_ONCE_WARNING(nullptr, "Not implemented, use cvCreateTrackbar2");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
CV_IMPL int cvCreateTrackbar2(const char *trackbar_name, const char *window_name, int *val, int count,
|
||||
int createTrackbar2Impl(const char *trackbar_name, const char *window_name, int *val, int count,
|
||||
CvTrackbarCallback2 on_notify, void *userdata) {
|
||||
if (auto window = CvWlCore::getInstance().get_window(window_name))
|
||||
window->create_trackbar(trackbar_name, val, count, on_notify, userdata);
|
||||
@ -2368,7 +2344,7 @@ CV_IMPL int cvCreateTrackbar2(const char *trackbar_name, const char *window_name
|
||||
return 0;
|
||||
}
|
||||
|
||||
CV_IMPL int cvGetTrackbarPos(const char *trackbar_name, const char *window_name) {
|
||||
int getTrackbarPosImpl(const char *trackbar_name, const char *window_name) {
|
||||
if (auto window = CvWlCore::getInstance().get_window(window_name)) {
|
||||
auto trackbar_ptr = window->get_trackbar(trackbar_name);
|
||||
if (auto trackbar = trackbar_ptr.lock())
|
||||
@ -2378,7 +2354,7 @@ CV_IMPL int cvGetTrackbarPos(const char *trackbar_name, const char *window_name)
|
||||
return -1;
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarPos(const char *trackbar_name, const char *window_name, int pos) {
|
||||
void setTrackbarPosImpl(const char *trackbar_name, const char *window_name, int pos) {
|
||||
if (auto window = CvWlCore::getInstance().get_window(window_name)) {
|
||||
auto trackbar_ptr = window->get_trackbar(trackbar_name);
|
||||
if (auto trackbar = trackbar_ptr.lock())
|
||||
@ -2386,7 +2362,7 @@ CV_IMPL void cvSetTrackbarPos(const char *trackbar_name, const char *window_name
|
||||
}
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarMax(const char *trackbar_name, const char *window_name, int maxval) {
|
||||
void setTrackbarMaxImpl(const char *trackbar_name, const char *window_name, int maxval) {
|
||||
if (auto window = CvWlCore::getInstance().get_window(window_name)) {
|
||||
auto trackbar_ptr = window->get_trackbar(trackbar_name);
|
||||
if (auto trackbar = trackbar_ptr.lock())
|
||||
@ -2394,18 +2370,18 @@ CV_IMPL void cvSetTrackbarMax(const char *trackbar_name, const char *window_name
|
||||
}
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarMin(const char *trackbar_name, const char *window_name, int minval) {
|
||||
void setTrackbarMinImpl(const char *trackbar_name, const char *window_name, int minval) {
|
||||
CV_UNUSED(trackbar_name);
|
||||
CV_UNUSED(window_name);
|
||||
CV_UNUSED(minval);
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetMouseCallback(const char *window_name, CvMouseCallback on_mouse, void *param) {
|
||||
void setMouseCallbackImpl(const char *window_name, CvMouseCallback on_mouse, void *param) {
|
||||
if (auto window = CvWlCore::getInstance().get_window(window_name))
|
||||
window->set_mouse_callback(on_mouse, param);
|
||||
}
|
||||
|
||||
CV_IMPL void cvShowImage(const char *name, const CvArr *arr) {
|
||||
void showImageImpl(const char *name, const CvArr *arr) {
|
||||
auto cv_core = CvWlCore::getInstance();
|
||||
auto window = cv_core.get_window(name);
|
||||
if (!window) {
|
||||
@ -2423,7 +2399,7 @@ void setWindowTitle_WAYLAND(const cv::String &winname, const cv::String &title)
|
||||
window->set_title(title);
|
||||
}
|
||||
|
||||
CV_IMPL int cvWaitKey(int delay) {
|
||||
int waitKeyImpl(int delay) {
|
||||
int key = -1;
|
||||
auto limit = ch::duration_cast<ch::nanoseconds>(ch::milliseconds(delay));
|
||||
auto start_time = ch::duration_cast<ch::nanoseconds>(
|
||||
@ -2462,13 +2438,13 @@ CV_IMPL int cvWaitKey(int delay) {
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
CV_IMPL void cvSetOpenGlDrawCallback(const char *, CvOpenGlDrawCallback, void *) {
|
||||
void setOpenGLDrawCallbackImpl(const char *, CvOpenGlDrawCallback, void *) {
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetOpenGlContext(const char *) {
|
||||
void setOpenGLContextImpl(const char *) {
|
||||
}
|
||||
|
||||
CV_IMPL void cvUpdateWindow(const char *) {
|
||||
void updateWindowImpl(const char *) {
|
||||
}
|
||||
#endif // HAVE_OPENGL
|
||||
|
||||
|
@ -56,9 +56,9 @@ void cv::winrt_initContainer(::Windows::UI::Xaml::Controls::Panel^ _container)
|
||||
|
||||
/********************************** API Implementation *********************************************************/
|
||||
|
||||
CV_IMPL void cvShowImage(const char* name, const CvArr* arr)
|
||||
void showImageImpl(const char* name, const CvArr* arr)
|
||||
{
|
||||
CV_FUNCNAME("cvShowImage");
|
||||
CV_FUNCNAME("showImageImpl");
|
||||
|
||||
__BEGIN__;
|
||||
|
||||
@ -75,7 +75,7 @@ CV_IMPL void cvShowImage(const char* name, const CvArr* arr)
|
||||
CV_CALL(image = cvGetMat(arr, &stub));
|
||||
|
||||
//TODO: use approach from window_w32.cpp or cv::Mat(.., .., CV_8UC4)
|
||||
// and cvtColor(.., .., CV_BGR2BGRA) to convert image here
|
||||
// and cvtColor(.., .., cv::COLOR_BGR2BGRA) to convert image here
|
||||
// than beforehand.
|
||||
|
||||
window->updateImage(image);
|
||||
@ -84,9 +84,9 @@ CV_IMPL void cvShowImage(const char* name, const CvArr* arr)
|
||||
__END__;
|
||||
}
|
||||
|
||||
CV_IMPL int cvNamedWindow(const char* name, int flags)
|
||||
int namedWindowImpl(const char* name, int flags)
|
||||
{
|
||||
CV_FUNCNAME("cvNamedWindow");
|
||||
CV_FUNCNAME("namedWindowImpl");
|
||||
|
||||
if (!name)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL name");
|
||||
@ -96,9 +96,9 @@ CV_IMPL int cvNamedWindow(const char* name, int flags)
|
||||
return CV_OK;
|
||||
}
|
||||
|
||||
CV_IMPL void cvDestroyWindow(const char* name)
|
||||
void destroyWindowImpl(const char* name)
|
||||
{
|
||||
CV_FUNCNAME("cvDestroyWindow");
|
||||
CV_FUNCNAME("destroyWindowImpl");
|
||||
|
||||
if (!name)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL name string");
|
||||
@ -106,15 +106,15 @@ CV_IMPL void cvDestroyWindow(const char* name)
|
||||
HighguiBridge::getInstance().destroyWindow(name);
|
||||
}
|
||||
|
||||
CV_IMPL void cvDestroyAllWindows()
|
||||
void destroyAllWindowsImpl()
|
||||
{
|
||||
HighguiBridge::getInstance().destroyAllWindows();
|
||||
}
|
||||
|
||||
CV_IMPL int cvCreateTrackbar2(const char* trackbar_name, const char* window_name,
|
||||
int createTrackbar2Impl(const char* trackbar_name, const char* window_name,
|
||||
int* val, int count, CvTrackbarCallback2 on_notify, void* userdata)
|
||||
{
|
||||
CV_FUNCNAME("cvCreateTrackbar2");
|
||||
CV_FUNCNAME("createTrackbar2Impl");
|
||||
|
||||
int pos = 0;
|
||||
|
||||
@ -136,9 +136,9 @@ CV_IMPL int cvCreateTrackbar2(const char* trackbar_name, const char* window_name
|
||||
return CV_OK;
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarPos(const char* trackbar_name, const char* window_name, int pos)
|
||||
void setTrackbarPosImpl(const char* trackbar_name, const char* window_name, int pos)
|
||||
{
|
||||
CV_FUNCNAME("cvSetTrackbarPos");
|
||||
CV_FUNCNAME("setTrackbarPosImpl");
|
||||
|
||||
CvTrackbar* trackbar = 0;
|
||||
|
||||
@ -153,9 +153,9 @@ CV_IMPL void cvSetTrackbarPos(const char* trackbar_name, const char* window_name
|
||||
trackbar->setPosition(pos);
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarMax(const char* trackbar_name, const char* window_name, int maxval)
|
||||
void setTrackbarMaxImpl(const char* trackbar_name, const char* window_name, int maxval)
|
||||
{
|
||||
CV_FUNCNAME("cvSetTrackbarMax");
|
||||
CV_FUNCNAME("setTrackbarMaxImpl");
|
||||
|
||||
if (maxval >= 0)
|
||||
{
|
||||
@ -169,9 +169,9 @@ CV_IMPL void cvSetTrackbarMax(const char* trackbar_name, const char* window_name
|
||||
}
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetTrackbarMin(const char* trackbar_name, const char* window_name, int minval)
|
||||
void setTrackbarMinImpl(const char* trackbar_name, const char* window_name, int minval)
|
||||
{
|
||||
CV_FUNCNAME("cvSetTrackbarMin");
|
||||
CV_FUNCNAME("setTrackbarMinImpl");
|
||||
|
||||
if (minval >= 0)
|
||||
{
|
||||
@ -185,11 +185,11 @@ CV_IMPL void cvSetTrackbarMin(const char* trackbar_name, const char* window_name
|
||||
}
|
||||
}
|
||||
|
||||
CV_IMPL int cvGetTrackbarPos(const char* trackbar_name, const char* window_name)
|
||||
int getTrackbarPosImpl(const char* trackbar_name, const char* window_name)
|
||||
{
|
||||
int pos = -1;
|
||||
|
||||
CV_FUNCNAME("cvGetTrackbarPos");
|
||||
CV_FUNCNAME("getTrackbarPosImpl");
|
||||
|
||||
if (trackbar_name == 0 || window_name == 0)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL trackbar or window name");
|
||||
@ -204,9 +204,9 @@ CV_IMPL int cvGetTrackbarPos(const char* trackbar_name, const char* window_name)
|
||||
|
||||
/********************************** Not YET implemented API ****************************************************/
|
||||
|
||||
CV_IMPL int cvWaitKey(int delay)
|
||||
int waitKeyImpl(int delay)
|
||||
{
|
||||
CV_WINRT_NO_GUI_ERROR("cvWaitKey");
|
||||
CV_WINRT_NO_GUI_ERROR("waitKeyImpl");
|
||||
|
||||
// see https://msdn.microsoft.com/en-us/library/windows/desktop/ms724411(v=vs.85).aspx
|
||||
int time0 = GetTickCount64();
|
||||
@ -222,11 +222,11 @@ CV_IMPL int cvWaitKey(int delay)
|
||||
}
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetMouseCallback(const char* window_name, CvMouseCallback on_mouse, void* param)
|
||||
void setMouseCallbackImpl(const char* window_name, CvMouseCallback on_mouse, void* param)
|
||||
{
|
||||
CV_WINRT_NO_GUI_ERROR("cvSetMouseCallback");
|
||||
CV_WINRT_NO_GUI_ERROR("setMouseCallbackImpl");
|
||||
|
||||
CV_FUNCNAME("cvSetMouseCallback");
|
||||
CV_FUNCNAME("setMouseCallbackImpl");
|
||||
|
||||
if (!window_name)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL window name");
|
||||
@ -240,32 +240,14 @@ CV_IMPL void cvSetMouseCallback(const char* window_name, CvMouseCallback on_mous
|
||||
|
||||
/********************************** Disabled or not supported API **********************************************/
|
||||
|
||||
CV_IMPL void cvMoveWindow(const char* name, int x, int y)
|
||||
void moveWindowImpl(const char* name, int x, int y)
|
||||
{
|
||||
CV_WINRT_NO_GUI_ERROR("cvMoveWindow");
|
||||
CV_WINRT_NO_GUI_ERROR("moveWindowImpl");
|
||||
}
|
||||
|
||||
CV_IMPL void cvResizeWindow(const char* name, int width, int height)
|
||||
void resizeWindowImpl(const char* name, int width, int height)
|
||||
{
|
||||
CV_WINRT_NO_GUI_ERROR("cvResizeWindow");
|
||||
}
|
||||
|
||||
CV_IMPL int cvInitSystem(int, char**)
|
||||
{
|
||||
CV_WINRT_NO_GUI_ERROR("cvInitSystem");
|
||||
return CV_StsNotImplemented;
|
||||
}
|
||||
|
||||
CV_IMPL void* cvGetWindowHandle(const char*)
|
||||
{
|
||||
CV_WINRT_NO_GUI_ERROR("cvGetWindowHandle");
|
||||
return (void*) CV_StsNotImplemented;
|
||||
}
|
||||
|
||||
CV_IMPL const char* cvGetWindowName(void*)
|
||||
{
|
||||
CV_WINRT_NO_GUI_ERROR("cvGetWindowName");
|
||||
return (const char*) CV_StsNotImplemented;
|
||||
CV_WINRT_NO_GUI_ERROR("resizeWindowImpl");
|
||||
}
|
||||
|
||||
void cvSetModeWindow_WinRT(const char* name, double prop_value) {
|
||||
@ -276,8 +258,3 @@ double cvGetModeWindow_WinRT(const char* name) {
|
||||
CV_WINRT_NO_GUI_ERROR("cvGetModeWindow");
|
||||
return CV_StsNotImplemented;
|
||||
}
|
||||
|
||||
CV_IMPL int cvStartWindowThread() {
|
||||
CV_WINRT_NO_GUI_ERROR("cvStartWindowThread");
|
||||
return CV_StsNotImplemented;
|
||||
}
|
||||
|
@ -167,7 +167,7 @@ private:
|
||||
class CvWindow
|
||||
{
|
||||
public:
|
||||
CvWindow(cv::String name, int flag = CV_WINDOW_NORMAL);
|
||||
CvWindow(cv::String name, int flag = cv::WINDOW_NORMAL);
|
||||
~CvWindow();
|
||||
|
||||
/** @brief NOTE: prototype.
|
||||
|
@ -2351,7 +2351,7 @@ v/yr//0n63/XHTrw/wG8XoGIn8Sc7QAAAABJRU5ErkJggg==
|
||||
x="1408.5438"
|
||||
y="1445.6154"
|
||||
id="tspan10807"
|
||||
style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:17.5px;line-height:1.25;font-family:serif;-inkscape-font-specification:'serif Italic'">CV_WARP_FILL_OUTLIERS</tspan></text>
|
||||
style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:17.5px;line-height:1.25;font-family:serif;-inkscape-font-specification:'serif Italic'">cv::WARP_FILL_OUTLIERS</tspan></text>
|
||||
<path
|
||||
style="display:inline;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker5176)"
|
||||
d="m 1493.2407,1448.7527 c 199.5036,0.8614 218.4554,-34.5864 259.1291,-179.15"
|
||||
@ -3130,7 +3130,7 @@ v/yr//0n63/XHTrw/wG8XoGIn8Sc7QAAAABJRU5ErkJggg==
|
||||
x="1577.472"
|
||||
y="602.83765"
|
||||
id="tspan10807-6"
|
||||
style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:17.5px;line-height:1.25;font-family:serif;-inkscape-font-specification:'serif Italic'">CV_WARP_FILL_OUTLIERS</tspan></text>
|
||||
style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:17.5px;line-height:1.25;font-family:serif;-inkscape-font-specification:'serif Italic'">cv::WARP_FILL_OUTLIERS</tspan></text>
|
||||
<path
|
||||
style="display:inline;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker5176-89)"
|
||||
d="m 1473.2037,606.11056 c -21.2287,0.8614 17.5333,-133.30846 -27.5745,-179.15"
|
||||
@ -3236,7 +3236,7 @@ v/yr//0n63/XHTrw/wG8XoGIn8Sc7QAAAABJRU5ErkJggg==
|
||||
x="2178.0503"
|
||||
y="602.83765"
|
||||
id="tspan10807-6-4"
|
||||
style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:17.5px;line-height:1.25;font-family:serif;-inkscape-font-specification:'serif Italic'">CV_WARP_FILL_OUTLIERS</tspan></text>
|
||||
style="font-style:italic;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:17.5px;line-height:1.25;font-family:serif;-inkscape-font-specification:'serif Italic'">cv::WARP_FILL_OUTLIERS</tspan></text>
|
||||
<path
|
||||
style="display:inline;fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker5176-89-9)"
|
||||
d="m 2073.7821,606.11056 c -21.2287,0.8614 17.5333,-133.30846 -27.5745,-179.15"
|
||||
|
Before Width: | Height: | Size: 325 KiB After Width: | Height: | Size: 325 KiB |
@ -190,7 +190,6 @@ location of points on the plane, building special graphs (such as NNG,RNG), and
|
||||
@defgroup imgproc_feature Feature Detection
|
||||
@defgroup imgproc_object Object Detection
|
||||
@defgroup imgproc_segmentation Image Segmentation
|
||||
@defgroup imgproc_c C API
|
||||
@defgroup imgproc_hal Hardware Acceleration Layer
|
||||
@{
|
||||
@defgroup imgproc_hal_functions Functions
|
||||
@ -437,6 +436,8 @@ enum RetrievalModes {
|
||||
|
||||
//! the contour approximation algorithm
|
||||
enum ContourApproximationModes {
|
||||
/** TBD */
|
||||
CHAIN_CODE = 0,
|
||||
/** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and
|
||||
(x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is,
|
||||
max(abs(x1-x2),abs(y2-y1))==1. */
|
||||
@ -447,7 +448,9 @@ enum ContourApproximationModes {
|
||||
/** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
|
||||
CHAIN_APPROX_TC89_L1 = 3,
|
||||
/** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
|
||||
CHAIN_APPROX_TC89_KCOS = 4
|
||||
CHAIN_APPROX_TC89_KCOS = 4,
|
||||
/** TBD */
|
||||
LINK_RUNS = 5
|
||||
};
|
||||
|
||||
/** @brief Shape matching methods
|
||||
@ -722,7 +725,7 @@ enum ColorConversionCodes {
|
||||
|
||||
COLOR_YUV2GRAY_UYVY = 123,
|
||||
COLOR_YUV2GRAY_YUY2 = 124,
|
||||
//CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY,
|
||||
//COLOR_YUV2GRAY_VYUY = COLOR_YUV2GRAY_UYVY,
|
||||
COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
|
||||
COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
|
||||
COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
|
||||
|
@ -45,865 +45,4 @@
|
||||
|
||||
#include "opencv2/imgproc/types_c.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/** @addtogroup imgproc_c
|
||||
@{
|
||||
*/
|
||||
|
||||
/*********************** Background statistics accumulation *****************************/
|
||||
|
||||
/** @brief Adds image to accumulator
|
||||
@see cv::accumulate
|
||||
*/
|
||||
CVAPI(void) cvAcc( const CvArr* image, CvArr* sum,
|
||||
const CvArr* mask CV_DEFAULT(NULL) );
|
||||
|
||||
/** @brief Adds squared image to accumulator
|
||||
@see cv::accumulateSquare
|
||||
*/
|
||||
CVAPI(void) cvSquareAcc( const CvArr* image, CvArr* sqsum,
|
||||
const CvArr* mask CV_DEFAULT(NULL) );
|
||||
|
||||
/** @brief Adds a product of two images to accumulator
|
||||
@see cv::accumulateProduct
|
||||
*/
|
||||
CVAPI(void) cvMultiplyAcc( const CvArr* image1, const CvArr* image2, CvArr* acc,
|
||||
const CvArr* mask CV_DEFAULT(NULL) );
|
||||
|
||||
/** @brief Adds image to accumulator with weights: acc = acc*(1-alpha) + image*alpha
|
||||
@see cv::accumulateWeighted
|
||||
*/
|
||||
CVAPI(void) cvRunningAvg( const CvArr* image, CvArr* acc, double alpha,
|
||||
const CvArr* mask CV_DEFAULT(NULL) );
|
||||
|
||||
/****************************************************************************************\
|
||||
* Image Processing *
|
||||
\****************************************************************************************/
|
||||
|
||||
/** @brief Smooths the image in one of several ways.
|
||||
|
||||
@param src The source image
|
||||
@param dst The destination image
|
||||
@param smoothtype Type of the smoothing, see SmoothMethod_c
|
||||
@param size1 The first parameter of the smoothing operation, the aperture width. Must be a
|
||||
positive odd number (1, 3, 5, ...)
|
||||
@param size2 The second parameter of the smoothing operation, the aperture height. Ignored by
|
||||
CV_MEDIAN and CV_BILATERAL methods. In the case of simple scaled/non-scaled and Gaussian blur if
|
||||
size2 is zero, it is set to size1. Otherwise it must be a positive odd number.
|
||||
@param sigma1 In the case of a Gaussian parameter this parameter may specify Gaussian \f$\sigma\f$
|
||||
(standard deviation). If it is zero, it is calculated from the kernel size:
|
||||
\f[\sigma = 0.3 (n/2 - 1) + 0.8 \quad \text{where} \quad n= \begin{array}{l l} \mbox{\texttt{size1} for horizontal kernel} \\ \mbox{\texttt{size2} for vertical kernel} \end{array}\f]
|
||||
Using standard sigma for small kernels ( \f$3\times 3\f$ to \f$7\times 7\f$ ) gives better speed. If
|
||||
sigma1 is not zero, while size1 and size2 are zeros, the kernel size is calculated from the
|
||||
sigma (to provide accurate enough operation).
|
||||
@param sigma2 additional parameter for bilateral filtering
|
||||
|
||||
@see cv::GaussianBlur, cv::blur, cv::medianBlur, cv::bilateralFilter.
|
||||
*/
|
||||
CVAPI(void) cvSmooth( const CvArr* src, CvArr* dst,
|
||||
int smoothtype CV_DEFAULT(CV_GAUSSIAN),
|
||||
int size1 CV_DEFAULT(3),
|
||||
int size2 CV_DEFAULT(0),
|
||||
double sigma1 CV_DEFAULT(0),
|
||||
double sigma2 CV_DEFAULT(0));
|
||||
|
||||
/** @brief Convolves an image with the kernel.
|
||||
|
||||
@param src input image.
|
||||
@param dst output image of the same size and the same number of channels as src.
|
||||
@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
|
||||
matrix; if you want to apply different kernels to different channels, split the image into
|
||||
separate color planes using split and process them individually.
|
||||
@param anchor anchor of the kernel that indicates the relative position of a filtered point within
|
||||
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
|
||||
is at the kernel center.
|
||||
|
||||
@see cv::filter2D
|
||||
*/
|
||||
CVAPI(void) cvFilter2D( const CvArr* src, CvArr* dst, const CvMat* kernel,
|
||||
CvPoint anchor CV_DEFAULT(cvPoint(-1,-1)));
|
||||
|
||||
/** @brief Finds integral image: SUM(X,Y) = sum(x<X,y<Y)I(x,y)
|
||||
@see cv::integral
|
||||
*/
|
||||
CVAPI(void) cvIntegral( const CvArr* image, CvArr* sum,
|
||||
CvArr* sqsum CV_DEFAULT(NULL),
|
||||
CvArr* tilted_sum CV_DEFAULT(NULL));
|
||||
|
||||
/** @brief Smoothes the input image with gaussian kernel and then down-samples it.
|
||||
|
||||
dst_width = floor(src_width/2)[+1],
|
||||
dst_height = floor(src_height/2)[+1]
|
||||
@see cv::pyrDown
|
||||
*/
|
||||
CVAPI(void) cvPyrDown( const CvArr* src, CvArr* dst,
|
||||
int filter CV_DEFAULT(CV_GAUSSIAN_5x5) );
|
||||
|
||||
/** @brief Up-samples image and smoothes the result with gaussian kernel.
|
||||
|
||||
dst_width = src_width*2,
|
||||
dst_height = src_height*2
|
||||
@see cv::pyrUp
|
||||
*/
|
||||
CVAPI(void) cvPyrUp( const CvArr* src, CvArr* dst,
|
||||
int filter CV_DEFAULT(CV_GAUSSIAN_5x5) );
|
||||
|
||||
/** @brief Converts input array pixels from one color space to another
|
||||
@see cv::cvtColor
|
||||
*/
|
||||
CVAPI(void) cvCvtColor( const CvArr* src, CvArr* dst, int code );
|
||||
|
||||
|
||||
/** @brief Resizes image (input array is resized to fit the destination array)
|
||||
@see cv::resize
|
||||
*/
|
||||
CVAPI(void) cvResize( const CvArr* src, CvArr* dst,
|
||||
int interpolation CV_DEFAULT( CV_INTER_LINEAR ));
|
||||
|
||||
/** @brief Warps image with affine transform
|
||||
@note ::cvGetQuadrangleSubPix is similar to ::cvWarpAffine, but the outliers are extrapolated using
|
||||
replication border mode.
|
||||
@see cv::warpAffine
|
||||
*/
|
||||
CVAPI(void) cvWarpAffine( const CvArr* src, CvArr* dst, const CvMat* map_matrix,
|
||||
int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS),
|
||||
CvScalar fillval CV_DEFAULT(cvScalarAll(0)) );
|
||||
|
||||
|
||||
/** @brief Computes rotation_matrix matrix
|
||||
@see cv::getRotationMatrix2D
|
||||
*/
|
||||
CVAPI(CvMat*) cv2DRotationMatrix( CvPoint2D32f center, double angle,
|
||||
double scale, CvMat* map_matrix );
|
||||
|
||||
/** @brief Warps image with perspective (projective) transform
|
||||
@see cv::warpPerspective
|
||||
*/
|
||||
CVAPI(void) cvWarpPerspective( const CvArr* src, CvArr* dst, const CvMat* map_matrix,
|
||||
int flags CV_DEFAULT(CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS),
|
||||
CvScalar fillval CV_DEFAULT(cvScalarAll(0)) );
|
||||
|
||||
/** @brief Computes perspective transform matrix for mapping src[i] to dst[i] (i=0,1,2,3)
|
||||
@see cv::getPerspectiveTransform
|
||||
*/
|
||||
CVAPI(CvMat*) cvGetPerspectiveTransform( const CvPoint2D32f* src,
|
||||
const CvPoint2D32f* dst,
|
||||
CvMat* map_matrix );
|
||||
|
||||
/** @brief Returns a structuring element of the specified size and shape for morphological operations.
|
||||
|
||||
@note the created structuring element IplConvKernel\* element must be released in the end using
|
||||
`cvReleaseStructuringElement(&element)`.
|
||||
|
||||
@param cols Width of the structuring element
|
||||
@param rows Height of the structuring element
|
||||
@param anchor_x x-coordinate of the anchor
|
||||
@param anchor_y y-coordinate of the anchor
|
||||
@param shape element shape that could be one of the cv::MorphShapes_c
|
||||
@param values integer array of cols*rows elements that specifies the custom shape of the
|
||||
structuring element, when shape=CV_SHAPE_CUSTOM.
|
||||
|
||||
@see cv::getStructuringElement
|
||||
*/
|
||||
CVAPI(IplConvKernel*) cvCreateStructuringElementEx(
|
||||
int cols, int rows, int anchor_x, int anchor_y,
|
||||
int shape, int* values CV_DEFAULT(NULL) );
|
||||
|
||||
/** @brief releases structuring element
|
||||
@see cvCreateStructuringElementEx
|
||||
*/
|
||||
CVAPI(void) cvReleaseStructuringElement( IplConvKernel** element );
|
||||
|
||||
/** @brief erodes input image (applies minimum filter) one or more times.
|
||||
If element pointer is NULL, 3x3 rectangular element is used
|
||||
@see cv::erode
|
||||
*/
|
||||
CVAPI(void) cvErode( const CvArr* src, CvArr* dst,
|
||||
IplConvKernel* element CV_DEFAULT(NULL),
|
||||
int iterations CV_DEFAULT(1) );
|
||||
|
||||
/** @brief dilates input image (applies maximum filter) one or more times.
|
||||
|
||||
If element pointer is NULL, 3x3 rectangular element is used
|
||||
@see cv::dilate
|
||||
*/
|
||||
CVAPI(void) cvDilate( const CvArr* src, CvArr* dst,
|
||||
IplConvKernel* element CV_DEFAULT(NULL),
|
||||
int iterations CV_DEFAULT(1) );
|
||||
|
||||
/** @brief Performs complex morphological transformation
|
||||
@see cv::morphologyEx
|
||||
*/
|
||||
CVAPI(void) cvMorphologyEx( const CvArr* src, CvArr* dst,
|
||||
CvArr* temp, IplConvKernel* element,
|
||||
int operation, int iterations CV_DEFAULT(1) );
|
||||
|
||||
/** @brief Calculates all spatial and central moments up to the 3rd order
|
||||
@see cv::moments
|
||||
*/
|
||||
CVAPI(void) cvMoments( const CvArr* arr, CvMoments* moments, int binary CV_DEFAULT(0));
|
||||
|
||||
/** @brief Retrieve spatial moments */
|
||||
CVAPI(double) cvGetSpatialMoment( CvMoments* moments, int x_order, int y_order );
|
||||
/** @brief Retrieve central moments */
|
||||
CVAPI(double) cvGetCentralMoment( CvMoments* moments, int x_order, int y_order );
|
||||
/** @brief Retrieve normalized central moments */
|
||||
CVAPI(double) cvGetNormalizedCentralMoment( CvMoments* moments,
|
||||
int x_order, int y_order );
|
||||
|
||||
/** @brief Calculates 7 Hu's invariants from precalculated spatial and central moments
|
||||
@see cv::HuMoments
|
||||
*/
|
||||
CVAPI(void) cvGetHuMoments( CvMoments* moments, CvHuMoments* hu_moments );
|
||||
|
||||
/*********************************** data sampling **************************************/
|
||||
|
||||
/** @brief Retrieves quadrangle from the input array.
|
||||
|
||||
matrixarr = ( a11 a12 | b1 ) dst(x,y) <- src(A[x y]' + b)
|
||||
( a21 a22 | b2 ) (bilinear interpolation is used to retrieve pixels
|
||||
with fractional coordinates)
|
||||
@see cvWarpAffine
|
||||
*/
|
||||
CVAPI(void) cvGetQuadrangleSubPix( const CvArr* src, CvArr* dst,
|
||||
const CvMat* map_matrix );
|
||||
|
||||
/** @brief Computes earth mover distance between
|
||||
two weighted point sets (called signatures)
|
||||
@see cv::EMD
|
||||
*/
|
||||
CVAPI(float) cvCalcEMD2( const CvArr* signature1,
|
||||
const CvArr* signature2,
|
||||
int distance_type,
|
||||
CvDistanceFunction distance_func CV_DEFAULT(NULL),
|
||||
const CvArr* cost_matrix CV_DEFAULT(NULL),
|
||||
CvArr* flow CV_DEFAULT(NULL),
|
||||
float* lower_bound CV_DEFAULT(NULL),
|
||||
void* userdata CV_DEFAULT(NULL));
|
||||
|
||||
/****************************************************************************************\
|
||||
* Contours retrieving *
|
||||
\****************************************************************************************/
|
||||
|
||||
/** @brief Retrieves outer and optionally inner boundaries of white (non-zero) connected
|
||||
components in the black (zero) background
|
||||
@see cv::findContours, cvStartFindContours, cvFindNextContour, cvSubstituteContour, cvEndFindContours
|
||||
*/
|
||||
CVAPI(int) cvFindContours( CvArr* image, CvMemStorage* storage, CvSeq** first_contour,
|
||||
int header_size CV_DEFAULT(sizeof(CvContour)),
|
||||
int mode CV_DEFAULT(CV_RETR_LIST),
|
||||
int method CV_DEFAULT(CV_CHAIN_APPROX_SIMPLE),
|
||||
CvPoint offset CV_DEFAULT(cvPoint(0,0)));
|
||||
|
||||
/** @brief Initializes contour retrieving process.
|
||||
|
||||
Calls cvStartFindContours.
|
||||
Calls cvFindNextContour until null pointer is returned
|
||||
or some other condition becomes true.
|
||||
Calls cvEndFindContours at the end.
|
||||
@see cvFindContours
|
||||
*/
|
||||
CVAPI(CvContourScanner) cvStartFindContours( CvArr* image, CvMemStorage* storage,
|
||||
int header_size CV_DEFAULT(sizeof(CvContour)),
|
||||
int mode CV_DEFAULT(CV_RETR_LIST),
|
||||
int method CV_DEFAULT(CV_CHAIN_APPROX_SIMPLE),
|
||||
CvPoint offset CV_DEFAULT(cvPoint(0,0)));
|
||||
|
||||
/** @brief Retrieves next contour
|
||||
@see cvFindContours
|
||||
*/
|
||||
CVAPI(CvSeq*) cvFindNextContour( CvContourScanner scanner );
|
||||
|
||||
|
||||
/** @brief Substitutes the last retrieved contour with the new one
|
||||
|
||||
(if the substitutor is null, the last retrieved contour is removed from the tree)
|
||||
@see cvFindContours
|
||||
*/
|
||||
CVAPI(void) cvSubstituteContour( CvContourScanner scanner, CvSeq* new_contour );
|
||||
|
||||
|
||||
/** @brief Releases contour scanner and returns pointer to the first outer contour
|
||||
@see cvFindContours
|
||||
*/
|
||||
CVAPI(CvSeq*) cvEndFindContours( CvContourScanner* scanner );
|
||||
|
||||
/** @brief Approximates Freeman chain(s) with a polygonal curve.
|
||||
|
||||
This is a standalone contour approximation routine, not represented in the new interface. When
|
||||
cvFindContours retrieves contours as Freeman chains, it calls the function to get approximated
|
||||
contours, represented as polygons.
|
||||
|
||||
@param src_seq Pointer to the approximated Freeman chain that can refer to other chains.
|
||||
@param storage Storage location for the resulting polylines.
|
||||
@param method Approximation method (see the description of the function :ocvFindContours ).
|
||||
@param parameter Method parameter (not used now).
|
||||
@param minimal_perimeter Approximates only those contours whose perimeters are not less than
|
||||
minimal_perimeter . Other chains are removed from the resulting structure.
|
||||
@param recursive Recursion flag. If it is non-zero, the function approximates all chains that can
|
||||
be obtained from chain by using the h_next or v_next links. Otherwise, the single input chain is
|
||||
approximated.
|
||||
@see cvStartReadChainPoints, cvReadChainPoint
|
||||
*/
|
||||
CVAPI(CvSeq*) cvApproxChains( CvSeq* src_seq, CvMemStorage* storage,
|
||||
int method CV_DEFAULT(CV_CHAIN_APPROX_SIMPLE),
|
||||
double parameter CV_DEFAULT(0),
|
||||
int minimal_perimeter CV_DEFAULT(0),
|
||||
int recursive CV_DEFAULT(0));
|
||||
|
||||
/** @brief Initializes Freeman chain reader.
|
||||
|
||||
The reader is used to iteratively get coordinates of all the chain points.
|
||||
If the Freeman codes should be read as is, a simple sequence reader should be used
|
||||
@see cvApproxChains
|
||||
*/
|
||||
CVAPI(void) cvStartReadChainPoints( CvChain* chain, CvChainPtReader* reader );
|
||||
|
||||
/** @brief Retrieves the next chain point
|
||||
@see cvApproxChains
|
||||
*/
|
||||
CVAPI(CvPoint) cvReadChainPoint( CvChainPtReader* reader );
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* Contour Processing and Shape Analysis *
|
||||
\****************************************************************************************/
|
||||
|
||||
/** @brief Approximates a single polygonal curve (contour) or
|
||||
a tree of polygonal curves (contours)
|
||||
@see cv::approxPolyDP
|
||||
*/
|
||||
CVAPI(CvSeq*) cvApproxPoly( const void* src_seq,
|
||||
int header_size, CvMemStorage* storage,
|
||||
int method, double eps,
|
||||
int recursive CV_DEFAULT(0));
|
||||
|
||||
/** @brief Calculates perimeter of a contour or length of a part of contour
|
||||
@see cv::arcLength
|
||||
*/
|
||||
CVAPI(double) cvArcLength( const void* curve,
|
||||
CvSlice slice CV_DEFAULT(CV_WHOLE_SEQ),
|
||||
int is_closed CV_DEFAULT(-1));
|
||||
|
||||
/** same as cvArcLength for closed contour
|
||||
*/
|
||||
CV_INLINE double cvContourPerimeter( const void* contour )
|
||||
{
|
||||
return cvArcLength( contour, CV_WHOLE_SEQ, 1 );
|
||||
}
|
||||
|
||||
|
||||
/** @brief Calculates contour bounding rectangle (update=1) or
|
||||
just retrieves pre-calculated rectangle (update=0)
|
||||
@see cv::boundingRect
|
||||
*/
|
||||
CVAPI(CvRect) cvBoundingRect( CvArr* points, int update CV_DEFAULT(0) );
|
||||
|
||||
/** @brief Calculates area of a contour or contour segment
|
||||
@see cv::contourArea
|
||||
*/
|
||||
CVAPI(double) cvContourArea( const CvArr* contour,
|
||||
CvSlice slice CV_DEFAULT(CV_WHOLE_SEQ),
|
||||
int oriented CV_DEFAULT(0));
|
||||
|
||||
/** @brief Calculates exact convex hull of 2d point set
|
||||
@see cv::convexHull
|
||||
*/
|
||||
CVAPI(CvSeq*) cvConvexHull2( const CvArr* input,
|
||||
void* hull_storage CV_DEFAULT(NULL),
|
||||
int orientation CV_DEFAULT(CV_CLOCKWISE),
|
||||
int return_points CV_DEFAULT(0));
|
||||
|
||||
/** @brief Checks whether the contour is convex or not (returns 1 if convex, 0 if not)
|
||||
@see cv::isContourConvex
|
||||
*/
|
||||
CVAPI(int) cvCheckContourConvexity( const CvArr* contour );
|
||||
|
||||
|
||||
/** @brief Initializes sequence header for a matrix (column or row vector) of points
|
||||
|
||||
a wrapper for cvMakeSeqHeaderForArray (it does not initialize bounding rectangle!!!) */
|
||||
CVAPI(CvSeq*) cvPointSeqFromMat( int seq_kind, const CvArr* mat,
|
||||
CvContour* contour_header,
|
||||
CvSeqBlock* block );
|
||||
|
||||
/****************************************************************************************\
|
||||
* Histogram functions *
|
||||
\****************************************************************************************/
|
||||
|
||||
/** @brief Creates a histogram.
|
||||
|
||||
The function creates a histogram of the specified size and returns a pointer to the created
|
||||
histogram. If the array ranges is 0, the histogram bin ranges must be specified later via the
|
||||
function cvSetHistBinRanges. Though cvCalcHist and cvCalcBackProject may process 8-bit images
|
||||
without setting bin ranges, they assume they are equally spaced in 0 to 255 bins.
|
||||
|
||||
@param dims Number of histogram dimensions.
|
||||
@param sizes Array of the histogram dimension sizes.
|
||||
@param type Histogram representation format. CV_HIST_ARRAY means that the histogram data is
|
||||
represented as a multi-dimensional dense array CvMatND. CV_HIST_SPARSE means that histogram data
|
||||
is represented as a multi-dimensional sparse array CvSparseMat.
|
||||
@param ranges Array of ranges for the histogram bins. Its meaning depends on the uniform parameter
|
||||
value. The ranges are used when the histogram is calculated or backprojected to determine which
|
||||
histogram bin corresponds to which value/tuple of values from the input image(s).
|
||||
@param uniform Uniformity flag. If not zero, the histogram has evenly spaced bins and for every
|
||||
\f$0<=i<cDims\f$ ranges[i] is an array of two numbers: lower and upper boundaries for the i-th
|
||||
histogram dimension. The whole range [lower,upper] is then split into dims[i] equal parts to
|
||||
determine the i-th input tuple value ranges for every histogram bin. And if uniform=0 , then the
|
||||
i-th element of the ranges array contains dims[i]+1 elements: \f$\texttt{lower}_0,
|
||||
\texttt{upper}_0, \texttt{lower}_1, \texttt{upper}_1 = \texttt{lower}_2,
|
||||
...
|
||||
\texttt{upper}_{dims[i]-1}\f$ where \f$\texttt{lower}_j\f$ and \f$\texttt{upper}_j\f$ are lower
|
||||
and upper boundaries of the i-th input tuple value for the j-th bin, respectively. In either
|
||||
case, the input values that are beyond the specified range for a histogram bin are not counted
|
||||
by cvCalcHist and filled with 0 by cvCalcBackProject.
|
||||
*/
|
||||
CVAPI(CvHistogram*) cvCreateHist( int dims, int* sizes, int type,
|
||||
float** ranges CV_DEFAULT(NULL),
|
||||
int uniform CV_DEFAULT(1));
|
||||
|
||||
/** @brief Sets the bounds of the histogram bins.
|
||||
|
||||
This is a standalone function for setting bin ranges in the histogram. For a more detailed
|
||||
description of the parameters ranges and uniform, see the :ocvCalcHist function that can initialize
|
||||
the ranges as well. Ranges for the histogram bins must be set before the histogram is calculated or
|
||||
the backproject of the histogram is calculated.
|
||||
|
||||
@param hist Histogram.
|
||||
@param ranges Array of bin ranges arrays. See :ocvCreateHist for details.
|
||||
@param uniform Uniformity flag. See :ocvCreateHist for details.
|
||||
*/
|
||||
CVAPI(void) cvSetHistBinRanges( CvHistogram* hist, float** ranges,
|
||||
int uniform CV_DEFAULT(1));
|
||||
|
||||
/** @brief Makes a histogram out of an array.
|
||||
|
||||
The function initializes the histogram, whose header and bins are allocated by the user.
|
||||
cvReleaseHist does not need to be called afterwards. Only dense histograms can be initialized this
|
||||
way. The function returns hist.
|
||||
|
||||
@param dims Number of the histogram dimensions.
|
||||
@param sizes Array of the histogram dimension sizes.
|
||||
@param hist Histogram header initialized by the function.
|
||||
@param data Array used to store histogram bins.
|
||||
@param ranges Histogram bin ranges. See cvCreateHist for details.
|
||||
@param uniform Uniformity flag. See cvCreateHist for details.
|
||||
*/
|
||||
CVAPI(CvHistogram*) cvMakeHistHeaderForArray(
|
||||
int dims, int* sizes, CvHistogram* hist,
|
||||
float* data, float** ranges CV_DEFAULT(NULL),
|
||||
int uniform CV_DEFAULT(1));
|
||||
|
||||
/** @brief Releases the histogram.
|
||||
|
||||
The function releases the histogram (header and the data). The pointer to the histogram is cleared
|
||||
by the function. If \*hist pointer is already NULL, the function does nothing.
|
||||
|
||||
@param hist Double pointer to the released histogram.
|
||||
*/
|
||||
CVAPI(void) cvReleaseHist( CvHistogram** hist );
|
||||
|
||||
/** @brief Clears the histogram.
|
||||
|
||||
The function sets all of the histogram bins to 0 in case of a dense histogram and removes all
|
||||
histogram bins in case of a sparse array.
|
||||
|
||||
@param hist Histogram.
|
||||
*/
|
||||
CVAPI(void) cvClearHist( CvHistogram* hist );
|
||||
|
||||
/** @brief Finds the minimum and maximum histogram bins.
|
||||
|
||||
The function finds the minimum and maximum histogram bins and their positions. All of output
|
||||
arguments are optional. Among several extremas with the same value the ones with the minimum index
|
||||
(in the lexicographical order) are returned. In case of several maximums or minimums, the earliest
|
||||
in the lexicographical order (extrema locations) is returned.
|
||||
|
||||
@param hist Histogram.
|
||||
@param min_value Pointer to the minimum value of the histogram.
|
||||
@param max_value Pointer to the maximum value of the histogram.
|
||||
@param min_idx Pointer to the array of coordinates for the minimum.
|
||||
@param max_idx Pointer to the array of coordinates for the maximum.
|
||||
*/
|
||||
CVAPI(void) cvGetMinMaxHistValue( const CvHistogram* hist,
|
||||
float* min_value, float* max_value,
|
||||
int* min_idx CV_DEFAULT(NULL),
|
||||
int* max_idx CV_DEFAULT(NULL));
|
||||
|
||||
|
||||
/** @brief Normalizes the histogram.
|
||||
|
||||
The function normalizes the histogram bins by scaling them so that the sum of the bins becomes equal
|
||||
to factor.
|
||||
|
||||
@param hist Pointer to the histogram.
|
||||
@param factor Normalization factor.
|
||||
*/
|
||||
CVAPI(void) cvNormalizeHist( CvHistogram* hist, double factor );
|
||||
|
||||
|
||||
/** @brief Thresholds the histogram.
|
||||
|
||||
The function clears histogram bins that are below the specified threshold.
|
||||
|
||||
@param hist Pointer to the histogram.
|
||||
@param threshold Threshold level.
|
||||
*/
|
||||
CVAPI(void) cvThreshHist( CvHistogram* hist, double threshold );
|
||||
|
||||
|
||||
/** Compares two histogram */
|
||||
CVAPI(double) cvCompareHist( const CvHistogram* hist1,
|
||||
const CvHistogram* hist2,
|
||||
int method);
|
||||
|
||||
/** @brief Copies a histogram.
|
||||
|
||||
The function makes a copy of the histogram. If the second histogram pointer \*dst is NULL, a new
|
||||
histogram of the same size as src is created. Otherwise, both histograms must have equal types and
|
||||
sizes. Then the function copies the bin values of the source histogram to the destination histogram
|
||||
and sets the same bin value ranges as in src.
|
||||
|
||||
@param src Source histogram.
|
||||
@param dst Pointer to the destination histogram.
|
||||
*/
|
||||
CVAPI(void) cvCopyHist( const CvHistogram* src, CvHistogram** dst );
|
||||
|
||||
|
||||
/** @brief Calculates bayesian probabilistic histograms
|
||||
(each or src and dst is an array of _number_ histograms */
|
||||
CVAPI(void) cvCalcBayesianProb( CvHistogram** src, int number,
|
||||
CvHistogram** dst);
|
||||
|
||||
/** @brief Calculates array histogram
|
||||
@see cv::calcHist
|
||||
*/
|
||||
CVAPI(void) cvCalcArrHist( CvArr** arr, CvHistogram* hist,
|
||||
int accumulate CV_DEFAULT(0),
|
||||
const CvArr* mask CV_DEFAULT(NULL) );
|
||||
|
||||
/** @overload */
|
||||
CV_INLINE void cvCalcHist( IplImage** image, CvHistogram* hist,
|
||||
int accumulate CV_DEFAULT(0),
|
||||
const CvArr* mask CV_DEFAULT(NULL) )
|
||||
{
|
||||
cvCalcArrHist( (CvArr**)image, hist, accumulate, mask );
|
||||
}
|
||||
|
||||
/** @brief Calculates back project
|
||||
@see cvCalcBackProject, cv::calcBackProject
|
||||
*/
|
||||
CVAPI(void) cvCalcArrBackProject( CvArr** image, CvArr* dst,
|
||||
const CvHistogram* hist );
|
||||
|
||||
#define cvCalcBackProject(image, dst, hist) cvCalcArrBackProject((CvArr**)image, dst, hist)
|
||||
|
||||
|
||||
/** @brief Locates a template within an image by using a histogram comparison.
|
||||
|
||||
The function calculates the back projection by comparing histograms of the source image patches with
|
||||
the given histogram. The function is similar to matchTemplate, but instead of comparing the raster
|
||||
patch with all its possible positions within the search window, the function CalcBackProjectPatch
|
||||
compares histograms. See the algorithm diagram below:
|
||||
|
||||
![image](pics/backprojectpatch.png)
|
||||
|
||||
@param image Source images (though, you may pass CvMat\*\* as well).
|
||||
@param dst Destination image.
|
||||
@param range
|
||||
@param hist Histogram.
|
||||
@param method Comparison method passed to cvCompareHist (see the function description).
|
||||
@param factor Normalization factor for histograms that affects the normalization scale of the
|
||||
destination image. Pass 1 if not sure.
|
||||
|
||||
@see cvCalcBackProjectPatch
|
||||
*/
|
||||
CVAPI(void) cvCalcArrBackProjectPatch( CvArr** image, CvArr* dst, CvSize range,
|
||||
CvHistogram* hist, int method,
|
||||
double factor );
|
||||
|
||||
#define cvCalcBackProjectPatch( image, dst, range, hist, method, factor ) \
|
||||
cvCalcArrBackProjectPatch( (CvArr**)image, dst, range, hist, method, factor )
|
||||
|
||||
|
||||
/** @brief equalizes histogram of 8-bit single-channel image
|
||||
@see cv::equalizeHist
|
||||
*/
|
||||
CVAPI(void) cvEqualizeHist( const CvArr* src, CvArr* dst );
|
||||
|
||||
|
||||
/** @brief Applies distance transform to binary image
|
||||
@see cv::distanceTransform
|
||||
*/
|
||||
CVAPI(void) cvDistTransform( const CvArr* src, CvArr* dst,
|
||||
int distance_type CV_DEFAULT(CV_DIST_L2),
|
||||
int mask_size CV_DEFAULT(3),
|
||||
const float* mask CV_DEFAULT(NULL),
|
||||
CvArr* labels CV_DEFAULT(NULL),
|
||||
int labelType CV_DEFAULT(CV_DIST_LABEL_CCOMP));
|
||||
|
||||
|
||||
/** @brief Applies fixed-level threshold to grayscale image.
|
||||
|
||||
This is a basic operation applied before retrieving contours
|
||||
@see cv::threshold
|
||||
*/
|
||||
CVAPI(double) cvThreshold( const CvArr* src, CvArr* dst,
|
||||
double threshold, double max_value,
|
||||
int threshold_type );
|
||||
|
||||
|
||||
/** @brief Fills the connected component until the color difference gets large enough
|
||||
@see cv::floodFill
|
||||
*/
|
||||
CVAPI(void) cvFloodFill( CvArr* image, CvPoint seed_point,
|
||||
CvScalar new_val, CvScalar lo_diff CV_DEFAULT(cvScalarAll(0)),
|
||||
CvScalar up_diff CV_DEFAULT(cvScalarAll(0)),
|
||||
CvConnectedComp* comp CV_DEFAULT(NULL),
|
||||
int flags CV_DEFAULT(4),
|
||||
CvArr* mask CV_DEFAULT(NULL));
|
||||
|
||||
/****************************************************************************************\
|
||||
* Feature detection *
|
||||
\****************************************************************************************/
|
||||
|
||||
/** @brief Calculates eigen values and vectors of 2x2
|
||||
gradient covariation matrix at every image pixel
|
||||
@see cv::cornerEigenValsAndVecs
|
||||
*/
|
||||
CVAPI(void) cvCornerEigenValsAndVecs( const CvArr* image, CvArr* eigenvv,
|
||||
int block_size, int aperture_size CV_DEFAULT(3) );
|
||||
|
||||
/** @brief Calculates minimal eigenvalue for 2x2 gradient covariation matrix at
|
||||
every image pixel
|
||||
@see cv::cornerMinEigenVal
|
||||
*/
|
||||
CVAPI(void) cvCornerMinEigenVal( const CvArr* image, CvArr* eigenval,
|
||||
int block_size, int aperture_size CV_DEFAULT(3) );
|
||||
|
||||
|
||||
/** @brief Finds lines on binary image using one of several methods.
|
||||
|
||||
line_storage is either memory storage or 1 x _max number of lines_ CvMat, its
|
||||
number of columns is changed by the function.
|
||||
method is one of CV_HOUGH_*;
|
||||
rho, theta and threshold are used for each of those methods;
|
||||
param1 ~ line length, param2 ~ line gap - for probabilistic,
|
||||
param1 ~ srn, param2 ~ stn - for multi-scale
|
||||
@see cv::HoughLines
|
||||
*/
|
||||
CVAPI(CvSeq*) cvHoughLines2( CvArr* image, void* line_storage, int method,
|
||||
double rho, double theta, int threshold,
|
||||
double param1 CV_DEFAULT(0), double param2 CV_DEFAULT(0),
|
||||
double min_theta CV_DEFAULT(0), double max_theta CV_DEFAULT(CV_PI));
|
||||
|
||||
/** @brief Finds circles in the image
|
||||
@see cv::HoughCircles
|
||||
*/
|
||||
CVAPI(CvSeq*) cvHoughCircles( CvArr* image, void* circle_storage,
|
||||
int method, double dp, double min_dist,
|
||||
double param1 CV_DEFAULT(100),
|
||||
double param2 CV_DEFAULT(100),
|
||||
int min_radius CV_DEFAULT(0),
|
||||
int max_radius CV_DEFAULT(0));
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* Drawing *
|
||||
\****************************************************************************************/
|
||||
|
||||
/****************************************************************************************\
|
||||
* Drawing functions work with images/matrices of arbitrary type. *
|
||||
* For color images the channel order is BGR[A] *
|
||||
* Antialiasing is supported only for 8-bit image now. *
|
||||
* All the functions include parameter color that means rgb value (that may be *
|
||||
* constructed with CV_RGB macro) for color images and brightness *
|
||||
* for grayscale images. *
|
||||
* If a drawn figure is partially or completely outside of the image, it is clipped.*
|
||||
\****************************************************************************************/
|
||||
|
||||
#define CV_FILLED -1
|
||||
|
||||
#define CV_AA 16
|
||||
|
||||
/** @brief Draws 4-connected, 8-connected or antialiased line segment connecting two points
|
||||
@see cv::line
|
||||
*/
|
||||
CVAPI(void) cvLine( CvArr* img, CvPoint pt1, CvPoint pt2,
|
||||
CvScalar color, int thickness CV_DEFAULT(1),
|
||||
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) );
|
||||
|
||||
/** @brief Draws a rectangle given two opposite corners of the rectangle (pt1 & pt2)
|
||||
|
||||
if thickness<0 (e.g. thickness == CV_FILLED), the filled box is drawn
|
||||
@see cv::rectangle
|
||||
*/
|
||||
CVAPI(void) cvRectangle( CvArr* img, CvPoint pt1, CvPoint pt2,
|
||||
CvScalar color, int thickness CV_DEFAULT(1),
|
||||
int line_type CV_DEFAULT(8),
|
||||
int shift CV_DEFAULT(0));
|
||||
|
||||
|
||||
/** @brief Draws a circle with specified center and radius.
|
||||
|
||||
Thickness works in the same way as with cvRectangle
|
||||
@see cv::circle
|
||||
*/
|
||||
CVAPI(void) cvCircle( CvArr* img, CvPoint center, int radius,
|
||||
CvScalar color, int thickness CV_DEFAULT(1),
|
||||
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0));
|
||||
|
||||
/** @brief Draws ellipse outline, filled ellipse, elliptic arc or filled elliptic sector
|
||||
|
||||
depending on _thickness_, _start_angle_ and _end_angle_ parameters. The resultant figure
|
||||
is rotated by _angle_. All the angles are in degrees
|
||||
@see cv::ellipse
|
||||
*/
|
||||
CVAPI(void) cvEllipse( CvArr* img, CvPoint center, CvSize axes,
|
||||
double angle, double start_angle, double end_angle,
|
||||
CvScalar color, int thickness CV_DEFAULT(1),
|
||||
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0));
|
||||
|
||||
|
||||
/** @brief Fills an area bounded by one or more arbitrary polygons
|
||||
@see cv::fillPoly
|
||||
*/
|
||||
CVAPI(void) cvFillPoly( CvArr* img, CvPoint** pts, const int* npts,
|
||||
int contours, CvScalar color,
|
||||
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) );
|
||||
|
||||
/** @brief Draws one or more polygonal curves
|
||||
@see cv::polylines
|
||||
*/
|
||||
CVAPI(void) cvPolyLine( CvArr* img, CvPoint** pts, const int* npts, int contours,
|
||||
int is_closed, CvScalar color, int thickness CV_DEFAULT(1),
|
||||
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) );
|
||||
|
||||
|
||||
/** @brief Initializes line iterator.
|
||||
|
||||
Initially, line_iterator->ptr will point to pt1 (or pt2, see left_to_right description) location in
|
||||
the image. Returns the number of pixels on the line between the ending points.
|
||||
@see cv::LineIterator
|
||||
*/
|
||||
CVAPI(int) cvInitLineIterator( const CvArr* image, CvPoint pt1, CvPoint pt2,
|
||||
CvLineIterator* line_iterator,
|
||||
int connectivity CV_DEFAULT(8),
|
||||
int left_to_right CV_DEFAULT(0));
|
||||
|
||||
#define CV_NEXT_LINE_POINT( line_iterator ) \
|
||||
{ \
|
||||
int _line_iterator_mask = (line_iterator).err < 0 ? -1 : 0; \
|
||||
(line_iterator).err += (line_iterator).minus_delta + \
|
||||
((line_iterator).plus_delta & _line_iterator_mask); \
|
||||
(line_iterator).ptr += (line_iterator).minus_step + \
|
||||
((line_iterator).plus_step & _line_iterator_mask); \
|
||||
}
|
||||
|
||||
|
||||
#define CV_FONT_HERSHEY_SIMPLEX 0
|
||||
#define CV_FONT_HERSHEY_PLAIN 1
|
||||
#define CV_FONT_HERSHEY_DUPLEX 2
|
||||
#define CV_FONT_HERSHEY_COMPLEX 3
|
||||
#define CV_FONT_HERSHEY_TRIPLEX 4
|
||||
#define CV_FONT_HERSHEY_COMPLEX_SMALL 5
|
||||
#define CV_FONT_HERSHEY_SCRIPT_SIMPLEX 6
|
||||
#define CV_FONT_HERSHEY_SCRIPT_COMPLEX 7
|
||||
|
||||
#define CV_FONT_ITALIC 16
|
||||
|
||||
#define CV_FONT_VECTOR0 CV_FONT_HERSHEY_SIMPLEX
|
||||
|
||||
|
||||
/** Font structure */
|
||||
typedef struct CvFont
|
||||
{
|
||||
const char* nameFont; //Qt:nameFont
|
||||
CvScalar color; //Qt:ColorFont -> cvScalar(blue_component, green_component, red_component[, alpha_component])
|
||||
int font_face; //Qt: bool italic /** =CV_FONT_* */
|
||||
const int* ascii; //!< font data and metrics
|
||||
const int* greek;
|
||||
const int* cyrillic;
|
||||
float hscale, vscale;
|
||||
float shear; //!< slope coefficient: 0 - normal, >0 - italic
|
||||
int thickness; //!< Qt: weight /** letters thickness */
|
||||
float dx; //!< horizontal interval between letters
|
||||
int line_type; //!< Qt: PointSize
|
||||
}
|
||||
CvFont;
|
||||
|
||||
/** @brief Initializes font structure (OpenCV 1.x API).
|
||||
|
||||
The function initializes the font structure that can be passed to text rendering functions.
|
||||
|
||||
@param font Pointer to the font structure initialized by the function
|
||||
@param font_face Font name identifier. See cv::HersheyFonts and corresponding old CV_* identifiers.
|
||||
@param hscale Horizontal scale. If equal to 1.0f , the characters have the original width
|
||||
depending on the font type. If equal to 0.5f , the characters are of half the original width.
|
||||
@param vscale Vertical scale. If equal to 1.0f , the characters have the original height depending
|
||||
on the font type. If equal to 0.5f , the characters are of half the original height.
|
||||
@param shear Approximate tangent of the character slope relative to the vertical line. A zero
|
||||
value means a non-italic font, 1.0f means about a 45 degree slope, etc.
|
||||
@param thickness Thickness of the text strokes
|
||||
@param line_type Type of the strokes, see line description
|
||||
|
||||
@sa cvPutText
|
||||
*/
|
||||
CVAPI(void) cvInitFont( CvFont* font, int font_face,
|
||||
double hscale, double vscale,
|
||||
double shear CV_DEFAULT(0),
|
||||
int thickness CV_DEFAULT(1),
|
||||
int line_type CV_DEFAULT(8));
|
||||
|
||||
CV_INLINE CvFont cvFont( double scale, int thickness CV_DEFAULT(1) )
|
||||
{
|
||||
CvFont font;
|
||||
cvInitFont( &font, CV_FONT_HERSHEY_PLAIN, scale, scale, 0, thickness, CV_AA );
|
||||
return font;
|
||||
}
|
||||
|
||||
/** @brief Renders text stroke with specified font and color at specified location.
|
||||
CvFont should be initialized with cvInitFont
|
||||
@see cvInitFont, cvGetTextSize, cvFont, cv::putText
|
||||
*/
|
||||
CVAPI(void) cvPutText( CvArr* img, const char* text, CvPoint org,
|
||||
const CvFont* font, CvScalar color );
|
||||
|
||||
|
||||
/** @brief Unpacks color value
|
||||
|
||||
if arrtype is CV_8UC?, _color_ is treated as packed color value, otherwise the first channels
|
||||
(depending on arrtype) of destination scalar are set to the same value = _color_
|
||||
*/
|
||||
CVAPI(CvScalar) cvColorToScalar( double packed_color, int arrtype );
|
||||
|
||||
/** @brief Returns the polygon points which make up the given ellipse.
|
||||
|
||||
The ellipse is define by the box of size 'axes' rotated 'angle' around the 'center'. A partial
|
||||
sweep of the ellipse arc can be done by specifying arc_start and arc_end to be something other than
|
||||
0 and 360, respectively. The input array 'pts' must be large enough to hold the result. The total
|
||||
number of points stored into 'pts' is returned by this function.
|
||||
@see cv::ellipse2Poly
|
||||
*/
|
||||
CVAPI(int) cvEllipse2Poly( CvPoint center, CvSize axes,
|
||||
int angle, int arc_start, int arc_end, CvPoint * pts, int delta );
|
||||
|
||||
/** @brief Draws contour outlines or filled interiors on the image
|
||||
@see cv::drawContours
|
||||
*/
|
||||
CVAPI(void) cvDrawContours( CvArr *img, CvSeq* contour,
|
||||
CvScalar external_color, CvScalar hole_color,
|
||||
int max_level, int thickness CV_DEFAULT(1),
|
||||
int line_type CV_DEFAULT(8),
|
||||
CvPoint offset CV_DEFAULT(cvPoint(0,0)));
|
||||
|
||||
/** @} */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -45,615 +45,4 @@
|
||||
|
||||
#include "opencv2/core/core_c.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/** @addtogroup imgproc_c
|
||||
@{
|
||||
*/
|
||||
|
||||
/** Connected component structure */
|
||||
typedef struct CvConnectedComp
|
||||
{
|
||||
double area; /**<area of the connected component */
|
||||
CvScalar value; /**<average color of the connected component */
|
||||
CvRect rect; /**<ROI of the component */
|
||||
CvSeq* contour; /**<optional component boundary
|
||||
(the contour might have child contours corresponding to the holes)*/
|
||||
}
|
||||
CvConnectedComp;
|
||||
|
||||
/** Image smooth methods */
|
||||
enum SmoothMethod_c
|
||||
{
|
||||
/** linear convolution with \f$\texttt{size1}\times\texttt{size2}\f$ box kernel (all 1's). If
|
||||
you want to smooth different pixels with different-size box kernels, you can use the integral
|
||||
image that is computed using integral */
|
||||
CV_BLUR_NO_SCALE =0,
|
||||
/** linear convolution with \f$\texttt{size1}\times\texttt{size2}\f$ box kernel (all
|
||||
1's) with subsequent scaling by \f$1/(\texttt{size1}\cdot\texttt{size2})\f$ */
|
||||
CV_BLUR =1,
|
||||
/** linear convolution with a \f$\texttt{size1}\times\texttt{size2}\f$ Gaussian kernel */
|
||||
CV_GAUSSIAN =2,
|
||||
/** median filter with a \f$\texttt{size1}\times\texttt{size1}\f$ square aperture */
|
||||
CV_MEDIAN =3,
|
||||
/** bilateral filter with a \f$\texttt{size1}\times\texttt{size1}\f$ square aperture, color
|
||||
sigma= sigma1 and spatial sigma= sigma2. If size1=0, the aperture square side is set to
|
||||
cvRound(sigma2\*1.5)\*2+1. See cv::bilateralFilter */
|
||||
CV_BILATERAL =4
|
||||
};
|
||||
|
||||
/** Filters used in pyramid decomposition */
|
||||
enum
|
||||
{
|
||||
CV_GAUSSIAN_5x5 = 7
|
||||
};
|
||||
|
||||
/** Special filters */
|
||||
enum
|
||||
{
|
||||
CV_SCHARR =-1,
|
||||
CV_MAX_SOBEL_KSIZE =7
|
||||
};
|
||||
|
||||
/** Constants for color conversion */
|
||||
enum
|
||||
{
|
||||
CV_BGR2BGRA =0,
|
||||
CV_RGB2RGBA =CV_BGR2BGRA,
|
||||
|
||||
CV_BGRA2BGR =1,
|
||||
CV_RGBA2RGB =CV_BGRA2BGR,
|
||||
|
||||
CV_BGR2RGBA =2,
|
||||
CV_RGB2BGRA =CV_BGR2RGBA,
|
||||
|
||||
CV_RGBA2BGR =3,
|
||||
CV_BGRA2RGB =CV_RGBA2BGR,
|
||||
|
||||
CV_BGR2RGB =4,
|
||||
CV_RGB2BGR =CV_BGR2RGB,
|
||||
|
||||
CV_BGRA2RGBA =5,
|
||||
CV_RGBA2BGRA =CV_BGRA2RGBA,
|
||||
|
||||
CV_BGR2GRAY =6,
|
||||
CV_RGB2GRAY =7,
|
||||
CV_GRAY2BGR =8,
|
||||
CV_GRAY2RGB =CV_GRAY2BGR,
|
||||
CV_GRAY2BGRA =9,
|
||||
CV_GRAY2RGBA =CV_GRAY2BGRA,
|
||||
CV_BGRA2GRAY =10,
|
||||
CV_RGBA2GRAY =11,
|
||||
|
||||
CV_BGR2BGR565 =12,
|
||||
CV_RGB2BGR565 =13,
|
||||
CV_BGR5652BGR =14,
|
||||
CV_BGR5652RGB =15,
|
||||
CV_BGRA2BGR565 =16,
|
||||
CV_RGBA2BGR565 =17,
|
||||
CV_BGR5652BGRA =18,
|
||||
CV_BGR5652RGBA =19,
|
||||
|
||||
CV_GRAY2BGR565 =20,
|
||||
CV_BGR5652GRAY =21,
|
||||
|
||||
CV_BGR2BGR555 =22,
|
||||
CV_RGB2BGR555 =23,
|
||||
CV_BGR5552BGR =24,
|
||||
CV_BGR5552RGB =25,
|
||||
CV_BGRA2BGR555 =26,
|
||||
CV_RGBA2BGR555 =27,
|
||||
CV_BGR5552BGRA =28,
|
||||
CV_BGR5552RGBA =29,
|
||||
|
||||
CV_GRAY2BGR555 =30,
|
||||
CV_BGR5552GRAY =31,
|
||||
|
||||
CV_BGR2XYZ =32,
|
||||
CV_RGB2XYZ =33,
|
||||
CV_XYZ2BGR =34,
|
||||
CV_XYZ2RGB =35,
|
||||
|
||||
CV_BGR2YCrCb =36,
|
||||
CV_RGB2YCrCb =37,
|
||||
CV_YCrCb2BGR =38,
|
||||
CV_YCrCb2RGB =39,
|
||||
|
||||
CV_BGR2HSV =40,
|
||||
CV_RGB2HSV =41,
|
||||
|
||||
CV_BGR2Lab =44,
|
||||
CV_RGB2Lab =45,
|
||||
|
||||
CV_BayerBG2BGR =46,
|
||||
CV_BayerGB2BGR =47,
|
||||
CV_BayerRG2BGR =48,
|
||||
CV_BayerGR2BGR =49,
|
||||
|
||||
CV_BayerBG2RGB =CV_BayerRG2BGR,
|
||||
CV_BayerGB2RGB =CV_BayerGR2BGR,
|
||||
CV_BayerRG2RGB =CV_BayerBG2BGR,
|
||||
CV_BayerGR2RGB =CV_BayerGB2BGR,
|
||||
|
||||
CV_BGR2Luv =50,
|
||||
CV_RGB2Luv =51,
|
||||
CV_BGR2HLS =52,
|
||||
CV_RGB2HLS =53,
|
||||
|
||||
CV_HSV2BGR =54,
|
||||
CV_HSV2RGB =55,
|
||||
|
||||
CV_Lab2BGR =56,
|
||||
CV_Lab2RGB =57,
|
||||
CV_Luv2BGR =58,
|
||||
CV_Luv2RGB =59,
|
||||
CV_HLS2BGR =60,
|
||||
CV_HLS2RGB =61,
|
||||
|
||||
CV_BayerBG2BGR_VNG =62,
|
||||
CV_BayerGB2BGR_VNG =63,
|
||||
CV_BayerRG2BGR_VNG =64,
|
||||
CV_BayerGR2BGR_VNG =65,
|
||||
|
||||
CV_BayerBG2RGB_VNG =CV_BayerRG2BGR_VNG,
|
||||
CV_BayerGB2RGB_VNG =CV_BayerGR2BGR_VNG,
|
||||
CV_BayerRG2RGB_VNG =CV_BayerBG2BGR_VNG,
|
||||
CV_BayerGR2RGB_VNG =CV_BayerGB2BGR_VNG,
|
||||
|
||||
CV_BGR2HSV_FULL = 66,
|
||||
CV_RGB2HSV_FULL = 67,
|
||||
CV_BGR2HLS_FULL = 68,
|
||||
CV_RGB2HLS_FULL = 69,
|
||||
|
||||
CV_HSV2BGR_FULL = 70,
|
||||
CV_HSV2RGB_FULL = 71,
|
||||
CV_HLS2BGR_FULL = 72,
|
||||
CV_HLS2RGB_FULL = 73,
|
||||
|
||||
CV_LBGR2Lab = 74,
|
||||
CV_LRGB2Lab = 75,
|
||||
CV_LBGR2Luv = 76,
|
||||
CV_LRGB2Luv = 77,
|
||||
|
||||
CV_Lab2LBGR = 78,
|
||||
CV_Lab2LRGB = 79,
|
||||
CV_Luv2LBGR = 80,
|
||||
CV_Luv2LRGB = 81,
|
||||
|
||||
CV_BGR2YUV = 82,
|
||||
CV_RGB2YUV = 83,
|
||||
CV_YUV2BGR = 84,
|
||||
CV_YUV2RGB = 85,
|
||||
|
||||
CV_BayerBG2GRAY = 86,
|
||||
CV_BayerGB2GRAY = 87,
|
||||
CV_BayerRG2GRAY = 88,
|
||||
CV_BayerGR2GRAY = 89,
|
||||
|
||||
//YUV 4:2:0 formats family
|
||||
CV_YUV2RGB_NV12 = 90,
|
||||
CV_YUV2BGR_NV12 = 91,
|
||||
CV_YUV2RGB_NV21 = 92,
|
||||
CV_YUV2BGR_NV21 = 93,
|
||||
CV_YUV420sp2RGB = CV_YUV2RGB_NV21,
|
||||
CV_YUV420sp2BGR = CV_YUV2BGR_NV21,
|
||||
|
||||
CV_YUV2RGBA_NV12 = 94,
|
||||
CV_YUV2BGRA_NV12 = 95,
|
||||
CV_YUV2RGBA_NV21 = 96,
|
||||
CV_YUV2BGRA_NV21 = 97,
|
||||
CV_YUV420sp2RGBA = CV_YUV2RGBA_NV21,
|
||||
CV_YUV420sp2BGRA = CV_YUV2BGRA_NV21,
|
||||
|
||||
CV_YUV2RGB_YV12 = 98,
|
||||
CV_YUV2BGR_YV12 = 99,
|
||||
CV_YUV2RGB_IYUV = 100,
|
||||
CV_YUV2BGR_IYUV = 101,
|
||||
CV_YUV2RGB_I420 = CV_YUV2RGB_IYUV,
|
||||
CV_YUV2BGR_I420 = CV_YUV2BGR_IYUV,
|
||||
CV_YUV420p2RGB = CV_YUV2RGB_YV12,
|
||||
CV_YUV420p2BGR = CV_YUV2BGR_YV12,
|
||||
|
||||
CV_YUV2RGBA_YV12 = 102,
|
||||
CV_YUV2BGRA_YV12 = 103,
|
||||
CV_YUV2RGBA_IYUV = 104,
|
||||
CV_YUV2BGRA_IYUV = 105,
|
||||
CV_YUV2RGBA_I420 = CV_YUV2RGBA_IYUV,
|
||||
CV_YUV2BGRA_I420 = CV_YUV2BGRA_IYUV,
|
||||
CV_YUV420p2RGBA = CV_YUV2RGBA_YV12,
|
||||
CV_YUV420p2BGRA = CV_YUV2BGRA_YV12,
|
||||
|
||||
CV_YUV2GRAY_420 = 106,
|
||||
CV_YUV2GRAY_NV21 = CV_YUV2GRAY_420,
|
||||
CV_YUV2GRAY_NV12 = CV_YUV2GRAY_420,
|
||||
CV_YUV2GRAY_YV12 = CV_YUV2GRAY_420,
|
||||
CV_YUV2GRAY_IYUV = CV_YUV2GRAY_420,
|
||||
CV_YUV2GRAY_I420 = CV_YUV2GRAY_420,
|
||||
CV_YUV420sp2GRAY = CV_YUV2GRAY_420,
|
||||
CV_YUV420p2GRAY = CV_YUV2GRAY_420,
|
||||
|
||||
//YUV 4:2:2 formats family
|
||||
CV_YUV2RGB_UYVY = 107,
|
||||
CV_YUV2BGR_UYVY = 108,
|
||||
//CV_YUV2RGB_VYUY = 109,
|
||||
//CV_YUV2BGR_VYUY = 110,
|
||||
CV_YUV2RGB_Y422 = CV_YUV2RGB_UYVY,
|
||||
CV_YUV2BGR_Y422 = CV_YUV2BGR_UYVY,
|
||||
CV_YUV2RGB_UYNV = CV_YUV2RGB_UYVY,
|
||||
CV_YUV2BGR_UYNV = CV_YUV2BGR_UYVY,
|
||||
|
||||
CV_YUV2RGBA_UYVY = 111,
|
||||
CV_YUV2BGRA_UYVY = 112,
|
||||
//CV_YUV2RGBA_VYUY = 113,
|
||||
//CV_YUV2BGRA_VYUY = 114,
|
||||
CV_YUV2RGBA_Y422 = CV_YUV2RGBA_UYVY,
|
||||
CV_YUV2BGRA_Y422 = CV_YUV2BGRA_UYVY,
|
||||
CV_YUV2RGBA_UYNV = CV_YUV2RGBA_UYVY,
|
||||
CV_YUV2BGRA_UYNV = CV_YUV2BGRA_UYVY,
|
||||
|
||||
CV_YUV2RGB_YUY2 = 115,
|
||||
CV_YUV2BGR_YUY2 = 116,
|
||||
CV_YUV2RGB_YVYU = 117,
|
||||
CV_YUV2BGR_YVYU = 118,
|
||||
CV_YUV2RGB_YUYV = CV_YUV2RGB_YUY2,
|
||||
CV_YUV2BGR_YUYV = CV_YUV2BGR_YUY2,
|
||||
CV_YUV2RGB_YUNV = CV_YUV2RGB_YUY2,
|
||||
CV_YUV2BGR_YUNV = CV_YUV2BGR_YUY2,
|
||||
|
||||
CV_YUV2RGBA_YUY2 = 119,
|
||||
CV_YUV2BGRA_YUY2 = 120,
|
||||
CV_YUV2RGBA_YVYU = 121,
|
||||
CV_YUV2BGRA_YVYU = 122,
|
||||
CV_YUV2RGBA_YUYV = CV_YUV2RGBA_YUY2,
|
||||
CV_YUV2BGRA_YUYV = CV_YUV2BGRA_YUY2,
|
||||
CV_YUV2RGBA_YUNV = CV_YUV2RGBA_YUY2,
|
||||
CV_YUV2BGRA_YUNV = CV_YUV2BGRA_YUY2,
|
||||
|
||||
CV_YUV2GRAY_UYVY = 123,
|
||||
CV_YUV2GRAY_YUY2 = 124,
|
||||
//CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY,
|
||||
CV_YUV2GRAY_Y422 = CV_YUV2GRAY_UYVY,
|
||||
CV_YUV2GRAY_UYNV = CV_YUV2GRAY_UYVY,
|
||||
CV_YUV2GRAY_YVYU = CV_YUV2GRAY_YUY2,
|
||||
CV_YUV2GRAY_YUYV = CV_YUV2GRAY_YUY2,
|
||||
CV_YUV2GRAY_YUNV = CV_YUV2GRAY_YUY2,
|
||||
|
||||
// alpha premultiplication
|
||||
CV_RGBA2mRGBA = 125,
|
||||
CV_mRGBA2RGBA = 126,
|
||||
|
||||
CV_RGB2YUV_I420 = 127,
|
||||
CV_BGR2YUV_I420 = 128,
|
||||
CV_RGB2YUV_IYUV = CV_RGB2YUV_I420,
|
||||
CV_BGR2YUV_IYUV = CV_BGR2YUV_I420,
|
||||
|
||||
CV_RGBA2YUV_I420 = 129,
|
||||
CV_BGRA2YUV_I420 = 130,
|
||||
CV_RGBA2YUV_IYUV = CV_RGBA2YUV_I420,
|
||||
CV_BGRA2YUV_IYUV = CV_BGRA2YUV_I420,
|
||||
CV_RGB2YUV_YV12 = 131,
|
||||
CV_BGR2YUV_YV12 = 132,
|
||||
CV_RGBA2YUV_YV12 = 133,
|
||||
CV_BGRA2YUV_YV12 = 134,
|
||||
|
||||
// Edge-Aware Demosaicing
|
||||
CV_BayerBG2BGR_EA = 135,
|
||||
CV_BayerGB2BGR_EA = 136,
|
||||
CV_BayerRG2BGR_EA = 137,
|
||||
CV_BayerGR2BGR_EA = 138,
|
||||
|
||||
CV_BayerBG2RGB_EA = CV_BayerRG2BGR_EA,
|
||||
CV_BayerGB2RGB_EA = CV_BayerGR2BGR_EA,
|
||||
CV_BayerRG2RGB_EA = CV_BayerBG2BGR_EA,
|
||||
CV_BayerGR2RGB_EA = CV_BayerGB2BGR_EA,
|
||||
|
||||
CV_BayerBG2BGRA =139,
|
||||
CV_BayerGB2BGRA =140,
|
||||
CV_BayerRG2BGRA =141,
|
||||
CV_BayerGR2BGRA =142,
|
||||
|
||||
CV_BayerBG2RGBA =CV_BayerRG2BGRA,
|
||||
CV_BayerGB2RGBA =CV_BayerGR2BGRA,
|
||||
CV_BayerRG2RGBA =CV_BayerBG2BGRA,
|
||||
CV_BayerGR2RGBA =CV_BayerGB2BGRA,
|
||||
|
||||
CV_COLORCVT_MAX = 143
|
||||
};
|
||||
|
||||
|
||||
/** Sub-pixel interpolation methods */
|
||||
enum
|
||||
{
|
||||
CV_INTER_NN =0,
|
||||
CV_INTER_LINEAR =1,
|
||||
CV_INTER_CUBIC =2,
|
||||
CV_INTER_AREA =3,
|
||||
CV_INTER_LANCZOS4 =4
|
||||
};
|
||||
|
||||
/** ... and other image warping flags */
|
||||
enum
|
||||
{
|
||||
CV_WARP_FILL_OUTLIERS =8,
|
||||
CV_WARP_INVERSE_MAP =16
|
||||
};
|
||||
|
||||
/** Shapes of a structuring element for morphological operations
|
||||
@see cv::MorphShapes, cv::getStructuringElement
|
||||
*/
|
||||
enum MorphShapes_c
|
||||
{
|
||||
CV_SHAPE_RECT =0,
|
||||
CV_SHAPE_CROSS =1,
|
||||
CV_SHAPE_ELLIPSE =2,
|
||||
CV_SHAPE_CUSTOM =100 //!< custom structuring element
|
||||
};
|
||||
|
||||
/** Morphological operations */
|
||||
enum
|
||||
{
|
||||
CV_MOP_ERODE =0,
|
||||
CV_MOP_DILATE =1,
|
||||
CV_MOP_OPEN =2,
|
||||
CV_MOP_CLOSE =3,
|
||||
CV_MOP_GRADIENT =4,
|
||||
CV_MOP_TOPHAT =5,
|
||||
CV_MOP_BLACKHAT =6
|
||||
};
|
||||
|
||||
/** Spatial and central moments */
|
||||
typedef struct CvMoments
|
||||
{
|
||||
double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03; /**< spatial moments */
|
||||
double mu20, mu11, mu02, mu30, mu21, mu12, mu03; /**< central moments */
|
||||
double inv_sqrt_m00; /**< m00 != 0 ? 1/sqrt(m00) : 0 */
|
||||
|
||||
#if defined(CV__ENABLE_C_API_CTORS) && defined(__cplusplus)
|
||||
CvMoments(){}
|
||||
CvMoments(const cv::Moments& m)
|
||||
{
|
||||
m00 = m.m00; m10 = m.m10; m01 = m.m01;
|
||||
m20 = m.m20; m11 = m.m11; m02 = m.m02;
|
||||
m30 = m.m30; m21 = m.m21; m12 = m.m12; m03 = m.m03;
|
||||
mu20 = m.mu20; mu11 = m.mu11; mu02 = m.mu02;
|
||||
mu30 = m.mu30; mu21 = m.mu21; mu12 = m.mu12; mu03 = m.mu03;
|
||||
double am00 = std::abs(m.m00);
|
||||
inv_sqrt_m00 = am00 > DBL_EPSILON ? 1./std::sqrt(am00) : 0;
|
||||
}
|
||||
operator cv::Moments() const
|
||||
{
|
||||
return cv::Moments(m00, m10, m01, m20, m11, m02, m30, m21, m12, m03);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
CvMoments;
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
|
||||
CV_INLINE CvMoments cvMoments()
|
||||
{
|
||||
#if !defined(CV__ENABLE_C_API_CTORS)
|
||||
CvMoments self = CV_STRUCT_INITIALIZER; return self;
|
||||
#else
|
||||
return CvMoments();
|
||||
#endif
|
||||
}
|
||||
|
||||
CV_INLINE CvMoments cvMoments(const cv::Moments& m)
|
||||
{
|
||||
#if !defined(CV__ENABLE_C_API_CTORS)
|
||||
double am00 = std::abs(m.m00);
|
||||
CvMoments self = {
|
||||
m.m00, m.m10, m.m01, m.m20, m.m11, m.m02, m.m30, m.m21, m.m12, m.m03,
|
||||
m.mu20, m.mu11, m.mu02, m.mu30, m.mu21, m.mu12, m.mu03,
|
||||
am00 > DBL_EPSILON ? 1./std::sqrt(am00) : 0
|
||||
};
|
||||
return self;
|
||||
#else
|
||||
return CvMoments(m);
|
||||
#endif
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
|
||||
/** Hu invariants */
|
||||
typedef struct CvHuMoments
|
||||
{
|
||||
double hu1, hu2, hu3, hu4, hu5, hu6, hu7; /**< Hu invariants */
|
||||
}
|
||||
CvHuMoments;
|
||||
|
||||
/** Template matching methods */
|
||||
enum
|
||||
{
|
||||
CV_TM_SQDIFF =0,
|
||||
CV_TM_SQDIFF_NORMED =1,
|
||||
CV_TM_CCORR =2,
|
||||
CV_TM_CCORR_NORMED =3,
|
||||
CV_TM_CCOEFF =4,
|
||||
CV_TM_CCOEFF_NORMED =5
|
||||
};
|
||||
|
||||
typedef float (CV_CDECL * CvDistanceFunction)( const float* a, const float* b, void* user_param );
|
||||
|
||||
/** Contour retrieval modes */
|
||||
enum
|
||||
{
|
||||
CV_RETR_EXTERNAL=0,
|
||||
CV_RETR_LIST=1,
|
||||
CV_RETR_CCOMP=2,
|
||||
CV_RETR_TREE=3,
|
||||
CV_RETR_FLOODFILL=4
|
||||
};
|
||||
|
||||
/** Contour approximation methods */
|
||||
enum
|
||||
{
|
||||
CV_CHAIN_CODE=0,
|
||||
CV_CHAIN_APPROX_NONE=1,
|
||||
CV_CHAIN_APPROX_SIMPLE=2,
|
||||
CV_CHAIN_APPROX_TC89_L1=3,
|
||||
CV_CHAIN_APPROX_TC89_KCOS=4,
|
||||
CV_LINK_RUNS=5
|
||||
};
|
||||
|
||||
/*
|
||||
Internal structure that is used for sequential retrieving contours from the image.
|
||||
It supports both hierarchical and plane variants of Suzuki algorithm.
|
||||
*/
|
||||
typedef struct _CvContourScanner* CvContourScanner;
|
||||
|
||||
/** Freeman chain reader state */
|
||||
typedef struct CvChainPtReader
|
||||
{
|
||||
CV_SEQ_READER_FIELDS()
|
||||
char code;
|
||||
CvPoint pt;
|
||||
schar deltas[8][2];
|
||||
}
|
||||
CvChainPtReader;
|
||||
|
||||
/** initializes 8-element array for fast access to 3x3 neighborhood of a pixel */
|
||||
#define CV_INIT_3X3_DELTAS( deltas, step, nch ) \
|
||||
((deltas)[0] = (nch), (deltas)[1] = -(step) + (nch), \
|
||||
(deltas)[2] = -(step), (deltas)[3] = -(step) - (nch), \
|
||||
(deltas)[4] = -(nch), (deltas)[5] = (step) - (nch), \
|
||||
(deltas)[6] = (step), (deltas)[7] = (step) + (nch))
|
||||
|
||||
|
||||
/** Contour approximation algorithms */
|
||||
enum
|
||||
{
|
||||
CV_POLY_APPROX_DP = 0
|
||||
};
|
||||
|
||||
/** Shape matching methods */
|
||||
enum
|
||||
{
|
||||
CV_CONTOURS_MATCH_I1 =1, //!< \f[I_1(A,B) = \sum _{i=1...7} \left | \frac{1}{m^A_i} - \frac{1}{m^B_i} \right |\f]
|
||||
CV_CONTOURS_MATCH_I2 =2, //!< \f[I_2(A,B) = \sum _{i=1...7} \left | m^A_i - m^B_i \right |\f]
|
||||
CV_CONTOURS_MATCH_I3 =3 //!< \f[I_3(A,B) = \max _{i=1...7} \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f]
|
||||
};
|
||||
|
||||
/** Shape orientation */
|
||||
enum
|
||||
{
|
||||
CV_CLOCKWISE =1,
|
||||
CV_COUNTER_CLOCKWISE =2
|
||||
};
|
||||
|
||||
|
||||
/** Convexity defect */
|
||||
typedef struct CvConvexityDefect
|
||||
{
|
||||
CvPoint* start; /**< point of the contour where the defect begins */
|
||||
CvPoint* end; /**< point of the contour where the defect ends */
|
||||
CvPoint* depth_point; /**< the farthest from the convex hull point within the defect */
|
||||
float depth; /**< distance between the farthest point and the convex hull */
|
||||
} CvConvexityDefect;
|
||||
|
||||
|
||||
/** Histogram comparison methods */
|
||||
enum
|
||||
{
|
||||
CV_COMP_CORREL =0,
|
||||
CV_COMP_CHISQR =1,
|
||||
CV_COMP_INTERSECT =2,
|
||||
CV_COMP_BHATTACHARYYA =3,
|
||||
CV_COMP_HELLINGER =CV_COMP_BHATTACHARYYA,
|
||||
CV_COMP_CHISQR_ALT =4,
|
||||
CV_COMP_KL_DIV =5
|
||||
};
|
||||
|
||||
/** Mask size for distance transform */
|
||||
enum
|
||||
{
|
||||
CV_DIST_MASK_3 =3,
|
||||
CV_DIST_MASK_5 =5,
|
||||
CV_DIST_MASK_PRECISE =0
|
||||
};
|
||||
|
||||
/** Content of output label array: connected components or pixels */
|
||||
enum
|
||||
{
|
||||
CV_DIST_LABEL_CCOMP = 0,
|
||||
CV_DIST_LABEL_PIXEL = 1
|
||||
};
|
||||
|
||||
/** Distance types for Distance Transform and M-estimators */
|
||||
enum
|
||||
{
|
||||
CV_DIST_USER =-1, /**< User defined distance */
|
||||
CV_DIST_L1 =1, /**< distance = |x1-x2| + |y1-y2| */
|
||||
CV_DIST_L2 =2, /**< the simple euclidean distance */
|
||||
CV_DIST_C =3, /**< distance = max(|x1-x2|,|y1-y2|) */
|
||||
CV_DIST_L12 =4, /**< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1)) */
|
||||
CV_DIST_FAIR =5, /**< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998 */
|
||||
CV_DIST_WELSCH =6, /**< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846 */
|
||||
CV_DIST_HUBER =7 /**< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345 */
|
||||
};
|
||||
|
||||
|
||||
/** Threshold types */
|
||||
enum
|
||||
{
|
||||
CV_THRESH_BINARY =0, /**< value = value > threshold ? max_value : 0 */
|
||||
CV_THRESH_BINARY_INV =1, /**< value = value > threshold ? 0 : max_value */
|
||||
CV_THRESH_TRUNC =2, /**< value = value > threshold ? threshold : value */
|
||||
CV_THRESH_TOZERO =3, /**< value = value > threshold ? value : 0 */
|
||||
CV_THRESH_TOZERO_INV =4, /**< value = value > threshold ? 0 : value */
|
||||
CV_THRESH_MASK =7,
|
||||
CV_THRESH_OTSU =8, /**< use Otsu algorithm to choose the optimal threshold value;
|
||||
combine the flag with one of the above CV_THRESH_* values */
|
||||
CV_THRESH_TRIANGLE =16 /**< use Triangle algorithm to choose the optimal threshold value;
|
||||
combine the flag with one of the above CV_THRESH_* values, but not
|
||||
with CV_THRESH_OTSU */
|
||||
};
|
||||
|
||||
/** Adaptive threshold methods */
|
||||
enum
|
||||
{
|
||||
CV_ADAPTIVE_THRESH_MEAN_C =0,
|
||||
CV_ADAPTIVE_THRESH_GAUSSIAN_C =1
|
||||
};
|
||||
|
||||
/** FloodFill flags */
|
||||
enum
|
||||
{
|
||||
CV_FLOODFILL_FIXED_RANGE =(1 << 16),
|
||||
CV_FLOODFILL_MASK_ONLY =(1 << 17)
|
||||
};
|
||||
|
||||
|
||||
/** Canny edge detector flags */
|
||||
enum
|
||||
{
|
||||
CV_CANNY_L2_GRADIENT =(1 << 31)
|
||||
};
|
||||
|
||||
/** Variants of a Hough transform */
|
||||
enum
|
||||
{
|
||||
CV_HOUGH_STANDARD =0,
|
||||
CV_HOUGH_PROBABILISTIC =1,
|
||||
CV_HOUGH_MULTI_SCALE =2,
|
||||
CV_HOUGH_GRADIENT =3
|
||||
};
|
||||
|
||||
|
||||
/* Fast search data structures */
|
||||
struct CvFeatureTree;
|
||||
struct CvLSH;
|
||||
struct CvLSHOperations;
|
||||
|
||||
/** @} */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -357,7 +357,7 @@ public class ImgprocTest extends OpenCVTestCase {
|
||||
H1.put(0, 0, 1, 2, 3);
|
||||
H2.put(0, 0, 4, 5, 6);
|
||||
|
||||
double distance = Imgproc.compareHist(H1, H2, Imgproc.CV_COMP_CORREL);
|
||||
double distance = Imgproc.compareHist(H1, H2, Imgproc.HISTCMP_CORREL);
|
||||
|
||||
assertEquals(1., distance, EPS);
|
||||
}
|
||||
@ -636,7 +636,7 @@ public class ImgprocTest extends OpenCVTestCase {
|
||||
Mat dstLables = getMat(CvType.CV_32SC1, 0);
|
||||
Mat labels = new Mat();
|
||||
|
||||
Imgproc.distanceTransformWithLabels(gray128, dst, labels, Imgproc.CV_DIST_L2, 3);
|
||||
Imgproc.distanceTransformWithLabels(gray128, dst, labels, Imgproc.DIST_L2, 3);
|
||||
|
||||
assertMatEqual(dstLables, labels);
|
||||
assertMatEqual(getMat(CvType.CV_32FC1, 8192), dst, EPS);
|
||||
@ -813,7 +813,7 @@ public class ImgprocTest extends OpenCVTestCase {
|
||||
Mat linePoints = new Mat(4, 1, CvType.CV_32FC1);
|
||||
linePoints.put(0, 0, 0.53198653, 0.84675282, 2.5, 3.75);
|
||||
|
||||
Imgproc.fitLine(points, dst, Imgproc.CV_DIST_L12, 0, 0.01, 0.01);
|
||||
Imgproc.fitLine(points, dst, Imgproc.DIST_L12, 0, 0.01, 0.01);
|
||||
|
||||
assertMatEqual(linePoints, dst, EPS);
|
||||
}
|
||||
@ -1040,7 +1040,7 @@ public class ImgprocTest extends OpenCVTestCase {
|
||||
Mat img = new Mat(sz, sz, CvType.CV_8U, new Scalar(128));
|
||||
Mat circles = new Mat();
|
||||
|
||||
Imgproc.HoughCircles(img, circles, Imgproc.CV_HOUGH_GRADIENT, 2, img.rows() / 4);
|
||||
Imgproc.HoughCircles(img, circles, Imgproc.HOUGH_GRADIENT, 2, img.rows() / 4);
|
||||
|
||||
assertEquals(0, circles.cols());
|
||||
}
|
||||
@ -1054,7 +1054,7 @@ public class ImgprocTest extends OpenCVTestCase {
|
||||
int radius = Math.min(img.cols() / 4, img.rows() / 4);
|
||||
Imgproc.circle(img, center, radius, colorBlack, 3);
|
||||
|
||||
Imgproc.HoughCircles(img, circles, Imgproc.CV_HOUGH_GRADIENT, 2, img.rows() / 4);
|
||||
Imgproc.HoughCircles(img, circles, Imgproc.HOUGH_GRADIENT, 2, img.rows() / 4);
|
||||
|
||||
assertEquals(1, circles.cols());
|
||||
}
|
||||
@ -1308,7 +1308,7 @@ public class ImgprocTest extends OpenCVTestCase {
|
||||
contour1.put(0, 0, 1, 1, 5, 1, 4, 3, 6, 2);
|
||||
contour2.put(0, 0, 1, 1, 6, 1, 4, 1, 2, 5);
|
||||
|
||||
double distance = Imgproc.matchShapes(contour1, contour2, Imgproc.CV_CONTOURS_MATCH_I1, 1);
|
||||
double distance = Imgproc.matchShapes(contour1, contour2, Imgproc.CONTOURS_MATCH_I1, 1);
|
||||
|
||||
assertEquals(2.81109697365334, distance, EPS);
|
||||
}
|
||||
|
@ -60,7 +60,7 @@ OCL_PERF_TEST_P(CV_TM_CCORRFixture, matchTemplate,
|
||||
|
||||
declare.in(src, templ, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::matchTemplate(src, templ, dst, CV_TM_CCORR);
|
||||
OCL_TEST_CYCLE() cv::matchTemplate(src, templ, dst, cv::TM_CCORR);
|
||||
|
||||
SANITY_CHECK(dst, 1e-4);
|
||||
}
|
||||
@ -78,7 +78,7 @@ OCL_PERF_TEST_P(CV_TM_CCORR_NORMEDFixture, matchTemplate,
|
||||
|
||||
declare.in(src, templ, WARMUP_RNG).out(dst);
|
||||
|
||||
OCL_TEST_CYCLE() cv::matchTemplate(src, templ, dst, CV_TM_CCORR_NORMED);
|
||||
OCL_TEST_CYCLE() cv::matchTemplate(src, templ, dst, cv::TM_CCORR_NORMED);
|
||||
|
||||
SANITY_CHECK(dst, 3e-2);
|
||||
}
|
||||
|
@ -26,7 +26,7 @@ PERF_TEST(PerfHoughCircles, Basic)
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
HoughCircles(img, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
HoughCircles(img, circles, cv::HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
@ -50,7 +50,7 @@ PERF_TEST(PerfHoughCircles2, ManySmallCircles)
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
HoughCircles(img, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
HoughCircles(img, circles, cv::HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
@ -76,7 +76,7 @@ PERF_TEST(PerfHoughCircles4f, Basic)
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
HoughCircles(img, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
HoughCircles(img, circles, cv::HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
|
@ -42,16 +42,6 @@
|
||||
#ifndef _CV_GEOM_H_
|
||||
#define _CV_GEOM_H_
|
||||
|
||||
/* Finds distance between two points */
|
||||
CV_INLINE float icvDistanceL2_32f( CvPoint2D32f pt1, CvPoint2D32f pt2 )
|
||||
{
|
||||
float dx = pt2.x - pt1.x;
|
||||
float dy = pt2.y - pt1.y;
|
||||
|
||||
return std::sqrt( dx*dx + dy*dy );
|
||||
}
|
||||
|
||||
|
||||
/* curvature: 0 - 1-curvature, 1 - k-cosine curvature. */
|
||||
CvSeq* icvApproximateChainTC89( CvChain* chain, int header_size, CvMemStorage* storage, int method );
|
||||
|
||||
|
@ -644,42 +644,5 @@ void cv::accumulateWeighted( InputArray _src, InputOutputArray _dst,
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvAcc( const void* arr, void* sumarr, const void* maskarr )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(arr), dst = cv::cvarrToMat(sumarr), mask;
|
||||
if( maskarr )
|
||||
mask = cv::cvarrToMat(maskarr);
|
||||
cv::accumulate( src, dst, mask );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvSquareAcc( const void* arr, void* sumarr, const void* maskarr )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(arr), dst = cv::cvarrToMat(sumarr), mask;
|
||||
if( maskarr )
|
||||
mask = cv::cvarrToMat(maskarr);
|
||||
cv::accumulateSquare( src, dst, mask );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvMultiplyAcc( const void* arr1, const void* arr2,
|
||||
void* sumarr, const void* maskarr )
|
||||
{
|
||||
cv::Mat src1 = cv::cvarrToMat(arr1), src2 = cv::cvarrToMat(arr2);
|
||||
cv::Mat dst = cv::cvarrToMat(sumarr), mask;
|
||||
if( maskarr )
|
||||
mask = cv::cvarrToMat(maskarr);
|
||||
cv::accumulateProduct( src1, src2, dst, mask );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvRunningAvg( const void* arr, void* sumarr, double alpha, const void* maskarr )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(arr), dst = cv::cvarrToMat(sumarr), mask;
|
||||
if( maskarr )
|
||||
mask = cv::cvarrToMat(maskarr);
|
||||
cv::accumulateWeighted( src, dst, alpha, mask );
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -53,6 +53,38 @@ typedef struct _CvPtInfo
|
||||
}
|
||||
_CvPtInfo;
|
||||
|
||||
static const CvPoint icvCodeDeltas[8] =
|
||||
{ {1, 0}, {1, -1}, {0, -1}, {-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {1, 1} };
|
||||
|
||||
/** Freeman chain reader state */
|
||||
typedef struct CvChainPtReader
|
||||
{
|
||||
CV_SEQ_READER_FIELDS()
|
||||
char code;
|
||||
CvPoint pt;
|
||||
schar deltas[8][2];
|
||||
}
|
||||
CvChainPtReader;
|
||||
|
||||
static void cvStartReadChainPoints( CvChain * chain, CvChainPtReader * reader )
|
||||
{
|
||||
int i;
|
||||
|
||||
if( !chain || !reader )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
|
||||
if( chain->elem_size != 1 || chain->header_size < (int)sizeof(CvChain))
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
|
||||
cvStartReadSeq( (CvSeq *) chain, (CvSeqReader *) reader, 0 );
|
||||
|
||||
reader->pt = chain->origin;
|
||||
for( i = 0; i < 8; i++ )
|
||||
{
|
||||
reader->deltas[i][0] = (schar) icvCodeDeltas[i].x;
|
||||
reader->deltas[i][1] = (schar) icvCodeDeltas[i].y;
|
||||
}
|
||||
}
|
||||
|
||||
/* curvature: 0 - 1-curvature, 1 - k-cosine curvature. */
|
||||
CvSeq* icvApproximateChainTC89( CvChain* chain, int header_size,
|
||||
@ -103,9 +135,9 @@ CvSeq* icvApproximateChainTC89( CvChain* chain, int header_size,
|
||||
/* calc 1-curvature */
|
||||
s = abs_diff[reader.code - prev_code + 7];
|
||||
|
||||
if( method <= CV_CHAIN_APPROX_SIMPLE )
|
||||
if( method <= cv::CHAIN_APPROX_SIMPLE )
|
||||
{
|
||||
if( method == CV_CHAIN_APPROX_NONE || s != 0 )
|
||||
if( method == cv::CHAIN_APPROX_NONE || s != 0 )
|
||||
{
|
||||
CV_WRITE_SEQ_ELEM( pt, writer );
|
||||
}
|
||||
@ -121,7 +153,7 @@ CvSeq* icvApproximateChainTC89( CvChain* chain, int header_size,
|
||||
|
||||
//CV_Assert( pt.x == chain->origin.x && pt.y == chain->origin.y );
|
||||
|
||||
if( method <= CV_CHAIN_APPROX_SIMPLE )
|
||||
if( method <= cv::CHAIN_APPROX_SIMPLE )
|
||||
return cvEndWriteSeq( &writer );
|
||||
|
||||
current->next = 0;
|
||||
@ -176,7 +208,7 @@ CvSeq* icvApproximateChainTC89( CvChain* chain, int header_size,
|
||||
current->k = --k;
|
||||
|
||||
/* determine cosine curvature if it should be used */
|
||||
if( method == CV_CHAIN_APPROX_TC89_KCOS )
|
||||
if( method == cv::CHAIN_APPROX_TC89_KCOS )
|
||||
{
|
||||
/* calc k-cosine curvature */
|
||||
for( j = k, s = 0; j > 0; j-- )
|
||||
@ -288,7 +320,7 @@ CvSeq* icvApproximateChainTC89( CvChain* chain, int header_size,
|
||||
}
|
||||
while( current != 0 );
|
||||
|
||||
if( method == CV_CHAIN_APPROX_TC89_KCOS )
|
||||
if( method == cv::CHAIN_APPROX_TC89_KCOS )
|
||||
goto copy_vect;
|
||||
|
||||
/* Pass 4.
|
||||
@ -374,96 +406,6 @@ copy_vect:
|
||||
return cvEndWriteSeq( &writer );
|
||||
}
|
||||
|
||||
|
||||
/*Applies some approximation algorithm to chain-coded contour(s) and
|
||||
converts it/them to polygonal representation */
|
||||
CV_IMPL CvSeq*
|
||||
cvApproxChains( CvSeq* src_seq,
|
||||
CvMemStorage* storage,
|
||||
int method,
|
||||
double /*parameter*/,
|
||||
int minimal_perimeter,
|
||||
int recursive )
|
||||
{
|
||||
CvSeq *prev_contour = 0, *parent = 0;
|
||||
CvSeq *dst_seq = 0;
|
||||
|
||||
if( !src_seq || !storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
if( method > CV_CHAIN_APPROX_TC89_KCOS || method <= 0 || minimal_perimeter < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
|
||||
while( src_seq != 0 )
|
||||
{
|
||||
int len = src_seq->total;
|
||||
|
||||
if( len >= minimal_perimeter )
|
||||
{
|
||||
CvSeq *contour = 0;
|
||||
|
||||
switch( method )
|
||||
{
|
||||
case CV_CHAIN_APPROX_NONE:
|
||||
case CV_CHAIN_APPROX_SIMPLE:
|
||||
case CV_CHAIN_APPROX_TC89_L1:
|
||||
case CV_CHAIN_APPROX_TC89_KCOS:
|
||||
contour = icvApproximateChainTC89( (CvChain *) src_seq, sizeof( CvContour ), storage, method );
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
}
|
||||
|
||||
if( contour->total > 0 )
|
||||
{
|
||||
cvBoundingRect( contour, 1 );
|
||||
|
||||
contour->v_prev = parent;
|
||||
contour->h_prev = prev_contour;
|
||||
|
||||
if( prev_contour )
|
||||
prev_contour->h_next = contour;
|
||||
else if( parent )
|
||||
parent->v_next = contour;
|
||||
prev_contour = contour;
|
||||
if( !dst_seq )
|
||||
dst_seq = prev_contour;
|
||||
}
|
||||
else /* if resultant contour has zero length, skip it */
|
||||
{
|
||||
len = -1;
|
||||
}
|
||||
}
|
||||
|
||||
if( !recursive )
|
||||
break;
|
||||
|
||||
if( src_seq->v_next && len >= minimal_perimeter )
|
||||
{
|
||||
CV_Assert( prev_contour != 0 );
|
||||
parent = prev_contour;
|
||||
prev_contour = 0;
|
||||
src_seq = src_seq->v_next;
|
||||
}
|
||||
else
|
||||
{
|
||||
while( src_seq->h_next == 0 )
|
||||
{
|
||||
src_seq = src_seq->v_prev;
|
||||
if( src_seq == 0 )
|
||||
break;
|
||||
prev_contour = parent;
|
||||
if( parent )
|
||||
parent = parent->v_prev;
|
||||
}
|
||||
if( src_seq )
|
||||
src_seq = src_seq->h_next;
|
||||
}
|
||||
}
|
||||
|
||||
return dst_seq;
|
||||
}
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* Polygonal Approximation *
|
||||
\****************************************************************************************/
|
||||
@ -708,156 +650,3 @@ void cv::approxPolyDP( InputArray _curve, OutputArray _approxCurve,
|
||||
|
||||
Mat(nout, 1, CV_MAKETYPE(depth, 2), buf).copyTo(_approxCurve);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL CvSeq*
|
||||
cvApproxPoly( const void* array, int header_size,
|
||||
CvMemStorage* storage, int method,
|
||||
double parameter, int parameter2 )
|
||||
{
|
||||
cv::AutoBuffer<cv::Point> _buf;
|
||||
cv::AutoBuffer<cv::Range> stack(100);
|
||||
CvSeq* dst_seq = 0;
|
||||
CvSeq *prev_contour = 0, *parent = 0;
|
||||
CvContour contour_header;
|
||||
CvSeq* src_seq = 0;
|
||||
CvSeqBlock block;
|
||||
int recursive = 0;
|
||||
|
||||
if( CV_IS_SEQ( array ))
|
||||
{
|
||||
src_seq = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POLYLINE( src_seq ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
|
||||
recursive = parameter2;
|
||||
|
||||
if( !storage )
|
||||
storage = src_seq->storage;
|
||||
}
|
||||
else
|
||||
{
|
||||
src_seq = cvPointSeqFromMat(
|
||||
CV_SEQ_KIND_CURVE | (parameter2 ? CV_SEQ_FLAG_CLOSED : 0),
|
||||
array, &contour_header, &block );
|
||||
}
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "NULL storage pointer " );
|
||||
|
||||
if( header_size < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "header_size is negative. "
|
||||
"Pass 0 to make the destination header_size == input header_size" );
|
||||
|
||||
if( header_size == 0 )
|
||||
header_size = src_seq->header_size;
|
||||
|
||||
if( !CV_IS_SEQ_POLYLINE( src_seq ))
|
||||
{
|
||||
if( CV_IS_SEQ_CHAIN( src_seq ))
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "Input curves are not polygonal. "
|
||||
"Use cvApproxChains first" );
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "Input curves have unknown type" );
|
||||
}
|
||||
}
|
||||
|
||||
if( header_size == 0 )
|
||||
header_size = src_seq->header_size;
|
||||
|
||||
if( header_size < (int)sizeof(CvContour) )
|
||||
CV_Error( CV_StsBadSize, "New header size must be non-less than sizeof(CvContour)" );
|
||||
|
||||
if( method != CV_POLY_APPROX_DP )
|
||||
CV_Error( CV_StsOutOfRange, "Unknown approximation method" );
|
||||
|
||||
while( src_seq != 0 )
|
||||
{
|
||||
CvSeq *contour = 0;
|
||||
|
||||
switch (method)
|
||||
{
|
||||
case CV_POLY_APPROX_DP:
|
||||
if( parameter < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "Accuracy must be non-negative" );
|
||||
|
||||
CV_Assert( CV_SEQ_ELTYPE(src_seq) == CV_32SC2 ||
|
||||
CV_SEQ_ELTYPE(src_seq) == CV_32FC2 );
|
||||
|
||||
{
|
||||
int npoints = src_seq->total, nout = 0;
|
||||
_buf.allocate(npoints*2);
|
||||
cv::Point *src = _buf.data(), *dst = src + npoints;
|
||||
bool closed = CV_IS_SEQ_CLOSED(src_seq);
|
||||
|
||||
if( src_seq->first->next == src_seq->first )
|
||||
src = (cv::Point*)src_seq->first->data;
|
||||
else
|
||||
cvCvtSeqToArray(src_seq, src);
|
||||
|
||||
if( CV_SEQ_ELTYPE(src_seq) == CV_32SC2 )
|
||||
nout = cv::approxPolyDP_(src, npoints, dst, closed, parameter, stack);
|
||||
else if( CV_SEQ_ELTYPE(src_seq) == CV_32FC2 )
|
||||
nout = cv::approxPolyDP_((cv::Point2f*)src, npoints,
|
||||
(cv::Point2f*)dst, closed, parameter, stack);
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
|
||||
contour = cvCreateSeq( src_seq->flags, header_size,
|
||||
src_seq->elem_size, storage );
|
||||
cvSeqPushMulti(contour, dst, nout);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "Invalid approximation method" );
|
||||
}
|
||||
|
||||
CV_Assert( contour );
|
||||
|
||||
if( header_size >= (int)sizeof(CvContour))
|
||||
cvBoundingRect( contour, 1 );
|
||||
|
||||
contour->v_prev = parent;
|
||||
contour->h_prev = prev_contour;
|
||||
|
||||
if( prev_contour )
|
||||
prev_contour->h_next = contour;
|
||||
else if( parent )
|
||||
parent->v_next = contour;
|
||||
prev_contour = contour;
|
||||
if( !dst_seq )
|
||||
dst_seq = prev_contour;
|
||||
|
||||
if( !recursive )
|
||||
break;
|
||||
|
||||
if( src_seq->v_next )
|
||||
{
|
||||
CV_Assert( prev_contour != 0 );
|
||||
parent = prev_contour;
|
||||
prev_contour = 0;
|
||||
src_seq = src_seq->v_next;
|
||||
}
|
||||
else
|
||||
{
|
||||
while( src_seq->h_next == 0 )
|
||||
{
|
||||
src_seq = src_seq->v_prev;
|
||||
if( src_seq == 0 )
|
||||
break;
|
||||
prev_contour = parent;
|
||||
if( parent )
|
||||
parent = parent->v_prev;
|
||||
}
|
||||
if( src_seq )
|
||||
src_seq = src_seq->h_next;
|
||||
}
|
||||
}
|
||||
|
||||
return dst_seq;
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -835,9 +835,10 @@ void Canny( InputArray _src, OutputArray _dst,
|
||||
|
||||
_dst.create(size, CV_8U);
|
||||
|
||||
// backward compatibility
|
||||
const int CV_CANNY_L2_GRADIENT = (1 << 31);
|
||||
if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT)
|
||||
{
|
||||
// backward compatibility
|
||||
aperture_size &= ~CV_CANNY_L2_GRADIENT;
|
||||
L2gradient = true;
|
||||
}
|
||||
|
@ -356,14 +356,3 @@ void cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
|
||||
}
|
||||
}
|
||||
} //namespace cv
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvCvtColor( const CvArr* srcarr, CvArr* dstarr, int code )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0;
|
||||
CV_Assert( src.depth() == dst.depth() );
|
||||
|
||||
cv::cvtColor(src, dst, code, dst.channels());
|
||||
CV_Assert( dst.data == dst0.data );
|
||||
}
|
||||
|
@ -50,62 +50,395 @@ using namespace cv;
|
||||
(deltas)[4] = -(nch), (deltas)[5] = (step) - (nch), \
|
||||
(deltas)[6] = (step), (deltas)[7] = (step) + (nch))
|
||||
|
||||
static const CvPoint icvCodeDeltas[8] =
|
||||
{ {1, 0}, {1, -1}, {0, -1}, {-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {1, 1} };
|
||||
static const CvPoint icvCodeDeltas[8] = {
|
||||
{1, 0}, {1, -1}, {0, -1}, {-1, -1}, {-1, 0}, {-1, 1}, {0, 1}, {1, 1}
|
||||
};
|
||||
|
||||
CV_IMPL void
|
||||
cvStartReadChainPoints( CvChain * chain, CvChainPtReader * reader )
|
||||
|
||||
namespace cv
|
||||
{
|
||||
int i;
|
||||
|
||||
if( !chain || !reader )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
|
||||
if( chain->elem_size != 1 || chain->header_size < (int)sizeof(CvChain))
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
|
||||
cvStartReadSeq( (CvSeq *) chain, (CvSeqReader *) reader, 0 );
|
||||
|
||||
reader->pt = chain->origin;
|
||||
for( i = 0; i < 8; i++ )
|
||||
{
|
||||
reader->deltas[i][0] = (schar) icvCodeDeltas[i].x;
|
||||
reader->deltas[i][1] = (schar) icvCodeDeltas[i].y;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* retrieves next point of the chain curve and updates reader */
|
||||
CV_IMPL CvPoint
|
||||
cvReadChainPoint( CvChainPtReader * reader )
|
||||
// Calculates bounding rectangle of a point set or retrieves already calculated
|
||||
static Rect pointSetBoundingRect( const Mat& points )
|
||||
{
|
||||
if( !reader )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
int npoints = points.checkVector(2);
|
||||
int depth = points.depth();
|
||||
CV_Assert(npoints >= 0 && (depth == CV_32F || depth == CV_32S));
|
||||
|
||||
cv::Point2i pt = reader->pt;
|
||||
int xmin = 0, ymin = 0, xmax = -1, ymax = -1, i;
|
||||
bool is_float = depth == CV_32F;
|
||||
|
||||
schar *ptr = reader->ptr;
|
||||
if (ptr)
|
||||
if( npoints == 0 )
|
||||
return Rect();
|
||||
|
||||
#if CV_SIMD
|
||||
const int64_t* pts = points.ptr<int64_t>();
|
||||
|
||||
if( !is_float )
|
||||
{
|
||||
int code = *ptr++;
|
||||
|
||||
if( ptr >= reader->block_max )
|
||||
v_int32 minval, maxval;
|
||||
minval = maxval = v_reinterpret_as_s32(vx_setall_s64(*pts)); //min[0]=pt.x, min[1]=pt.y, min[2]=pt.x, min[3]=pt.y
|
||||
for( i = 1; i <= npoints - v_int32::nlanes/2; i+= v_int32::nlanes/2 )
|
||||
{
|
||||
cvChangeSeqBlock( (CvSeqReader *) reader, 1 );
|
||||
ptr = reader->ptr;
|
||||
v_int32 ptXY2 = v_reinterpret_as_s32(vx_load(pts + i));
|
||||
minval = v_min(ptXY2, minval);
|
||||
maxval = v_max(ptXY2, maxval);
|
||||
}
|
||||
minval = v_min(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval))));
|
||||
maxval = v_max(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
||||
if( i <= npoints - v_int32::nlanes/4 )
|
||||
{
|
||||
v_int32 ptXY = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(vx_load_low(pts + i))));
|
||||
minval = v_min(ptXY, minval);
|
||||
maxval = v_max(ptXY, maxval);
|
||||
i += v_int64::nlanes/2;
|
||||
}
|
||||
for(int j = 16; j < CV_SIMD_WIDTH; j*=2)
|
||||
{
|
||||
minval = v_min(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval))));
|
||||
maxval = v_max(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
||||
}
|
||||
xmin = minval.get0();
|
||||
xmax = maxval.get0();
|
||||
ymin = v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval))).get0();
|
||||
ymax = v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval))).get0();
|
||||
#if CV_SIMD_WIDTH > 16
|
||||
if( i < npoints )
|
||||
{
|
||||
v_int32x4 minval2, maxval2;
|
||||
minval2 = maxval2 = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
||||
for( i++; i < npoints; i++ )
|
||||
{
|
||||
v_int32x4 ptXY = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
||||
minval2 = v_min(ptXY, minval2);
|
||||
maxval2 = v_max(ptXY, maxval2);
|
||||
}
|
||||
xmin = min(xmin, minval2.get0());
|
||||
xmax = max(xmax, maxval2.get0());
|
||||
ymin = min(ymin, v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval2))).get0());
|
||||
ymax = max(ymax, v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval2))).get0());
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
v_float32 minval, maxval;
|
||||
minval = maxval = v_reinterpret_as_f32(vx_setall_s64(*pts)); //min[0]=pt.x, min[1]=pt.y, min[2]=pt.x, min[3]=pt.y
|
||||
for( i = 1; i <= npoints - v_float32::nlanes/2; i+= v_float32::nlanes/2 )
|
||||
{
|
||||
v_float32 ptXY2 = v_reinterpret_as_f32(vx_load(pts + i));
|
||||
minval = v_min(ptXY2, minval);
|
||||
maxval = v_max(ptXY2, maxval);
|
||||
}
|
||||
minval = v_min(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval))));
|
||||
maxval = v_max(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
||||
if( i <= npoints - v_float32::nlanes/4 )
|
||||
{
|
||||
v_float32 ptXY = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(vx_load_low(pts + i))));
|
||||
minval = v_min(ptXY, minval);
|
||||
maxval = v_max(ptXY, maxval);
|
||||
i += v_float32::nlanes/4;
|
||||
}
|
||||
for(int j = 16; j < CV_SIMD_WIDTH; j*=2)
|
||||
{
|
||||
minval = v_min(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval))));
|
||||
maxval = v_max(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
||||
}
|
||||
xmin = cvFloor(minval.get0());
|
||||
xmax = cvFloor(maxval.get0());
|
||||
ymin = cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval))).get0());
|
||||
ymax = cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval))).get0());
|
||||
#if CV_SIMD_WIDTH > 16
|
||||
if( i < npoints )
|
||||
{
|
||||
v_float32x4 minval2, maxval2;
|
||||
minval2 = maxval2 = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
||||
for( i++; i < npoints; i++ )
|
||||
{
|
||||
v_float32x4 ptXY = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
||||
minval2 = v_min(ptXY, minval2);
|
||||
maxval2 = v_max(ptXY, maxval2);
|
||||
}
|
||||
xmin = min(xmin, cvFloor(minval2.get0()));
|
||||
xmax = max(xmax, cvFloor(maxval2.get0()));
|
||||
ymin = min(ymin, cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval2))).get0()));
|
||||
ymax = max(ymax, cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval2))).get0()));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
const Point* pts = points.ptr<Point>();
|
||||
Point pt = pts[0];
|
||||
|
||||
if( !is_float )
|
||||
{
|
||||
xmin = xmax = pt.x;
|
||||
ymin = ymax = pt.y;
|
||||
|
||||
for( i = 1; i < npoints; i++ )
|
||||
{
|
||||
pt = pts[i];
|
||||
|
||||
if( xmin > pt.x )
|
||||
xmin = pt.x;
|
||||
|
||||
if( xmax < pt.x )
|
||||
xmax = pt.x;
|
||||
|
||||
if( ymin > pt.y )
|
||||
ymin = pt.y;
|
||||
|
||||
if( ymax < pt.y )
|
||||
ymax = pt.y;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Cv32suf v;
|
||||
// init values
|
||||
xmin = xmax = CV_TOGGLE_FLT(pt.x);
|
||||
ymin = ymax = CV_TOGGLE_FLT(pt.y);
|
||||
|
||||
for( i = 1; i < npoints; i++ )
|
||||
{
|
||||
pt = pts[i];
|
||||
pt.x = CV_TOGGLE_FLT(pt.x);
|
||||
pt.y = CV_TOGGLE_FLT(pt.y);
|
||||
|
||||
if( xmin > pt.x )
|
||||
xmin = pt.x;
|
||||
|
||||
if( xmax < pt.x )
|
||||
xmax = pt.x;
|
||||
|
||||
if( ymin > pt.y )
|
||||
ymin = pt.y;
|
||||
|
||||
if( ymax < pt.y )
|
||||
ymax = pt.y;
|
||||
}
|
||||
|
||||
reader->ptr = ptr;
|
||||
reader->code = (schar)code;
|
||||
CV_Assert( (code & ~7) == 0 );
|
||||
reader->pt.x = pt.x + icvCodeDeltas[code].x;
|
||||
reader->pt.y = pt.y + icvCodeDeltas[code].y;
|
||||
v.i = CV_TOGGLE_FLT(xmin); xmin = cvFloor(v.f);
|
||||
v.i = CV_TOGGLE_FLT(ymin); ymin = cvFloor(v.f);
|
||||
// because right and bottom sides of the bounding rectangle are not inclusive
|
||||
// (note +1 in width and height calculation below), cvFloor is used here instead of cvCeil
|
||||
v.i = CV_TOGGLE_FLT(xmax); xmax = cvFloor(v.f);
|
||||
v.i = CV_TOGGLE_FLT(ymax); ymax = cvFloor(v.f);
|
||||
}
|
||||
#endif
|
||||
|
||||
return cvPoint(pt);
|
||||
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
|
||||
}
|
||||
|
||||
|
||||
static Rect maskBoundingRect( const Mat& img )
|
||||
{
|
||||
CV_Assert( img.depth() <= CV_8S && img.channels() == 1 );
|
||||
|
||||
Size size = img.size();
|
||||
int xmin = size.width, ymin = -1, xmax = -1, ymax = -1, i, j, k;
|
||||
|
||||
for( i = 0; i < size.height; i++ )
|
||||
{
|
||||
const uchar* _ptr = img.ptr(i);
|
||||
const uchar* ptr = (const uchar*)alignPtr(_ptr, 4);
|
||||
int have_nz = 0, k_min, offset = (int)(ptr - _ptr);
|
||||
j = 0;
|
||||
offset = MIN(offset, size.width);
|
||||
for( ; j < offset; j++ )
|
||||
if( _ptr[j] )
|
||||
{
|
||||
have_nz = 1;
|
||||
break;
|
||||
}
|
||||
if( j < offset )
|
||||
{
|
||||
if( j < xmin )
|
||||
xmin = j;
|
||||
if( j > xmax )
|
||||
xmax = j;
|
||||
}
|
||||
if( offset < size.width )
|
||||
{
|
||||
xmin -= offset;
|
||||
xmax -= offset;
|
||||
size.width -= offset;
|
||||
j = 0;
|
||||
for( ; j <= xmin - 4; j += 4 )
|
||||
if( *((int*)(ptr+j)) )
|
||||
break;
|
||||
for( ; j < xmin; j++ )
|
||||
if( ptr[j] )
|
||||
{
|
||||
xmin = j;
|
||||
if( j > xmax )
|
||||
xmax = j;
|
||||
have_nz = 1;
|
||||
break;
|
||||
}
|
||||
k_min = MAX(j-1, xmax);
|
||||
k = size.width - 1;
|
||||
for( ; k > k_min && (k&3) != 3; k-- )
|
||||
if( ptr[k] )
|
||||
break;
|
||||
if( k > k_min && (k&3) == 3 )
|
||||
{
|
||||
for( ; k > k_min+3; k -= 4 )
|
||||
if( *((int*)(ptr+k-3)) )
|
||||
break;
|
||||
}
|
||||
for( ; k > k_min; k-- )
|
||||
if( ptr[k] )
|
||||
{
|
||||
xmax = k;
|
||||
have_nz = 1;
|
||||
break;
|
||||
}
|
||||
if( !have_nz )
|
||||
{
|
||||
j &= ~3;
|
||||
for( ; j <= k - 3; j += 4 )
|
||||
if( *((int*)(ptr+j)) )
|
||||
break;
|
||||
for( ; j <= k; j++ )
|
||||
if( ptr[j] )
|
||||
{
|
||||
have_nz = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
xmin += offset;
|
||||
xmax += offset;
|
||||
size.width += offset;
|
||||
}
|
||||
if( have_nz )
|
||||
{
|
||||
if( ymin < 0 )
|
||||
ymin = i;
|
||||
ymax = i;
|
||||
}
|
||||
}
|
||||
|
||||
if( xmin >= size.width )
|
||||
xmin = ymin = 0;
|
||||
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
|
||||
}
|
||||
|
||||
} // namespace cv::
|
||||
|
||||
cv::Rect cv::boundingRect(InputArray array)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat m = array.getMat();
|
||||
return m.depth() <= CV_8U ? maskBoundingRect(m) : pointSetBoundingRect(m);
|
||||
}
|
||||
|
||||
// utility function for cvBoundingRect
|
||||
static CvSeq* cvPointSeqFromMat( int seq_kind, const CvArr* arr,
|
||||
CvContour* contour_header, CvSeqBlock* block )
|
||||
{
|
||||
CV_Assert( arr != 0 && contour_header != 0 && block != 0 );
|
||||
|
||||
int eltype;
|
||||
CvMat hdr;
|
||||
CvMat* mat = (CvMat*)arr;
|
||||
|
||||
if( !CV_IS_MAT( mat ))
|
||||
CV_Error( CV_StsBadArg, "Input array is not a valid matrix" );
|
||||
|
||||
if( CV_MAT_CN(mat->type) == 1 && mat->width == 2 )
|
||||
mat = cvReshape(mat, &hdr, 2);
|
||||
|
||||
eltype = CV_MAT_TYPE( mat->type );
|
||||
if( eltype != CV_32SC2 && eltype != CV_32FC2 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"The matrix can not be converted to point sequence because of "
|
||||
"inappropriate element type" );
|
||||
|
||||
if( (mat->width != 1 && mat->height != 1) || !CV_IS_MAT_CONT(mat->type))
|
||||
CV_Error( CV_StsBadArg,
|
||||
"The matrix converted to point sequence must be "
|
||||
"1-dimensional and continuous" );
|
||||
|
||||
cvMakeSeqHeaderForArray(
|
||||
(seq_kind & (CV_SEQ_KIND_MASK|CV_SEQ_FLAG_CLOSED)) | eltype,
|
||||
sizeof(CvContour), CV_ELEM_SIZE(eltype), mat->data.ptr,
|
||||
mat->width*mat->height, (CvSeq*)contour_header, block );
|
||||
|
||||
return (CvSeq*)contour_header;
|
||||
}
|
||||
|
||||
/* Calculates bounding rectangle of a point set or retrieves already calculated */
|
||||
static CvRect cvBoundingRect( CvArr* array, int update )
|
||||
{
|
||||
cv::Rect rect;
|
||||
CvContour contour_header;
|
||||
CvSeq* ptseq = 0;
|
||||
CvSeqBlock block;
|
||||
|
||||
CvMat stub, *mat = 0;
|
||||
int calculate = update;
|
||||
|
||||
if( CV_IS_SEQ( array ))
|
||||
{
|
||||
ptseq = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POINT_SET( ptseq ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
|
||||
if( ptseq->header_size < (int)sizeof(CvContour))
|
||||
{
|
||||
update = 0;
|
||||
calculate = 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
mat = cvGetMat( array, &stub );
|
||||
if( CV_MAT_TYPE(mat->type) == CV_32SC2 ||
|
||||
CV_MAT_TYPE(mat->type) == CV_32FC2 )
|
||||
{
|
||||
ptseq = cvPointSeqFromMat(CV_SEQ_KIND_GENERIC, mat, &contour_header, &block);
|
||||
mat = 0;
|
||||
}
|
||||
else if( CV_MAT_TYPE(mat->type) != CV_8UC1 &&
|
||||
CV_MAT_TYPE(mat->type) != CV_8SC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"The image/matrix format is not supported by the function" );
|
||||
update = 0;
|
||||
calculate = 1;
|
||||
}
|
||||
|
||||
if( !calculate )
|
||||
return ((CvContour*)ptseq)->rect;
|
||||
|
||||
if( mat )
|
||||
{
|
||||
rect = cvRect(cv::maskBoundingRect(cv::cvarrToMat(mat)));
|
||||
}
|
||||
else if( ptseq->total )
|
||||
{
|
||||
cv::AutoBuffer<double> abuf;
|
||||
rect = cvRect(cv::pointSetBoundingRect(cv::cvarrToMat(ptseq, false, false, 0, &abuf)));
|
||||
}
|
||||
if( update )
|
||||
((CvContour*)ptseq)->rect = cvRect(rect);
|
||||
return cvRect(rect);
|
||||
}
|
||||
|
||||
static double cvThreshold( const void* srcarr, void* dstarr, double thresh, double maxval, int type )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst;
|
||||
|
||||
CV_Assert( src.size == dst.size && src.channels() == dst.channels() &&
|
||||
(src.depth() == dst.depth() || dst.depth() == CV_8U));
|
||||
|
||||
thresh = cv::threshold( src, dst, thresh, maxval, type );
|
||||
if( dst0.data != dst.data )
|
||||
dst.convertTo( dst0, dst0.depth() );
|
||||
return thresh;
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
* Raster->Chain Tree (Suzuki algorithms) *
|
||||
\****************************************************************************************/
|
||||
@ -170,6 +503,13 @@ typedef struct _CvContourScanner
|
||||
}
|
||||
_CvContourScanner;
|
||||
|
||||
/*
|
||||
Internal structure that is used for sequential retrieving contours from the image.
|
||||
It supports both hierarchical and plane variants of Suzuki algorithm.
|
||||
*/
|
||||
typedef struct _CvContourScanner* CvContourScanner;
|
||||
|
||||
|
||||
#define _CV_FIND_CONTOURS_FLAGS_EXTERNAL_ONLY 1
|
||||
#define _CV_FIND_CONTOURS_FLAGS_HIERARCHIC 2
|
||||
|
||||
@ -187,23 +527,23 @@ cvStartFindContours_Impl( void* _img, CvMemStorage* storage,
|
||||
|
||||
CvMat stub, *mat = cvGetMat( _img, &stub );
|
||||
|
||||
if( CV_MAT_TYPE(mat->type) == CV_32SC1 && mode == CV_RETR_CCOMP )
|
||||
mode = CV_RETR_FLOODFILL;
|
||||
if( CV_MAT_TYPE(mat->type) == CV_32SC1 && mode == cv::RETR_CCOMP )
|
||||
mode = cv::RETR_FLOODFILL;
|
||||
|
||||
if( !((CV_IS_MASK_ARR( mat ) && mode < CV_RETR_FLOODFILL) ||
|
||||
(CV_MAT_TYPE(mat->type) == CV_32SC1 && mode == CV_RETR_FLOODFILL)) )
|
||||
if( !((CV_IS_MASK_ARR( mat ) && mode < cv::RETR_FLOODFILL) ||
|
||||
(CV_MAT_TYPE(mat->type) == CV_32SC1 && mode == cv::RETR_FLOODFILL)) )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"[Start]FindContours supports only CV_8UC1 images when mode != CV_RETR_FLOODFILL "
|
||||
"[Start]FindContours supports only CV_8UC1 images when mode != cv::RETR_FLOODFILL "
|
||||
"otherwise supports CV_32SC1 images only" );
|
||||
|
||||
CvSize size = cvSize( mat->width, mat->height );
|
||||
int step = mat->step;
|
||||
uchar* img = (uchar*)(mat->data.ptr);
|
||||
|
||||
if( method < 0 || method > CV_CHAIN_APPROX_TC89_KCOS )
|
||||
if( method < 0 || method > cv::CHAIN_APPROX_TC89_KCOS )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
|
||||
if( header_size < (int) (method == CV_CHAIN_CODE ? sizeof( CvChain ) : sizeof( CvContour )))
|
||||
if( header_size < (int) (method == cv::CHAIN_CODE ? sizeof( CvChain ) : sizeof( CvContour )))
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
|
||||
CvContourScanner scanner = (CvContourScanner)cvAlloc( sizeof( *scanner ));
|
||||
@ -233,10 +573,10 @@ cvStartFindContours_Impl( void* _img, CvMemStorage* storage,
|
||||
|
||||
scanner->approx_method2 = scanner->approx_method1 = method;
|
||||
|
||||
if( method == CV_CHAIN_APPROX_TC89_L1 || method == CV_CHAIN_APPROX_TC89_KCOS )
|
||||
scanner->approx_method1 = CV_CHAIN_CODE;
|
||||
if( method == cv::CHAIN_APPROX_TC89_L1 || method == cv::CHAIN_APPROX_TC89_KCOS )
|
||||
scanner->approx_method1 = cv::CHAIN_CODE;
|
||||
|
||||
if( scanner->approx_method1 == CV_CHAIN_CODE )
|
||||
if( scanner->approx_method1 == cv::CHAIN_CODE )
|
||||
{
|
||||
scanner->seq_type1 = CV_SEQ_CHAIN_CONTOUR;
|
||||
scanner->header_size1 = scanner->approx_method1 == scanner->approx_method2 ?
|
||||
@ -253,7 +593,7 @@ cvStartFindContours_Impl( void* _img, CvMemStorage* storage,
|
||||
|
||||
scanner->header_size2 = header_size;
|
||||
|
||||
if( scanner->approx_method2 == CV_CHAIN_CODE )
|
||||
if( scanner->approx_method2 == cv::CHAIN_CODE )
|
||||
{
|
||||
scanner->seq_type2 = scanner->seq_type1;
|
||||
scanner->elem_size2 = scanner->elem_size1;
|
||||
@ -264,20 +604,20 @@ cvStartFindContours_Impl( void* _img, CvMemStorage* storage,
|
||||
scanner->elem_size2 = sizeof( CvPoint );
|
||||
}
|
||||
|
||||
scanner->seq_type1 = scanner->approx_method1 == CV_CHAIN_CODE ?
|
||||
scanner->seq_type1 = scanner->approx_method1 == cv::CHAIN_CODE ?
|
||||
CV_SEQ_CHAIN_CONTOUR : CV_SEQ_POLYGON;
|
||||
|
||||
scanner->seq_type2 = scanner->approx_method2 == CV_CHAIN_CODE ?
|
||||
scanner->seq_type2 = scanner->approx_method2 == cv::CHAIN_CODE ?
|
||||
CV_SEQ_CHAIN_CONTOUR : CV_SEQ_POLYGON;
|
||||
|
||||
cvSaveMemStoragePos( storage, &(scanner->initial_pos) );
|
||||
|
||||
if( method > CV_CHAIN_APPROX_SIMPLE )
|
||||
if( method > cv::CHAIN_APPROX_SIMPLE )
|
||||
{
|
||||
scanner->storage1 = cvCreateChildMemStorage( scanner->storage2 );
|
||||
}
|
||||
|
||||
if( mode > CV_RETR_LIST )
|
||||
if( mode > cv::RETR_LIST )
|
||||
{
|
||||
scanner->cinfo_storage = cvCreateChildMemStorage( scanner->storage2 );
|
||||
scanner->cinfo_set = cvCreateSet( 0, sizeof( CvSet ), sizeof( _CvContourInfo ),
|
||||
@ -304,155 +644,11 @@ cvStartFindContours_Impl( void* _img, CvMemStorage* storage,
|
||||
|
||||
/* converts all pixels to 0 or 1 */
|
||||
if( CV_MAT_TYPE(mat->type) != CV_32S )
|
||||
cvThreshold( mat, mat, 0, 1, CV_THRESH_BINARY );
|
||||
cvThreshold( mat, mat, 0, 1, cv::THRESH_BINARY );
|
||||
|
||||
return scanner;
|
||||
}
|
||||
|
||||
CV_IMPL CvContourScanner
|
||||
cvStartFindContours( void* _img, CvMemStorage* storage,
|
||||
int header_size, int mode,
|
||||
int method, CvPoint offset )
|
||||
{
|
||||
return cvStartFindContours_Impl(_img, storage, header_size, mode, method, offset, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
Final stage of contour processing.
|
||||
Three variants possible:
|
||||
1. Contour, which was retrieved using border following, is added to
|
||||
the contour tree. It is the case when the icvSubstituteContour function
|
||||
was not called after retrieving the contour.
|
||||
|
||||
2. New contour, assigned by icvSubstituteContour function, is added to the
|
||||
tree. The retrieved contour itself is removed from the storage.
|
||||
Here two cases are possible:
|
||||
2a. If one deals with plane variant of algorithm
|
||||
(hierarchical structure is not reconstructed),
|
||||
the contour is removed completely.
|
||||
2b. In hierarchical case, the header of the contour is not removed.
|
||||
It's marked as "link to contour" and h_next pointer of it is set to
|
||||
new, substituting contour.
|
||||
|
||||
3. The similar to 2, but when NULL pointer was assigned by
|
||||
icvSubstituteContour function. In this case, the function removes
|
||||
retrieved contour completely if plane case and
|
||||
leaves header if hierarchical (but doesn't mark header as "link").
|
||||
------------------------------------------------------------------------
|
||||
The 1st variant can be used to retrieve and store all the contours from the image
|
||||
(with optional conversion from chains to contours using some approximation from
|
||||
restricted set of methods). Some characteristics of contour can be computed in the
|
||||
same pass.
|
||||
|
||||
The usage scheme can look like:
|
||||
|
||||
icvContourScanner scanner;
|
||||
CvMemStorage* contour_storage;
|
||||
CvSeq* first_contour;
|
||||
CvStatus result;
|
||||
|
||||
...
|
||||
|
||||
icvCreateMemStorage( &contour_storage, block_size/0 );
|
||||
|
||||
...
|
||||
|
||||
cvStartFindContours
|
||||
( img, contour_storage,
|
||||
header_size, approx_method,
|
||||
[external_only,]
|
||||
&scanner );
|
||||
|
||||
for(;;)
|
||||
{
|
||||
[CvSeq* contour;]
|
||||
result = icvFindNextContour( &scanner, &contour/0 );
|
||||
|
||||
if( result != CV_OK ) break;
|
||||
|
||||
// calculate some characteristics
|
||||
...
|
||||
}
|
||||
|
||||
if( result < 0 ) goto error_processing;
|
||||
|
||||
cvEndFindContours( &scanner, &first_contour );
|
||||
...
|
||||
|
||||
-----------------------------------------------------------------
|
||||
|
||||
Second variant is more complex and can be used when someone wants store not
|
||||
the retrieved contours but transformed ones. (e.g. approximated with some
|
||||
non-default algorithm ).
|
||||
|
||||
The scheme can be the as following:
|
||||
|
||||
icvContourScanner scanner;
|
||||
CvMemStorage* contour_storage;
|
||||
CvMemStorage* temp_storage;
|
||||
CvSeq* first_contour;
|
||||
CvStatus result;
|
||||
|
||||
...
|
||||
|
||||
icvCreateMemStorage( &contour_storage, block_size/0 );
|
||||
icvCreateMemStorage( &temp_storage, block_size/0 );
|
||||
|
||||
...
|
||||
|
||||
icvStartFindContours8uC1R
|
||||
( <img_params>, temp_storage,
|
||||
header_size, approx_method,
|
||||
[retrival_mode],
|
||||
&scanner );
|
||||
|
||||
for(;;)
|
||||
{
|
||||
CvSeq* temp_contour;
|
||||
CvSeq* new_contour;
|
||||
result = icvFindNextContour( scanner, &temp_contour );
|
||||
|
||||
if( result != CV_OK ) break;
|
||||
|
||||
<approximation_function>( temp_contour, contour_storage,
|
||||
&new_contour, <parameters...> );
|
||||
|
||||
icvSubstituteContour( scanner, new_contour );
|
||||
...
|
||||
}
|
||||
|
||||
if( result < 0 ) goto error_processing;
|
||||
|
||||
cvEndFindContours( &scanner, &first_contour );
|
||||
...
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Third method to retrieve contours may be applied if contours are irrelevant
|
||||
themselves but some characteristics of them are used only.
|
||||
The usage is similar to second except slightly different internal loop
|
||||
|
||||
for(;;)
|
||||
{
|
||||
CvSeq* temp_contour;
|
||||
result = icvFindNextContour( &scanner, &temp_contour );
|
||||
|
||||
if( result != CV_OK ) break;
|
||||
|
||||
// calculate some characteristics of temp_contour
|
||||
|
||||
icvSubstituteContour( scanner, 0 );
|
||||
...
|
||||
}
|
||||
|
||||
new_storage variable is not needed here.
|
||||
|
||||
Note, that the second and the third methods can interleave. I.e. it is possible to
|
||||
retain contours that satisfy with some criteria and reject others.
|
||||
In hierarchic case the resulting tree is the part of original tree with
|
||||
some nodes absent. But in the resulting tree the contour1 is a child
|
||||
(may be indirect) of contour2 iff in the original tree the contour1
|
||||
is a child (may be indirect) of contour2.
|
||||
*/
|
||||
static void
|
||||
icvEndProcessContour( CvContourScanner scanner )
|
||||
{
|
||||
@ -483,23 +679,6 @@ icvEndProcessContour( CvContourScanner scanner )
|
||||
}
|
||||
}
|
||||
|
||||
/* replaces one contour with another */
|
||||
CV_IMPL void
|
||||
cvSubstituteContour( CvContourScanner scanner, CvSeq * new_contour )
|
||||
{
|
||||
_CvContourInfo *l_cinfo;
|
||||
|
||||
if( !scanner )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
|
||||
l_cinfo = scanner->l_cinfo;
|
||||
if( l_cinfo && l_cinfo->contour && l_cinfo->contour != new_contour )
|
||||
{
|
||||
l_cinfo->contour = new_contour;
|
||||
scanner->subst_flag = 1;
|
||||
}
|
||||
}
|
||||
|
||||
static const int MAX_SIZE = 16;
|
||||
|
||||
/*
|
||||
@ -523,7 +702,7 @@ icvFetchContour( schar *ptr,
|
||||
int prev_s = -1, s, s_end;
|
||||
int method = _method - 1;
|
||||
|
||||
CV_DbgAssert( (unsigned) _method <= CV_CHAIN_APPROX_SIMPLE );
|
||||
CV_DbgAssert( (unsigned) _method <= cv::CHAIN_APPROX_SIMPLE );
|
||||
|
||||
/* initialize local state */
|
||||
CV_INIT_3X3_DELTAS( deltas, step, 1 );
|
||||
@ -612,7 +791,7 @@ icvFetchContour( schar *ptr,
|
||||
|
||||
cvEndWriteSeq( &writer );
|
||||
|
||||
if( _method != CV_CHAIN_CODE )
|
||||
if( _method != cv::CHAIN_CODE )
|
||||
cvBoundingRect( contour, 1 );
|
||||
|
||||
CV_DbgAssert( (writer.seq->total == 0 && writer.seq->first == 0) ||
|
||||
@ -721,7 +900,7 @@ icvFetchContourEx( schar* ptr,
|
||||
int prev_s = -1, s, s_end;
|
||||
int method = _method - 1;
|
||||
|
||||
CV_DbgAssert( (unsigned) _method <= CV_CHAIN_APPROX_SIMPLE );
|
||||
CV_DbgAssert( (unsigned) _method <= cv::CHAIN_APPROX_SIMPLE );
|
||||
CV_DbgAssert( 1 < nbd && nbd < 128 );
|
||||
|
||||
/* initialize local state */
|
||||
@ -826,7 +1005,7 @@ icvFetchContourEx( schar* ptr,
|
||||
|
||||
cvEndWriteSeq( &writer );
|
||||
|
||||
if( _method != CV_CHAIN_CODE )
|
||||
if( _method != cv::CHAIN_CODE )
|
||||
((CvContour*)contour)->rect = cvRect(rect);
|
||||
|
||||
CV_DbgAssert( (writer.seq->total == 0 && writer.seq->first == 0) ||
|
||||
@ -915,7 +1094,7 @@ icvFetchContourEx_32s( int* ptr,
|
||||
const int nbd0 = ccomp_val | new_flag;
|
||||
const int nbd1 = nbd0 | right_flag;
|
||||
|
||||
CV_DbgAssert( (unsigned) _method <= CV_CHAIN_APPROX_SIMPLE );
|
||||
CV_DbgAssert( (unsigned) _method <= cv::CHAIN_APPROX_SIMPLE );
|
||||
|
||||
/* initialize local state */
|
||||
CV_INIT_3X3_DELTAS( deltas, step, 1 );
|
||||
@ -1016,7 +1195,7 @@ icvFetchContourEx_32s( int* ptr,
|
||||
|
||||
cvEndWriteSeq( &writer );
|
||||
|
||||
if( _method != CV_CHAIN_CODE )
|
||||
if( _method != cv::CHAIN_CODE )
|
||||
((CvContour*)contour)->rect = cvRect(rect);
|
||||
|
||||
CV_DbgAssert( (writer.seq->total == 0 && writer.seq->first == 0) ||
|
||||
@ -1028,8 +1207,7 @@ icvFetchContourEx_32s( int* ptr,
|
||||
}
|
||||
|
||||
|
||||
CvSeq *
|
||||
cvFindNextContour( CvContourScanner scanner )
|
||||
static CvSeq * cvFindNextContour( CvContourScanner scanner )
|
||||
{
|
||||
if( !scanner )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
@ -1053,7 +1231,7 @@ cvFindNextContour( CvContourScanner scanner )
|
||||
int prev = img[x - 1];
|
||||
int new_mask = -2;
|
||||
|
||||
if( mode == CV_RETR_FLOODFILL )
|
||||
if( mode == cv::RETR_FLOODFILL )
|
||||
{
|
||||
prev = ((int*)img)[x - 1];
|
||||
new_mask = INT_MIN / 2;
|
||||
@ -1065,7 +1243,7 @@ cvFindNextContour( CvContourScanner scanner )
|
||||
int* img_i = 0;
|
||||
int p = 0;
|
||||
|
||||
if( mode == CV_RETR_FLOODFILL )
|
||||
if( mode == cv::RETR_FLOODFILL )
|
||||
{
|
||||
img0_i = (int*)img0;
|
||||
img_i = (int*)img;
|
||||
@ -1137,7 +1315,7 @@ cvFindNextContour( CvContourScanner scanner )
|
||||
origin.x = x - is_hole;
|
||||
|
||||
/* find contour parent */
|
||||
if( mode <= 1 || (!is_hole && (mode == CV_RETR_CCOMP || mode == CV_RETR_FLOODFILL)) || lnbd.x <= 0 )
|
||||
if( mode <= 1 || (!is_hole && (mode == cv::RETR_CCOMP || mode == cv::RETR_FLOODFILL)) || lnbd.x <= 0 )
|
||||
{
|
||||
par_info = &(scanner->frame_info);
|
||||
}
|
||||
@ -1309,8 +1487,7 @@ cvFindNextContour( CvContourScanner scanner )
|
||||
The function add to tree the last retrieved/substituted contour,
|
||||
releases temp_storage, restores state of dst_storage (if needed), and
|
||||
returns pointer to root of the contour tree */
|
||||
CV_IMPL CvSeq *
|
||||
cvEndFindContours( CvContourScanner * _scanner )
|
||||
static CvSeq * cvEndFindContours( CvContourScanner * _scanner )
|
||||
{
|
||||
CvContourScanner scanner;
|
||||
CvSeq *first = 0;
|
||||
@ -1752,11 +1929,11 @@ cvFindContours_Impl( void* img, CvMemStorage* storage,
|
||||
|
||||
*firstContour = 0;
|
||||
|
||||
if( method == CV_LINK_RUNS )
|
||||
if( method == cv::LINK_RUNS )
|
||||
{
|
||||
if( offset.x != 0 || offset.y != 0 )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
"Nonzero offset is not supported in CV_LINK_RUNS yet" );
|
||||
"Nonzero offset is not supported in cv::LINK_RUNS yet" );
|
||||
|
||||
count = icvFindContoursInInterval( img, storage, firstContour, cntHeaderSize );
|
||||
}
|
||||
@ -1787,35 +1964,6 @@ cvFindContours_Impl( void* img, CvMemStorage* storage,
|
||||
return count;
|
||||
}
|
||||
|
||||
/*F///////////////////////////////////////////////////////////////////////////////////////
|
||||
// Name: cvFindContours
|
||||
// Purpose:
|
||||
// Finds all the contours on the bi-level image.
|
||||
// Context:
|
||||
// Parameters:
|
||||
// img - source image.
|
||||
// Non-zero pixels are considered as 1-pixels
|
||||
// and zero pixels as 0-pixels.
|
||||
// step - full width of source image in bytes.
|
||||
// size - width and height of the image in pixels
|
||||
// storage - pointer to storage where will the output contours be placed.
|
||||
// header_size - header size of resulting contours
|
||||
// mode - mode of contour retrieval.
|
||||
// method - method of approximation that is applied to contours
|
||||
// first_contour - pointer to first contour pointer
|
||||
// Returns:
|
||||
// CV_OK or error code
|
||||
// Notes:
|
||||
//F*/
|
||||
CV_IMPL int
|
||||
cvFindContours( void* img, CvMemStorage* storage,
|
||||
CvSeq** firstContour, int cntHeaderSize,
|
||||
int mode,
|
||||
int method, CvPoint offset )
|
||||
{
|
||||
return cvFindContours_Impl(img, storage, firstContour, cntHeaderSize, mode, method, offset, 1);
|
||||
}
|
||||
|
||||
void cv::findContours( InputArray _image, OutputArrayOfArrays _contours,
|
||||
OutputArray _hierarchy, int mode, int method, Point offset )
|
||||
{
|
||||
@ -1829,7 +1977,7 @@ void cv::findContours( InputArray _image, OutputArrayOfArrays _contours,
|
||||
|
||||
Mat image0 = _image.getMat(), image;
|
||||
Point offset0(0, 0);
|
||||
if(method != CV_LINK_RUNS)
|
||||
if(method != cv::LINK_RUNS)
|
||||
{
|
||||
offset0 = Point(-1, -1);
|
||||
copyMakeBorder(image0, image, 1, 1, 1, 1, BORDER_CONSTANT | BORDER_ISOLATED, Scalar(0));
|
||||
|
@ -455,140 +455,3 @@ bool isContourConvex( InputArray _contour )
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
CV_IMPL CvSeq*
|
||||
cvConvexHull2( const CvArr* array, void* hull_storage,
|
||||
int orientation, int return_points )
|
||||
{
|
||||
CvMat* mat = 0;
|
||||
CvContour contour_header;
|
||||
CvSeq hull_header;
|
||||
CvSeqBlock block, hullblock;
|
||||
CvSeq* ptseq = 0;
|
||||
CvSeq* hullseq = 0;
|
||||
|
||||
if( CV_IS_SEQ( array ))
|
||||
{
|
||||
ptseq = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POINT_SET( ptseq ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
if( hull_storage == 0 )
|
||||
hull_storage = ptseq->storage;
|
||||
}
|
||||
else
|
||||
{
|
||||
ptseq = cvPointSeqFromMat( CV_SEQ_KIND_GENERIC, array, &contour_header, &block );
|
||||
}
|
||||
|
||||
bool isStorage = isStorageOrMat(hull_storage);
|
||||
|
||||
if(isStorage)
|
||||
{
|
||||
if( return_points )
|
||||
{
|
||||
hullseq = cvCreateSeq(CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE(ptseq)|
|
||||
CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
|
||||
sizeof(CvContour), sizeof(CvPoint),(CvMemStorage*)hull_storage );
|
||||
}
|
||||
else
|
||||
{
|
||||
hullseq = cvCreateSeq(
|
||||
CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_PPOINT|
|
||||
CV_SEQ_FLAG_CLOSED|CV_SEQ_FLAG_CONVEX,
|
||||
sizeof(CvContour), sizeof(CvPoint*), (CvMemStorage*)hull_storage );
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
mat = (CvMat*)hull_storage;
|
||||
|
||||
if( (mat->cols != 1 && mat->rows != 1) || !CV_IS_MAT_CONT(mat->type))
|
||||
CV_Error( CV_StsBadArg,
|
||||
"The hull matrix should be continuous and have a single row or a single column" );
|
||||
|
||||
if( mat->cols + mat->rows - 1 < ptseq->total )
|
||||
CV_Error( CV_StsBadSize, "The hull matrix size might be not enough to fit the hull" );
|
||||
|
||||
if( CV_MAT_TYPE(mat->type) != CV_SEQ_ELTYPE(ptseq) &&
|
||||
CV_MAT_TYPE(mat->type) != CV_32SC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"The hull matrix must have the same type as input or 32sC1 (integers)" );
|
||||
|
||||
hullseq = cvMakeSeqHeaderForArray(
|
||||
CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
|
||||
sizeof(hull_header), CV_ELEM_SIZE(mat->type), mat->data.ptr,
|
||||
mat->cols + mat->rows - 1, &hull_header, &hullblock );
|
||||
cvClearSeq( hullseq );
|
||||
}
|
||||
|
||||
int hulltype = CV_SEQ_ELTYPE(hullseq);
|
||||
int total = ptseq->total;
|
||||
if( total == 0 )
|
||||
{
|
||||
if( !isStorage )
|
||||
CV_Error( CV_StsBadSize,
|
||||
"Point sequence can not be empty if the output is matrix" );
|
||||
return 0;
|
||||
}
|
||||
|
||||
cv::AutoBuffer<double> _ptbuf;
|
||||
cv::Mat h0;
|
||||
cv::convexHull(cv::cvarrToMat(ptseq, false, false, 0, &_ptbuf), h0,
|
||||
orientation == CV_CLOCKWISE, CV_MAT_CN(hulltype) == 2);
|
||||
|
||||
|
||||
if( hulltype == CV_SEQ_ELTYPE_PPOINT )
|
||||
{
|
||||
const int* idx = h0.ptr<int>();
|
||||
int ctotal = (int)h0.total();
|
||||
for( int i = 0; i < ctotal; i++ )
|
||||
{
|
||||
void* ptr = cvGetSeqElem(ptseq, idx[i]);
|
||||
cvSeqPush( hullseq, &ptr );
|
||||
}
|
||||
}
|
||||
else
|
||||
cvSeqPushMulti(hullseq, h0.ptr(), (int)h0.total());
|
||||
|
||||
if (isStorage)
|
||||
{
|
||||
return hullseq;
|
||||
}
|
||||
else
|
||||
{
|
||||
if( mat->rows > mat->cols )
|
||||
mat->rows = hullseq->total;
|
||||
else
|
||||
mat->cols = hullseq->total;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int
|
||||
cvCheckContourConvexity( const CvArr* array )
|
||||
{
|
||||
CvContour contour_header;
|
||||
CvSeqBlock block;
|
||||
CvSeq* contour = (CvSeq*)array;
|
||||
|
||||
if( CV_IS_SEQ(contour) )
|
||||
{
|
||||
if( !CV_IS_SEQ_POINT_SET(contour))
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"Input sequence must be polygon (closed 2d curve)" );
|
||||
}
|
||||
else
|
||||
{
|
||||
contour = cvPointSeqFromMat(CV_SEQ_KIND_CURVE|
|
||||
CV_SEQ_FLAG_CLOSED, array, &contour_header, &block );
|
||||
}
|
||||
|
||||
if( contour->total == 0 )
|
||||
return -1;
|
||||
|
||||
cv::AutoBuffer<double> _buf;
|
||||
return cv::isContourConvex(cv::cvarrToMat(contour, false, false, 0, &_buf)) ? 1 : 0;
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -735,25 +735,3 @@ void cv::preCornerDetect( InputArray _src, OutputArray _dst, int ksize, int bord
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvCornerMinEigenVal( const CvArr* srcarr, CvArr* dstarr,
|
||||
int block_size, int aperture_size )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
||||
|
||||
CV_Assert( src.size() == dst.size() && dst.type() == CV_32FC1 );
|
||||
cv::cornerMinEigenVal( src, dst, block_size, aperture_size, cv::BORDER_REPLICATE );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvCornerEigenValsAndVecs( const void* srcarr, void* dstarr,
|
||||
int block_size, int aperture_size )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
||||
|
||||
CV_Assert( src.rows == dst.rows && src.cols*6 == dst.cols*dst.channels() && dst.depth() == CV_32F );
|
||||
cv::cornerEigenValsAndVecs( src, dst, block_size, aperture_size, cv::BORDER_REPLICATE );
|
||||
}
|
||||
|
||||
/* End of file */
|
||||
|
@ -732,20 +732,20 @@ void cv::distanceTransform( InputArray _src, OutputArray _dst, OutputArray _labe
|
||||
|
||||
_labels.create(src.size(), CV_32S);
|
||||
labels = _labels.getMat();
|
||||
maskSize = CV_DIST_MASK_5;
|
||||
maskSize = cv::DIST_MASK_5;
|
||||
}
|
||||
|
||||
float _mask[5] = {0};
|
||||
|
||||
if( maskSize != CV_DIST_MASK_3 && maskSize != CV_DIST_MASK_5 && maskSize != CV_DIST_MASK_PRECISE )
|
||||
if( maskSize != cv::DIST_MASK_3 && maskSize != cv::DIST_MASK_5 && maskSize != cv::DIST_MASK_PRECISE )
|
||||
CV_Error( CV_StsBadSize, "Mask size should be 3 or 5 or 0 (precise)" );
|
||||
|
||||
if( distType == CV_DIST_C || distType == CV_DIST_L1 )
|
||||
maskSize = !need_labels ? CV_DIST_MASK_3 : CV_DIST_MASK_5;
|
||||
else if( distType == CV_DIST_L2 && need_labels )
|
||||
maskSize = CV_DIST_MASK_5;
|
||||
if( distType == cv::DIST_C || distType == cv::DIST_L1 )
|
||||
maskSize = !need_labels ? cv::DIST_MASK_3 : cv::DIST_MASK_5;
|
||||
else if( distType == cv::DIST_L2 && need_labels )
|
||||
maskSize = cv::DIST_MASK_5;
|
||||
|
||||
if( maskSize == CV_DIST_MASK_PRECISE )
|
||||
if( maskSize == cv::DIST_MASK_PRECISE )
|
||||
{
|
||||
|
||||
#ifdef HAVE_IPP
|
||||
@ -781,19 +781,19 @@ void cv::distanceTransform( InputArray _src, OutputArray _dst, OutputArray _labe
|
||||
return;
|
||||
}
|
||||
|
||||
CV_Assert( distType == CV_DIST_C || distType == CV_DIST_L1 || distType == CV_DIST_L2 );
|
||||
CV_Assert( distType == cv::DIST_C || distType == cv::DIST_L1 || distType == cv::DIST_L2 );
|
||||
|
||||
getDistanceTransformMask( (distType == CV_DIST_C ? 0 :
|
||||
distType == CV_DIST_L1 ? 1 : 2) + maskSize*10, _mask );
|
||||
getDistanceTransformMask( (distType == cv::DIST_C ? 0 :
|
||||
distType == cv::DIST_L1 ? 1 : 2) + maskSize*10, _mask );
|
||||
|
||||
Size size = src.size();
|
||||
|
||||
int border = maskSize == CV_DIST_MASK_3 ? 1 : 2;
|
||||
int border = maskSize == cv::DIST_MASK_3 ? 1 : 2;
|
||||
Mat temp( size.height + border*2, size.width + border*2, CV_32SC1 );
|
||||
|
||||
if( !need_labels )
|
||||
{
|
||||
if( maskSize == CV_DIST_MASK_3 )
|
||||
if( maskSize == cv::DIST_MASK_3 )
|
||||
{
|
||||
#if defined (HAVE_IPP) && (IPP_VERSION_X100 >= 700) && 0 // disabled: https://github.com/opencv/opencv/issues/15904
|
||||
CV_IPP_CHECK()
|
||||
@ -832,7 +832,7 @@ void cv::distanceTransform( InputArray _src, OutputArray _dst, OutputArray _labe
|
||||
{
|
||||
labels.setTo(Scalar::all(0));
|
||||
|
||||
if( labelType == CV_DIST_LABEL_CCOMP )
|
||||
if( labelType == cv::DIST_LABEL_CCOMP )
|
||||
{
|
||||
Mat zpix = src == 0;
|
||||
connectedComponents(zpix, labels, 8, CV_32S, CCL_WU);
|
||||
@ -860,27 +860,9 @@ void cv::distanceTransform( InputArray _src, OutputArray _dst,
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
if (distanceType == CV_DIST_L1 && dstType==CV_8U)
|
||||
if (distanceType == cv::DIST_L1 && dstType==CV_8U)
|
||||
distanceTransform_L1_8U(_src, _dst);
|
||||
else
|
||||
distanceTransform(_src, _dst, noArray(), distanceType, maskSize, DIST_LABEL_PIXEL);
|
||||
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvDistTransform( const void* srcarr, void* dstarr,
|
||||
int distType, int maskSize,
|
||||
const float * /*mask*/,
|
||||
void* labelsarr, int labelType )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr);
|
||||
const cv::Mat dst = cv::cvarrToMat(dstarr);
|
||||
const cv::Mat labels = cv::cvarrToMat(labelsarr);
|
||||
|
||||
cv::distanceTransform(src, dst, labelsarr ? cv::_OutputArray(labels) : cv::_OutputArray(),
|
||||
distType, maskSize, labelType);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* End of file. */
|
||||
|
@ -1111,7 +1111,7 @@ FillConvexPoly( Mat& img, const Point2l* v, int npts, const void* color, int lin
|
||||
Point2l p0;
|
||||
int delta1, delta2;
|
||||
|
||||
if( line_type < CV_AA )
|
||||
if( line_type < cv::LINE_AA )
|
||||
delta1 = delta2 = XY_ONE >> 1;
|
||||
else
|
||||
delta1 = XY_ONE - 1, delta2 = 0;
|
||||
@ -1181,7 +1181,7 @@ FillConvexPoly( Mat& img, const Point2l* v, int npts, const void* color, int lin
|
||||
|
||||
do
|
||||
{
|
||||
if( line_type < CV_AA || y < (int)ymax || y == (int)ymin )
|
||||
if( line_type < cv::LINE_AA || y < (int)ymax || y == (int)ymin )
|
||||
{
|
||||
for( i = 0; i < 2; i++ )
|
||||
{
|
||||
@ -1277,7 +1277,7 @@ CollectPolyEdges( Mat& img, const Point2l* v, int count, std::vector<PolyEdge>&
|
||||
pt1.x = (pt1.x + offset.x) << (XY_SHIFT - shift);
|
||||
pt1.y = (pt1.y + delta) >> shift;
|
||||
|
||||
if( line_type < CV_AA )
|
||||
if( line_type < cv::LINE_AA )
|
||||
{
|
||||
t0.y = pt0.y; t1.y = pt1.y;
|
||||
t0.x = (pt0.x + (XY_ONE >> 1)) >> XY_SHIFT;
|
||||
@ -1632,7 +1632,7 @@ ThickLine( Mat& img, Point2l p0, Point2l p1, const void* color,
|
||||
|
||||
if( thickness <= 1 )
|
||||
{
|
||||
if( line_type < CV_AA )
|
||||
if( line_type < cv::LINE_AA )
|
||||
{
|
||||
if( line_type == 1 || line_type == 4 || shift == 0 )
|
||||
{
|
||||
@ -1678,7 +1678,7 @@ ThickLine( Mat& img, Point2l p0, Point2l p1, const void* color,
|
||||
{
|
||||
if( flags & (i+1) )
|
||||
{
|
||||
if( line_type < CV_AA )
|
||||
if( line_type < cv::LINE_AA )
|
||||
{
|
||||
Point center;
|
||||
center.x = (int)((p0.x + (XY_ONE>>1)) >> XY_SHIFT);
|
||||
@ -1796,7 +1796,7 @@ void line( InputOutputArray _img, Point pt1, Point pt2, const Scalar& color,
|
||||
|
||||
Mat img = _img.getMat();
|
||||
|
||||
if( line_type == CV_AA && img.depth() != CV_8U )
|
||||
if( line_type == cv::LINE_AA && img.depth() != CV_8U )
|
||||
line_type = 8;
|
||||
|
||||
CV_Assert( 0 < thickness && thickness <= MAX_THICKNESS );
|
||||
@ -1835,7 +1835,7 @@ void rectangle( InputOutputArray _img, Point pt1, Point pt2,
|
||||
|
||||
Mat img = _img.getMat();
|
||||
|
||||
if( lineType == CV_AA && img.depth() != CV_8U )
|
||||
if( lineType == cv::LINE_AA && img.depth() != CV_8U )
|
||||
lineType = 8;
|
||||
|
||||
CV_Assert( thickness <= MAX_THICKNESS );
|
||||
@ -1885,7 +1885,7 @@ void circle( InputOutputArray _img, Point center, int radius,
|
||||
|
||||
Mat img = _img.getMat();
|
||||
|
||||
if( line_type == CV_AA && img.depth() != CV_8U )
|
||||
if( line_type == cv::LINE_AA && img.depth() != CV_8U )
|
||||
line_type = 8;
|
||||
|
||||
CV_Assert( radius >= 0 && thickness <= MAX_THICKNESS &&
|
||||
@ -1917,7 +1917,7 @@ void ellipse( InputOutputArray _img, Point center, Size axes,
|
||||
|
||||
Mat img = _img.getMat();
|
||||
|
||||
if( line_type == CV_AA && img.depth() != CV_8U )
|
||||
if( line_type == cv::LINE_AA && img.depth() != CV_8U )
|
||||
line_type = 8;
|
||||
|
||||
CV_Assert( axes.width >= 0 && axes.height >= 0 &&
|
||||
@ -1947,7 +1947,7 @@ void ellipse(InputOutputArray _img, const RotatedRect& box, const Scalar& color,
|
||||
|
||||
Mat img = _img.getMat();
|
||||
|
||||
if( lineType == CV_AA && img.depth() != CV_8U )
|
||||
if( lineType == cv::LINE_AA && img.depth() != CV_8U )
|
||||
lineType = 8;
|
||||
|
||||
CV_Assert( box.size.width >= 0 && box.size.height >= 0 &&
|
||||
@ -1978,7 +1978,7 @@ void fillConvexPoly( InputOutputArray _img, const Point* pts, int npts,
|
||||
if( !pts || npts <= 0 )
|
||||
return;
|
||||
|
||||
if( line_type == CV_AA && img.depth() != CV_8U )
|
||||
if( line_type == cv::LINE_AA && img.depth() != CV_8U )
|
||||
line_type = 8;
|
||||
|
||||
double buf[4];
|
||||
@ -1996,7 +1996,7 @@ void fillPoly( InputOutputArray _img, const Point** pts, const int* npts, int nc
|
||||
|
||||
Mat img = _img.getMat();
|
||||
|
||||
if( line_type == CV_AA && img.depth() != CV_8U )
|
||||
if( line_type == cv::LINE_AA && img.depth() != CV_8U )
|
||||
line_type = 8;
|
||||
|
||||
CV_Assert( pts && npts && ncontours >= 0 && 0 <= shift && shift <= XY_SHIFT );
|
||||
@ -2027,7 +2027,7 @@ void polylines( InputOutputArray _img, const Point* const* pts, const int* npts,
|
||||
|
||||
Mat img = _img.getMat();
|
||||
|
||||
if( line_type == CV_AA && img.depth() != CV_8U )
|
||||
if( line_type == cv::LINE_AA && img.depth() != CV_8U )
|
||||
line_type = 8;
|
||||
|
||||
CV_Assert( pts && npts && ncontours >= 0 &&
|
||||
@ -2143,6 +2143,12 @@ static void addChildContour(InputArrayOfArrays contours,
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
cvDrawContours( void* _img, CvSeq* contour,
|
||||
CvScalar _externalColor, CvScalar _holeColor,
|
||||
int maxLevel, int thickness,
|
||||
int line_type, CvPoint _offset );
|
||||
|
||||
void cv::drawContours( InputOutputArray _image, InputArrayOfArrays _contours,
|
||||
int contourIdx, const Scalar& color, int thickness,
|
||||
int lineType, InputArray _hierarchy,
|
||||
@ -2232,7 +2238,7 @@ static const int CodeDeltas[8][2] =
|
||||
#define CV_ADJUST_EDGE_COUNT( count, seq ) \
|
||||
((count) -= ((count) == (seq)->total && !CV_IS_SEQ_CLOSED(seq)))
|
||||
|
||||
CV_IMPL void
|
||||
void
|
||||
cvDrawContours( void* _img, CvSeq* contour,
|
||||
CvScalar _externalColor, CvScalar _holeColor,
|
||||
int maxLevel, int thickness,
|
||||
@ -2247,7 +2253,7 @@ cvDrawContours( void* _img, CvSeq* contour,
|
||||
cv::Point offset = _offset;
|
||||
double ext_buf[4], hole_buf[4];
|
||||
|
||||
if( line_type == CV_AA && img.depth() != CV_8U )
|
||||
if( line_type == cv::LINE_AA && img.depth() != CV_8U )
|
||||
line_type = 8;
|
||||
|
||||
if( !contour )
|
||||
@ -2352,169 +2358,3 @@ cvDrawContours( void* _img, CvSeq* contour,
|
||||
if( h_next && contour0 )
|
||||
contour0->h_next = h_next;
|
||||
}
|
||||
|
||||
CV_IMPL CvScalar
|
||||
cvColorToScalar( double packed_color, int type )
|
||||
{
|
||||
cv::Scalar scalar;
|
||||
|
||||
if( CV_MAT_DEPTH( type ) == CV_8U )
|
||||
{
|
||||
int icolor = cvRound( packed_color );
|
||||
if( CV_MAT_CN( type ) > 1 )
|
||||
{
|
||||
scalar.val[0] = icolor & 255;
|
||||
scalar.val[1] = (icolor >> 8) & 255;
|
||||
scalar.val[2] = (icolor >> 16) & 255;
|
||||
scalar.val[3] = (icolor >> 24) & 255;
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar.val[0] = cv::saturate_cast<uchar>( icolor );
|
||||
scalar.val[1] = scalar.val[2] = scalar.val[3] = 0;
|
||||
}
|
||||
}
|
||||
else if( CV_MAT_DEPTH( type ) == CV_8S )
|
||||
{
|
||||
int icolor = cvRound( packed_color );
|
||||
if( CV_MAT_CN( type ) > 1 )
|
||||
{
|
||||
scalar.val[0] = (char)icolor;
|
||||
scalar.val[1] = (char)(icolor >> 8);
|
||||
scalar.val[2] = (char)(icolor >> 16);
|
||||
scalar.val[3] = (char)(icolor >> 24);
|
||||
}
|
||||
else
|
||||
{
|
||||
scalar.val[0] = cv::saturate_cast<schar>( icolor );
|
||||
scalar.val[1] = scalar.val[2] = scalar.val[3] = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
int cn = CV_MAT_CN( type );
|
||||
switch( cn )
|
||||
{
|
||||
case 1:
|
||||
scalar.val[0] = packed_color;
|
||||
scalar.val[1] = scalar.val[2] = scalar.val[3] = 0;
|
||||
break;
|
||||
case 2:
|
||||
scalar.val[0] = scalar.val[1] = packed_color;
|
||||
scalar.val[2] = scalar.val[3] = 0;
|
||||
break;
|
||||
case 3:
|
||||
scalar.val[0] = scalar.val[1] = scalar.val[2] = packed_color;
|
||||
scalar.val[3] = 0;
|
||||
break;
|
||||
default:
|
||||
scalar.val[0] = scalar.val[1] =
|
||||
scalar.val[2] = scalar.val[3] = packed_color;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return cvScalar(scalar);
|
||||
}
|
||||
|
||||
CV_IMPL int
|
||||
cvInitLineIterator( const CvArr* img, CvPoint pt1, CvPoint pt2,
|
||||
CvLineIterator* iterator, int connectivity,
|
||||
int left_to_right )
|
||||
{
|
||||
CV_Assert( iterator != 0 );
|
||||
cv::LineIterator li(cv::cvarrToMat(img), pt1, pt2, connectivity, left_to_right!=0);
|
||||
|
||||
iterator->err = li.err;
|
||||
iterator->minus_delta = li.minusDelta;
|
||||
iterator->plus_delta = li.plusDelta;
|
||||
iterator->minus_step = li.minusStep;
|
||||
iterator->plus_step = li.plusStep;
|
||||
iterator->ptr = li.ptr;
|
||||
|
||||
return li.count;
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvLine( CvArr* _img, CvPoint pt1, CvPoint pt2, CvScalar color,
|
||||
int thickness, int line_type, int shift )
|
||||
{
|
||||
cv::Mat img = cv::cvarrToMat(_img);
|
||||
cv::line( img, pt1, pt2, color, thickness, line_type, shift );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvRectangle( CvArr* _img, CvPoint pt1, CvPoint pt2,
|
||||
CvScalar color, int thickness,
|
||||
int line_type, int shift )
|
||||
{
|
||||
cv::Mat img = cv::cvarrToMat(_img);
|
||||
cv::rectangle( img, pt1, pt2, color, thickness, line_type, shift );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvCircle( CvArr* _img, CvPoint center, int radius,
|
||||
CvScalar color, int thickness, int line_type, int shift )
|
||||
{
|
||||
cv::Mat img = cv::cvarrToMat(_img);
|
||||
cv::circle( img, center, radius, color, thickness, line_type, shift );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvEllipse( CvArr* _img, CvPoint center, CvSize axes,
|
||||
double angle, double start_angle, double end_angle,
|
||||
CvScalar color, int thickness, int line_type, int shift )
|
||||
{
|
||||
cv::Mat img = cv::cvarrToMat(_img);
|
||||
cv::ellipse( img, center, axes, angle, start_angle, end_angle,
|
||||
color, thickness, line_type, shift );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvFillPoly( CvArr* _img, CvPoint **pts, const int *npts, int ncontours,
|
||||
CvScalar color, int line_type, int shift )
|
||||
{
|
||||
cv::Mat img = cv::cvarrToMat(_img);
|
||||
|
||||
cv::fillPoly( img, (const cv::Point**)pts, npts, ncontours, color, line_type, shift );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvPolyLine( CvArr* _img, CvPoint **pts, const int *npts,
|
||||
int ncontours, int closed, CvScalar color,
|
||||
int thickness, int line_type, int shift )
|
||||
{
|
||||
cv::Mat img = cv::cvarrToMat(_img);
|
||||
|
||||
cv::polylines( img, (const cv::Point**)pts, npts, ncontours,
|
||||
closed != 0, color, thickness, line_type, shift );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvPutText( CvArr* _img, const char *text, CvPoint org, const CvFont *_font, CvScalar color )
|
||||
{
|
||||
cv::Mat img = cv::cvarrToMat(_img);
|
||||
CV_Assert( text != 0 && _font != 0);
|
||||
cv::putText( img, text, org, _font->font_face, (_font->hscale+_font->vscale)*0.5,
|
||||
color, _font->thickness, _font->line_type,
|
||||
CV_IS_IMAGE(_img) && ((IplImage*)_img)->origin != 0 );
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvInitFont( CvFont *font, int font_face, double hscale, double vscale,
|
||||
double shear, int thickness, int line_type )
|
||||
{
|
||||
CV_Assert( font != 0 && hscale > 0 && vscale > 0 && thickness >= 0 );
|
||||
|
||||
font->ascii = 0;
|
||||
font->font_face = font_face;
|
||||
font->hscale = (float)hscale;
|
||||
font->vscale = (float)vscale;
|
||||
font->thickness = thickness;
|
||||
font->shear = (float)shear;
|
||||
font->greek = font->cyrillic = 0;
|
||||
font->line_type = line_type;
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -113,6 +113,8 @@ typedef struct CvEMDState
|
||||
}
|
||||
CvEMDState;
|
||||
|
||||
typedef float (CV_CDECL * CvDistanceFunction)( const float* a, const float* b, void* user_param );
|
||||
|
||||
/* static function declaration */
|
||||
static int icvInitEMD( const float *signature1, int size1,
|
||||
const float *signature2, int size2,
|
||||
@ -145,7 +147,7 @@ static float icvDistL1( const float *x, const float *y, void *user_param );
|
||||
static float icvDistC( const float *x, const float *y, void *user_param );
|
||||
|
||||
/* The main function */
|
||||
CV_IMPL float cvCalcEMD2( const CvArr* signature_arr1,
|
||||
static float cvCalcEMD2( const CvArr* signature_arr1,
|
||||
const CvArr* signature_arr2,
|
||||
int dist_type,
|
||||
CvDistanceFunction dist_func,
|
||||
@ -232,13 +234,13 @@ CV_IMPL float cvCalcEMD2( const CvArr* signature_arr1,
|
||||
user_param = (void *) (size_t)dims;
|
||||
switch (dist_type)
|
||||
{
|
||||
case CV_DIST_L1:
|
||||
case cv::DIST_L1:
|
||||
dist_func = icvDistL1;
|
||||
break;
|
||||
case CV_DIST_L2:
|
||||
case cv::DIST_L2:
|
||||
dist_func = icvDistL2;
|
||||
break;
|
||||
case CV_DIST_C:
|
||||
case cv::DIST_C:
|
||||
dist_func = icvDistC;
|
||||
break;
|
||||
default:
|
||||
|
@ -1613,16 +1613,3 @@ void sepFilter2D(InputArray _src, OutputArray _dst, int ddepth,
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
CV_IMPL void
|
||||
cvFilter2D( const CvArr* srcarr, CvArr* dstarr, const CvMat* _kernel, CvPoint anchor )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
||||
cv::Mat kernel = cv::cvarrToMat(_kernel);
|
||||
|
||||
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
|
||||
|
||||
cv::filter2D( src, dst, dst.depth(), kernel, anchor, 0, cv::BORDER_REPLICATE );
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -628,25 +628,3 @@ int cv::floodFill( InputOutputArray _image, Point seedPoint,
|
||||
Mat mask;
|
||||
return floodFill(_image, mask, seedPoint, newVal, rect, loDiff, upDiff, flags);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvFloodFill( CvArr* arr, CvPoint seed_point,
|
||||
CvScalar newVal, CvScalar lo_diff, CvScalar up_diff,
|
||||
CvConnectedComp* comp, int flags, CvArr* maskarr )
|
||||
{
|
||||
if( comp )
|
||||
memset( comp, 0, sizeof(*comp) );
|
||||
|
||||
cv::Mat img = cv::cvarrToMat(arr), mask = cv::cvarrToMat(maskarr);
|
||||
int area = cv::floodFill(img, mask, seed_point, newVal,
|
||||
comp ? (cv::Rect*)&comp->rect : 0,
|
||||
lo_diff, up_diff, flags );
|
||||
if( comp )
|
||||
{
|
||||
comp->area = area;
|
||||
comp->value = newVal;
|
||||
}
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -47,6 +47,8 @@
|
||||
|
||||
#include "opencv2/core/utils/tls.hpp"
|
||||
|
||||
void cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform );
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
@ -2045,17 +2047,17 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
|
||||
const int len = it.planes[0].rows*it.planes[0].cols*H1.channels();
|
||||
j = 0;
|
||||
|
||||
if( (method == CV_COMP_CHISQR) || (method == CV_COMP_CHISQR_ALT))
|
||||
if( (method == cv::HISTCMP_CHISQR) || (method == cv::HISTCMP_CHISQR_ALT))
|
||||
{
|
||||
for( ; j < len; j++ )
|
||||
{
|
||||
double a = h1[j] - h2[j];
|
||||
double b = (method == CV_COMP_CHISQR) ? h1[j] : h1[j] + h2[j];
|
||||
double b = (method == cv::HISTCMP_CHISQR) ? h1[j] : h1[j] + h2[j];
|
||||
if( fabs(b) > DBL_EPSILON )
|
||||
result += a*a/b;
|
||||
}
|
||||
}
|
||||
else if( method == CV_COMP_CORREL )
|
||||
else if( method == cv::HISTCMP_CORREL )
|
||||
{
|
||||
#if CV_SIMD_64F
|
||||
v_float64 v_s1 = vx_setzero_f64();
|
||||
@ -2091,7 +2093,7 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
|
||||
s22 += v_reduce_sum(v_s22);
|
||||
s1 += v_reduce_sum(v_s1);
|
||||
s2 += v_reduce_sum(v_s2);
|
||||
#elif CV_SIMD && 0 //Disable vectorization for CV_COMP_CORREL if f64 is unsupported due to low precision
|
||||
#elif CV_SIMD && 0 //Disable vectorization for cv::HISTCMP_CORREL if f64 is unsupported due to low precision
|
||||
v_float32 v_s1 = vx_setzero_f32();
|
||||
v_float32 v_s2 = vx_setzero_f32();
|
||||
v_float32 v_s11 = vx_setzero_f32();
|
||||
@ -2126,7 +2128,7 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
|
||||
s22 += b*b;
|
||||
}
|
||||
}
|
||||
else if( method == CV_COMP_INTERSECT )
|
||||
else if( method == cv::HISTCMP_INTERSECT )
|
||||
{
|
||||
#if CV_SIMD_64F
|
||||
v_float64 v_result = vx_setzero_f64();
|
||||
@ -2148,7 +2150,7 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
|
||||
for( ; j < len; j++ )
|
||||
result += std::min(h1[j], h2[j]);
|
||||
}
|
||||
else if( method == CV_COMP_BHATTACHARYYA )
|
||||
else if( method == cv::HISTCMP_BHATTACHARYYA )
|
||||
{
|
||||
#if CV_SIMD_64F
|
||||
v_float64 v_s1 = vx_setzero_f64();
|
||||
@ -2174,7 +2176,7 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
|
||||
s1 += v_reduce_sum(v_s1);
|
||||
s2 += v_reduce_sum(v_s2);
|
||||
result += v_reduce_sum(v_result);
|
||||
#elif CV_SIMD && 0 //Disable vectorization for CV_COMP_BHATTACHARYYA if f64 is unsupported due to low precision
|
||||
#elif CV_SIMD && 0 //Disable vectorization for cv::HISTCMP_BHATTACHARYYA if f64 is unsupported due to low precision
|
||||
v_float32 v_s1 = vx_setzero_f32();
|
||||
v_float32 v_s2 = vx_setzero_f32();
|
||||
v_float32 v_result = vx_setzero_f32();
|
||||
@ -2199,7 +2201,7 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
|
||||
s2 += b;
|
||||
}
|
||||
}
|
||||
else if( method == CV_COMP_KL_DIV )
|
||||
else if( method == cv::HISTCMP_KL_DIV )
|
||||
{
|
||||
for( ; j < len; j++ )
|
||||
{
|
||||
@ -2218,9 +2220,9 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
|
||||
CV_Error( CV_StsBadArg, "Unknown comparison method" );
|
||||
}
|
||||
|
||||
if( method == CV_COMP_CHISQR_ALT )
|
||||
if( method == cv::HISTCMP_CHISQR_ALT )
|
||||
result *= 2;
|
||||
else if( method == CV_COMP_CORREL )
|
||||
else if( method == cv::HISTCMP_CORREL )
|
||||
{
|
||||
size_t total = H1.total();
|
||||
double scale = 1./total;
|
||||
@ -2228,7 +2230,7 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
|
||||
double denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale);
|
||||
result = std::abs(denom2) > DBL_EPSILON ? num/std::sqrt(denom2) : 1.;
|
||||
}
|
||||
else if( method == CV_COMP_BHATTACHARYYA )
|
||||
else if( method == cv::HISTCMP_BHATTACHARYYA )
|
||||
{
|
||||
s1 *= s2;
|
||||
s1 = fabs(s1) > FLT_EPSILON ? 1./std::sqrt(s1) : 1.;
|
||||
@ -2251,14 +2253,14 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
|
||||
CV_Assert( H1.size(i) == H2.size(i) );
|
||||
|
||||
const SparseMat *PH1 = &H1, *PH2 = &H2;
|
||||
if( PH1->nzcount() > PH2->nzcount() && method != CV_COMP_CHISQR && method != CV_COMP_CHISQR_ALT && method != CV_COMP_KL_DIV )
|
||||
if( PH1->nzcount() > PH2->nzcount() && method != cv::HISTCMP_CHISQR && method != cv::HISTCMP_CHISQR_ALT && method != cv::HISTCMP_KL_DIV )
|
||||
std::swap(PH1, PH2);
|
||||
|
||||
SparseMatConstIterator it = PH1->begin();
|
||||
|
||||
int N1 = (int)PH1->nzcount(), N2 = (int)PH2->nzcount();
|
||||
|
||||
if( (method == CV_COMP_CHISQR) || (method == CV_COMP_CHISQR_ALT) )
|
||||
if( (method == cv::HISTCMP_CHISQR) || (method == cv::HISTCMP_CHISQR_ALT) )
|
||||
{
|
||||
for( i = 0; i < N1; i++, ++it )
|
||||
{
|
||||
@ -2267,12 +2269,12 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
|
||||
const SparseMat::Node* node = it.node();
|
||||
float v2 = PH2->value<float>(node->idx, (size_t*)&node->hashval);
|
||||
double a = v1 - v2;
|
||||
double b = (method == CV_COMP_CHISQR) ? v1 : v1 + v2;
|
||||
double b = (method == cv::HISTCMP_CHISQR) ? v1 : v1 + v2;
|
||||
if( fabs(b) > DBL_EPSILON )
|
||||
result += a*a/b;
|
||||
}
|
||||
}
|
||||
else if( method == CV_COMP_CORREL )
|
||||
else if( method == cv::HISTCMP_CORREL )
|
||||
{
|
||||
double s1 = 0, s2 = 0, s11 = 0, s12 = 0, s22 = 0;
|
||||
|
||||
@ -2303,7 +2305,7 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
|
||||
double denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale);
|
||||
result = std::abs(denom2) > DBL_EPSILON ? num/std::sqrt(denom2) : 1.;
|
||||
}
|
||||
else if( method == CV_COMP_INTERSECT )
|
||||
else if( method == cv::HISTCMP_INTERSECT )
|
||||
{
|
||||
for( i = 0; i < N1; i++, ++it )
|
||||
{
|
||||
@ -2315,7 +2317,7 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
|
||||
result += std::min(v1, v2);
|
||||
}
|
||||
}
|
||||
else if( method == CV_COMP_BHATTACHARYYA )
|
||||
else if( method == cv::HISTCMP_BHATTACHARYYA )
|
||||
{
|
||||
double s1 = 0, s2 = 0;
|
||||
|
||||
@ -2340,7 +2342,7 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
|
||||
s1 = fabs(s1) > FLT_EPSILON ? 1./std::sqrt(s1) : 1.;
|
||||
result = std::sqrt(std::max(1. - result*s1, 0.));
|
||||
}
|
||||
else if( method == CV_COMP_KL_DIV )
|
||||
else if( method == cv::HISTCMP_KL_DIV )
|
||||
{
|
||||
for( i = 0; i < N1; i++, ++it )
|
||||
{
|
||||
@ -2356,536 +2358,15 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown comparison method" );
|
||||
|
||||
if( method == CV_COMP_CHISQR_ALT )
|
||||
if( method == cv::HISTCMP_CHISQR_ALT )
|
||||
result *= 2;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
const int CV_HIST_DEFAULT_TYPE = CV_32F;
|
||||
|
||||
/* Creates new histogram */
|
||||
CvHistogram *
|
||||
cvCreateHist( int dims, int *sizes, CvHistType type, float** ranges, int uniform )
|
||||
{
|
||||
CvHistogram *hist = 0;
|
||||
|
||||
if( (unsigned)dims > CV_MAX_DIM )
|
||||
CV_Error( CV_BadOrder, "Number of dimensions is out of range" );
|
||||
|
||||
if( !sizes )
|
||||
CV_Error( CV_HeaderIsNull, "Null <sizes> pointer" );
|
||||
|
||||
hist = (CvHistogram *)cvAlloc( sizeof( CvHistogram ));
|
||||
hist->type = CV_HIST_MAGIC_VAL + ((int)type & 1);
|
||||
if (uniform) hist->type|= CV_HIST_UNIFORM_FLAG;
|
||||
hist->thresh2 = 0;
|
||||
hist->bins = 0;
|
||||
if( type == CV_HIST_ARRAY )
|
||||
{
|
||||
hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes,
|
||||
CV_HIST_DEFAULT_TYPE );
|
||||
cvCreateData( hist->bins );
|
||||
}
|
||||
else if( type == CV_HIST_SPARSE )
|
||||
hist->bins = cvCreateSparseMat( dims, sizes, CV_HIST_DEFAULT_TYPE );
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram type" );
|
||||
|
||||
if( ranges )
|
||||
cvSetHistBinRanges( hist, ranges, uniform );
|
||||
|
||||
return hist;
|
||||
}
|
||||
|
||||
|
||||
/* Creates histogram wrapping header for given array */
|
||||
CV_IMPL CvHistogram*
|
||||
cvMakeHistHeaderForArray( int dims, int *sizes, CvHistogram *hist,
|
||||
float *data, float **ranges, int uniform )
|
||||
{
|
||||
if( !hist )
|
||||
CV_Error( CV_StsNullPtr, "Null histogram header pointer" );
|
||||
|
||||
if( !data )
|
||||
CV_Error( CV_StsNullPtr, "Null data pointer" );
|
||||
|
||||
hist->thresh2 = 0;
|
||||
hist->type = CV_HIST_MAGIC_VAL;
|
||||
hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes, CV_HIST_DEFAULT_TYPE, data );
|
||||
|
||||
if( ranges )
|
||||
{
|
||||
if( !uniform )
|
||||
CV_Error( CV_StsBadArg, "Only uniform bin ranges can be used here "
|
||||
"(to avoid memory allocation)" );
|
||||
cvSetHistBinRanges( hist, ranges, uniform );
|
||||
}
|
||||
|
||||
return hist;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvReleaseHist( CvHistogram **hist )
|
||||
{
|
||||
if( !hist )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
|
||||
if( *hist )
|
||||
{
|
||||
CvHistogram* temp = *hist;
|
||||
|
||||
if( !CV_IS_HIST(temp))
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
*hist = 0;
|
||||
|
||||
if( CV_IS_SPARSE_HIST( temp ))
|
||||
cvReleaseSparseMat( (CvSparseMat**)&temp->bins );
|
||||
else
|
||||
{
|
||||
cvReleaseData( temp->bins );
|
||||
temp->bins = 0;
|
||||
}
|
||||
|
||||
if( temp->thresh2 )
|
||||
cvFree( &temp->thresh2 );
|
||||
cvFree( &temp );
|
||||
}
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvClearHist( CvHistogram *hist )
|
||||
{
|
||||
if( !CV_IS_HIST(hist) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
cvZero( hist->bins );
|
||||
}
|
||||
|
||||
|
||||
// Clears histogram bins that are below than threshold
|
||||
CV_IMPL void
|
||||
cvThreshHist( CvHistogram* hist, double thresh )
|
||||
{
|
||||
if( !CV_IS_HIST(hist) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
|
||||
if( !CV_IS_SPARSE_MAT(hist->bins) )
|
||||
{
|
||||
CvMat mat;
|
||||
cvGetMat( hist->bins, &mat, 0, 1 );
|
||||
cvThreshold( &mat, &mat, thresh, 0, CV_THRESH_TOZERO );
|
||||
}
|
||||
else
|
||||
{
|
||||
CvSparseMat* mat = (CvSparseMat*)hist->bins;
|
||||
CvSparseMatIterator iterator;
|
||||
CvSparseNode *node;
|
||||
|
||||
for( node = cvInitSparseMatIterator( mat, &iterator );
|
||||
node != 0; node = cvGetNextSparseNode( &iterator ))
|
||||
{
|
||||
float* val = (float*)CV_NODE_VAL( mat, node );
|
||||
if( *val <= thresh )
|
||||
*val = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Normalizes histogram (make sum of the histogram bins == factor)
|
||||
CV_IMPL void
|
||||
cvNormalizeHist( CvHistogram* hist, double factor )
|
||||
{
|
||||
double sum = 0;
|
||||
|
||||
if( !CV_IS_HIST(hist) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
|
||||
if( !CV_IS_SPARSE_HIST(hist) )
|
||||
{
|
||||
CvMat mat;
|
||||
cvGetMat( hist->bins, &mat, 0, 1 );
|
||||
sum = cvSum( &mat ).val[0];
|
||||
if( fabs(sum) < DBL_EPSILON )
|
||||
sum = 1;
|
||||
cvScale( &mat, &mat, factor/sum, 0 );
|
||||
}
|
||||
else
|
||||
{
|
||||
CvSparseMat* mat = (CvSparseMat*)hist->bins;
|
||||
CvSparseMatIterator iterator;
|
||||
CvSparseNode *node;
|
||||
float scale;
|
||||
|
||||
for( node = cvInitSparseMatIterator( mat, &iterator );
|
||||
node != 0; node = cvGetNextSparseNode( &iterator ))
|
||||
{
|
||||
sum += *(float*)CV_NODE_VAL(mat,node);
|
||||
}
|
||||
|
||||
if( fabs(sum) < DBL_EPSILON )
|
||||
sum = 1;
|
||||
scale = (float)(factor/sum);
|
||||
|
||||
for( node = cvInitSparseMatIterator( mat, &iterator );
|
||||
node != 0; node = cvGetNextSparseNode( &iterator ))
|
||||
{
|
||||
*(float*)CV_NODE_VAL(mat,node) *= scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Retrieves histogram global min, max and their positions
|
||||
CV_IMPL void
|
||||
cvGetMinMaxHistValue( const CvHistogram* hist,
|
||||
float *value_min, float* value_max,
|
||||
int* idx_min, int* idx_max )
|
||||
{
|
||||
double minVal, maxVal;
|
||||
int dims, size[CV_MAX_DIM];
|
||||
|
||||
if( !CV_IS_HIST(hist) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
|
||||
dims = cvGetDims( hist->bins, size );
|
||||
|
||||
if( !CV_IS_SPARSE_HIST(hist) )
|
||||
{
|
||||
CvMat mat;
|
||||
CvPoint minPt = {0, 0}, maxPt = {0, 0};
|
||||
|
||||
cvGetMat( hist->bins, &mat, 0, 1 );
|
||||
cvMinMaxLoc( &mat, &minVal, &maxVal, &minPt, &maxPt );
|
||||
|
||||
if( dims == 1 )
|
||||
{
|
||||
if( idx_min )
|
||||
*idx_min = minPt.y + minPt.x;
|
||||
if( idx_max )
|
||||
*idx_max = maxPt.y + maxPt.x;
|
||||
}
|
||||
else if( dims == 2 )
|
||||
{
|
||||
if( idx_min )
|
||||
idx_min[0] = minPt.y, idx_min[1] = minPt.x;
|
||||
if( idx_max )
|
||||
idx_max[0] = maxPt.y, idx_max[1] = maxPt.x;
|
||||
}
|
||||
else if( idx_min || idx_max )
|
||||
{
|
||||
int imin = minPt.y*mat.cols + minPt.x;
|
||||
int imax = maxPt.y*mat.cols + maxPt.x;
|
||||
|
||||
for(int i = dims - 1; i >= 0; i-- )
|
||||
{
|
||||
if( idx_min )
|
||||
{
|
||||
int t = imin / size[i];
|
||||
idx_min[i] = imin - t*size[i];
|
||||
imin = t;
|
||||
}
|
||||
|
||||
if( idx_max )
|
||||
{
|
||||
int t = imax / size[i];
|
||||
idx_max[i] = imax - t*size[i];
|
||||
imax = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
CvSparseMat* mat = (CvSparseMat*)hist->bins;
|
||||
CvSparseMatIterator iterator;
|
||||
CvSparseNode *node;
|
||||
int minv = INT_MAX;
|
||||
int maxv = INT_MIN;
|
||||
CvSparseNode* minNode = 0;
|
||||
CvSparseNode* maxNode = 0;
|
||||
const int *_idx_min = 0, *_idx_max = 0;
|
||||
Cv32suf m;
|
||||
|
||||
for( node = cvInitSparseMatIterator( mat, &iterator );
|
||||
node != 0; node = cvGetNextSparseNode( &iterator ))
|
||||
{
|
||||
int value = *(int*)CV_NODE_VAL(mat,node);
|
||||
value = CV_TOGGLE_FLT(value);
|
||||
if( value < minv )
|
||||
{
|
||||
minv = value;
|
||||
minNode = node;
|
||||
}
|
||||
|
||||
if( value > maxv )
|
||||
{
|
||||
maxv = value;
|
||||
maxNode = node;
|
||||
}
|
||||
}
|
||||
|
||||
if( minNode )
|
||||
{
|
||||
_idx_min = CV_NODE_IDX(mat,minNode);
|
||||
_idx_max = CV_NODE_IDX(mat,maxNode);
|
||||
m.i = CV_TOGGLE_FLT(minv); minVal = m.f;
|
||||
m.i = CV_TOGGLE_FLT(maxv); maxVal = m.f;
|
||||
}
|
||||
else
|
||||
{
|
||||
minVal = maxVal = 0;
|
||||
}
|
||||
|
||||
for(int i = 0; i < dims; i++ )
|
||||
{
|
||||
if( idx_min )
|
||||
idx_min[i] = _idx_min ? _idx_min[i] : -1;
|
||||
if( idx_max )
|
||||
idx_max[i] = _idx_max ? _idx_max[i] : -1;
|
||||
}
|
||||
}
|
||||
|
||||
if( value_min )
|
||||
*value_min = (float)minVal;
|
||||
|
||||
if( value_max )
|
||||
*value_max = (float)maxVal;
|
||||
}
|
||||
|
||||
|
||||
// Compares two histograms using one of a few methods
|
||||
CV_IMPL double
|
||||
cvCompareHist( const CvHistogram* hist1,
|
||||
const CvHistogram* hist2,
|
||||
int method )
|
||||
{
|
||||
int i;
|
||||
int size1[CV_MAX_DIM], size2[CV_MAX_DIM], total = 1;
|
||||
|
||||
if( !CV_IS_HIST(hist1) || !CV_IS_HIST(hist2) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header[s]" );
|
||||
|
||||
if( CV_IS_SPARSE_MAT(hist1->bins) != CV_IS_SPARSE_MAT(hist2->bins))
|
||||
CV_Error(CV_StsUnmatchedFormats, "One of histograms is sparse and other is not");
|
||||
|
||||
if( !CV_IS_SPARSE_MAT(hist1->bins) )
|
||||
{
|
||||
cv::Mat H1 = cv::cvarrToMat(hist1->bins);
|
||||
cv::Mat H2 = cv::cvarrToMat(hist2->bins);
|
||||
return cv::compareHist(H1, H2, method);
|
||||
}
|
||||
|
||||
int dims1 = cvGetDims( hist1->bins, size1 );
|
||||
int dims2 = cvGetDims( hist2->bins, size2 );
|
||||
|
||||
if( dims1 != dims2 )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
"The histograms have different numbers of dimensions" );
|
||||
|
||||
for( i = 0; i < dims1; i++ )
|
||||
{
|
||||
if( size1[i] != size2[i] )
|
||||
CV_Error( CV_StsUnmatchedSizes, "The histograms have different sizes" );
|
||||
total *= size1[i];
|
||||
}
|
||||
|
||||
double result = 0;
|
||||
CvSparseMat* mat1 = (CvSparseMat*)(hist1->bins);
|
||||
CvSparseMat* mat2 = (CvSparseMat*)(hist2->bins);
|
||||
CvSparseMatIterator iterator;
|
||||
CvSparseNode *node1, *node2;
|
||||
|
||||
if( mat1->heap->active_count > mat2->heap->active_count && method != CV_COMP_CHISQR && method != CV_COMP_CHISQR_ALT && method != CV_COMP_KL_DIV )
|
||||
{
|
||||
CvSparseMat* t;
|
||||
CV_SWAP( mat1, mat2, t );
|
||||
}
|
||||
|
||||
if( (method == CV_COMP_CHISQR) || (method == CV_COMP_CHISQR_ALT) )
|
||||
{
|
||||
for( node1 = cvInitSparseMatIterator( mat1, &iterator );
|
||||
node1 != 0; node1 = cvGetNextSparseNode( &iterator ))
|
||||
{
|
||||
double v1 = *(float*)CV_NODE_VAL(mat1,node1);
|
||||
uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval );
|
||||
double v2 = node2_data ? *(float*)node2_data : 0.f;
|
||||
double a = v1 - v2;
|
||||
double b = (method == CV_COMP_CHISQR) ? v1 : v1 + v2;
|
||||
if( fabs(b) > DBL_EPSILON )
|
||||
result += a*a/b;
|
||||
}
|
||||
}
|
||||
else if( method == CV_COMP_CORREL )
|
||||
{
|
||||
double s1 = 0, s11 = 0;
|
||||
double s2 = 0, s22 = 0;
|
||||
double s12 = 0;
|
||||
double num, denom2, scale = 1./total;
|
||||
|
||||
for( node1 = cvInitSparseMatIterator( mat1, &iterator );
|
||||
node1 != 0; node1 = cvGetNextSparseNode( &iterator ))
|
||||
{
|
||||
double v1 = *(float*)CV_NODE_VAL(mat1,node1);
|
||||
uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1),
|
||||
0, 0, &node1->hashval );
|
||||
if( node2_data )
|
||||
{
|
||||
double v2 = *(float*)node2_data;
|
||||
s12 += v1*v2;
|
||||
}
|
||||
s1 += v1;
|
||||
s11 += v1*v1;
|
||||
}
|
||||
|
||||
for( node2 = cvInitSparseMatIterator( mat2, &iterator );
|
||||
node2 != 0; node2 = cvGetNextSparseNode( &iterator ))
|
||||
{
|
||||
double v2 = *(float*)CV_NODE_VAL(mat2,node2);
|
||||
s2 += v2;
|
||||
s22 += v2*v2;
|
||||
}
|
||||
|
||||
num = s12 - s1*s2*scale;
|
||||
denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale);
|
||||
result = fabs(denom2) > DBL_EPSILON ? num/sqrt(denom2) : 1;
|
||||
}
|
||||
else if( method == CV_COMP_INTERSECT )
|
||||
{
|
||||
for( node1 = cvInitSparseMatIterator( mat1, &iterator );
|
||||
node1 != 0; node1 = cvGetNextSparseNode( &iterator ))
|
||||
{
|
||||
float v1 = *(float*)CV_NODE_VAL(mat1,node1);
|
||||
uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1),
|
||||
0, 0, &node1->hashval );
|
||||
if( node2_data )
|
||||
{
|
||||
float v2 = *(float*)node2_data;
|
||||
if( v1 <= v2 )
|
||||
result += v1;
|
||||
else
|
||||
result += v2;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if( method == CV_COMP_BHATTACHARYYA )
|
||||
{
|
||||
double s1 = 0, s2 = 0;
|
||||
|
||||
for( node1 = cvInitSparseMatIterator( mat1, &iterator );
|
||||
node1 != 0; node1 = cvGetNextSparseNode( &iterator ))
|
||||
{
|
||||
double v1 = *(float*)CV_NODE_VAL(mat1,node1);
|
||||
uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1),
|
||||
0, 0, &node1->hashval );
|
||||
s1 += v1;
|
||||
if( node2_data )
|
||||
{
|
||||
double v2 = *(float*)node2_data;
|
||||
result += sqrt(v1 * v2);
|
||||
}
|
||||
}
|
||||
|
||||
for( node1 = cvInitSparseMatIterator( mat2, &iterator );
|
||||
node1 != 0; node1 = cvGetNextSparseNode( &iterator ))
|
||||
{
|
||||
double v2 = *(float*)CV_NODE_VAL(mat2,node1);
|
||||
s2 += v2;
|
||||
}
|
||||
|
||||
s1 *= s2;
|
||||
s1 = fabs(s1) > FLT_EPSILON ? 1./sqrt(s1) : 1.;
|
||||
result = 1. - result*s1;
|
||||
result = sqrt(MAX(result,0.));
|
||||
}
|
||||
else if( method == CV_COMP_KL_DIV )
|
||||
{
|
||||
cv::SparseMat sH1, sH2;
|
||||
((const CvSparseMat*)hist1->bins)->copyToSparseMat(sH1);
|
||||
((const CvSparseMat*)hist2->bins)->copyToSparseMat(sH2);
|
||||
result = cv::compareHist( sH1, sH2, CV_COMP_KL_DIV );
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown comparison method" );
|
||||
|
||||
if( method == CV_COMP_CHISQR_ALT )
|
||||
result *= 2;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// copies one histogram to another
|
||||
CV_IMPL void
|
||||
cvCopyHist( const CvHistogram* src, CvHistogram** _dst )
|
||||
{
|
||||
if( !_dst )
|
||||
CV_Error( CV_StsNullPtr, "Destination double pointer is NULL" );
|
||||
|
||||
CvHistogram* dst = *_dst;
|
||||
|
||||
if( !CV_IS_HIST(src) || (dst && !CV_IS_HIST(dst)) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header[s]" );
|
||||
|
||||
bool eq = false;
|
||||
int size1[CV_MAX_DIM];
|
||||
bool is_sparse = CV_IS_SPARSE_MAT(src->bins);
|
||||
int dims1 = cvGetDims( src->bins, size1 );
|
||||
|
||||
if( dst && (is_sparse == CV_IS_SPARSE_MAT(dst->bins)))
|
||||
{
|
||||
int size2[CV_MAX_DIM];
|
||||
int dims2 = cvGetDims( dst->bins, size2 );
|
||||
|
||||
if( dims1 == dims2 )
|
||||
{
|
||||
int i;
|
||||
|
||||
for( i = 0; i < dims1; i++ )
|
||||
{
|
||||
if( size1[i] != size2[i] )
|
||||
break;
|
||||
}
|
||||
|
||||
eq = (i == dims1);
|
||||
}
|
||||
}
|
||||
|
||||
if( !eq )
|
||||
{
|
||||
cvReleaseHist( _dst );
|
||||
dst = cvCreateHist( dims1, size1, !is_sparse ? CV_HIST_ARRAY : CV_HIST_SPARSE, 0, 0 );
|
||||
*_dst = dst;
|
||||
}
|
||||
|
||||
if( CV_HIST_HAS_RANGES( src ))
|
||||
{
|
||||
float* ranges[CV_MAX_DIM];
|
||||
float** thresh = 0;
|
||||
|
||||
if( CV_IS_UNIFORM_HIST( src ))
|
||||
{
|
||||
for( int i = 0; i < dims1; i++ )
|
||||
ranges[i] = (float*)src->thresh[i];
|
||||
|
||||
thresh = ranges;
|
||||
}
|
||||
else
|
||||
{
|
||||
thresh = src->thresh2;
|
||||
}
|
||||
|
||||
cvSetHistBinRanges( dst, thresh, CV_IS_UNIFORM_HIST(src));
|
||||
}
|
||||
|
||||
cvCopy( src->bins, dst->bins );
|
||||
}
|
||||
|
||||
|
||||
// Sets a value range for every histogram bin
|
||||
CV_IMPL void
|
||||
cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform )
|
||||
void cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform )
|
||||
{
|
||||
int dims, size[CV_MAX_DIM], total = 0;
|
||||
int i, j;
|
||||
@ -2949,234 +2430,6 @@ cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform )
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvCalcArrHist( CvArr** img, CvHistogram* hist, int accumulate, const CvArr* mask )
|
||||
{
|
||||
if( !CV_IS_HIST(hist))
|
||||
CV_Error( CV_StsBadArg, "Bad histogram pointer" );
|
||||
|
||||
if( !img )
|
||||
CV_Error( CV_StsNullPtr, "Null double array pointer" );
|
||||
|
||||
int size[CV_MAX_DIM];
|
||||
int i, dims = cvGetDims( hist->bins, size);
|
||||
bool uniform = CV_IS_UNIFORM_HIST(hist);
|
||||
|
||||
std::vector<cv::Mat> images(dims);
|
||||
for( i = 0; i < dims; i++ )
|
||||
images[i] = cv::cvarrToMat(img[i]);
|
||||
|
||||
cv::Mat _mask;
|
||||
if( mask )
|
||||
_mask = cv::cvarrToMat(mask);
|
||||
|
||||
const float* uranges[CV_MAX_DIM] = {0};
|
||||
const float** ranges = 0;
|
||||
|
||||
if( hist->type & CV_HIST_RANGES_FLAG )
|
||||
{
|
||||
ranges = (const float**)hist->thresh2;
|
||||
if( uniform )
|
||||
{
|
||||
for( i = 0; i < dims; i++ )
|
||||
uranges[i] = &hist->thresh[i][0];
|
||||
ranges = uranges;
|
||||
}
|
||||
}
|
||||
|
||||
if( !CV_IS_SPARSE_HIST(hist) )
|
||||
{
|
||||
cv::Mat H = cv::cvarrToMat(hist->bins);
|
||||
cv::calcHist( &images[0], (int)images.size(), 0, _mask,
|
||||
H, cvGetDims(hist->bins), H.size, ranges, uniform, accumulate != 0 );
|
||||
}
|
||||
else
|
||||
{
|
||||
CvSparseMat* sparsemat = (CvSparseMat*)hist->bins;
|
||||
|
||||
if( !accumulate )
|
||||
cvZero( hist->bins );
|
||||
cv::SparseMat sH;
|
||||
sparsemat->copyToSparseMat(sH);
|
||||
cv::calcHist( &images[0], (int)images.size(), 0, _mask, sH, sH.dims(),
|
||||
sH.dims() > 0 ? sH.hdr->size : 0, ranges, uniform, accumulate != 0, true );
|
||||
|
||||
if( accumulate )
|
||||
cvZero( sparsemat );
|
||||
|
||||
cv::SparseMatConstIterator it = sH.begin();
|
||||
int nz = (int)sH.nzcount();
|
||||
for( i = 0; i < nz; i++, ++it )
|
||||
{
|
||||
CV_Assert(it.ptr != NULL);
|
||||
*(float*)cvPtrND(sparsemat, it.node()->idx, 0, -2) = (float)*(const int*)it.ptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvCalcArrBackProject( CvArr** img, CvArr* dst, const CvHistogram* hist )
|
||||
{
|
||||
if( !CV_IS_HIST(hist))
|
||||
CV_Error( CV_StsBadArg, "Bad histogram pointer" );
|
||||
|
||||
if( !img )
|
||||
CV_Error( CV_StsNullPtr, "Null double array pointer" );
|
||||
|
||||
int size[CV_MAX_DIM];
|
||||
int i, dims = cvGetDims( hist->bins, size );
|
||||
|
||||
bool uniform = CV_IS_UNIFORM_HIST(hist);
|
||||
const float* uranges[CV_MAX_DIM] = {0};
|
||||
const float** ranges = 0;
|
||||
|
||||
if( hist->type & CV_HIST_RANGES_FLAG )
|
||||
{
|
||||
ranges = (const float**)hist->thresh2;
|
||||
if( uniform )
|
||||
{
|
||||
for( i = 0; i < dims; i++ )
|
||||
uranges[i] = &hist->thresh[i][0];
|
||||
ranges = uranges;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<cv::Mat> images(dims);
|
||||
for( i = 0; i < dims; i++ )
|
||||
images[i] = cv::cvarrToMat(img[i]);
|
||||
|
||||
cv::Mat _dst = cv::cvarrToMat(dst);
|
||||
|
||||
CV_Assert( _dst.size() == images[0].size() && _dst.depth() == images[0].depth() );
|
||||
|
||||
if( !CV_IS_SPARSE_HIST(hist) )
|
||||
{
|
||||
cv::Mat H = cv::cvarrToMat(hist->bins);
|
||||
cv::calcBackProject( &images[0], (int)images.size(),
|
||||
0, H, _dst, ranges, 1, uniform );
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::SparseMat sH;
|
||||
((const CvSparseMat*)hist->bins)->copyToSparseMat(sH);
|
||||
cv::calcBackProject( &images[0], (int)images.size(),
|
||||
0, sH, _dst, ranges, 1, uniform );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
////////////////////// B A C K P R O J E C T P A T C H /////////////////////////
|
||||
|
||||
CV_IMPL void
|
||||
cvCalcArrBackProjectPatch( CvArr** arr, CvArr* dst, CvSize patch_size, CvHistogram* hist,
|
||||
int method, double norm_factor )
|
||||
{
|
||||
CvHistogram* model = 0;
|
||||
|
||||
IplImage imgstub[CV_MAX_DIM], *img[CV_MAX_DIM];
|
||||
IplROI roi;
|
||||
CvMat dststub, *dstmat;
|
||||
int i, dims;
|
||||
int x, y;
|
||||
cv::Size size;
|
||||
|
||||
if( !CV_IS_HIST(hist))
|
||||
CV_Error( CV_StsBadArg, "Bad histogram pointer" );
|
||||
|
||||
if( !arr )
|
||||
CV_Error( CV_StsNullPtr, "Null double array pointer" );
|
||||
|
||||
if( norm_factor <= 0 )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
"Bad normalization factor (set it to 1.0 if unsure)" );
|
||||
|
||||
if( patch_size.width <= 0 || patch_size.height <= 0 )
|
||||
CV_Error( CV_StsBadSize, "The patch width and height must be positive" );
|
||||
|
||||
dims = cvGetDims( hist->bins );
|
||||
if (dims < 1)
|
||||
CV_Error( CV_StsOutOfRange, "Invalid number of dimensions");
|
||||
cvNormalizeHist( hist, norm_factor );
|
||||
|
||||
for( i = 0; i < dims; i++ )
|
||||
{
|
||||
CvMat stub, *mat;
|
||||
mat = cvGetMat( arr[i], &stub, 0, 0 );
|
||||
img[i] = cvGetImage( mat, &imgstub[i] );
|
||||
img[i]->roi = &roi;
|
||||
}
|
||||
|
||||
dstmat = cvGetMat( dst, &dststub, 0, 0 );
|
||||
if( CV_MAT_TYPE( dstmat->type ) != CV_32FC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Resultant image must have 32fC1 type" );
|
||||
|
||||
if( dstmat->cols != img[0]->width - patch_size.width + 1 ||
|
||||
dstmat->rows != img[0]->height - patch_size.height + 1 )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
"The output map must be (W-w+1 x H-h+1), "
|
||||
"where the input images are (W x H) each and the patch is (w x h)" );
|
||||
|
||||
cvCopyHist( hist, &model );
|
||||
|
||||
size = cvGetMatSize(dstmat);
|
||||
roi.coi = 0;
|
||||
roi.width = patch_size.width;
|
||||
roi.height = patch_size.height;
|
||||
|
||||
for( y = 0; y < size.height; y++ )
|
||||
{
|
||||
for( x = 0; x < size.width; x++ )
|
||||
{
|
||||
double result;
|
||||
roi.xOffset = x;
|
||||
roi.yOffset = y;
|
||||
|
||||
cvCalcHist( img, model );
|
||||
cvNormalizeHist( model, norm_factor );
|
||||
result = cvCompareHist( model, hist, method );
|
||||
CV_MAT_ELEM( *dstmat, float, y, x ) = (float)result;
|
||||
}
|
||||
}
|
||||
|
||||
cvReleaseHist( &model );
|
||||
}
|
||||
|
||||
|
||||
// Calculates Bayes probabilistic histograms
|
||||
CV_IMPL void
|
||||
cvCalcBayesianProb( CvHistogram** src, int count, CvHistogram** dst )
|
||||
{
|
||||
int i;
|
||||
|
||||
if( !src || !dst )
|
||||
CV_Error( CV_StsNullPtr, "NULL histogram array pointer" );
|
||||
|
||||
if( count < 2 )
|
||||
CV_Error( CV_StsOutOfRange, "Too small number of histograms" );
|
||||
|
||||
for( i = 0; i < count; i++ )
|
||||
{
|
||||
if( !CV_IS_HIST(src[i]) || !CV_IS_HIST(dst[i]) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
|
||||
if( !CV_IS_MATND(src[i]->bins) || !CV_IS_MATND(dst[i]->bins) )
|
||||
CV_Error( CV_StsBadArg, "The function supports dense histograms only" );
|
||||
}
|
||||
|
||||
cvZero( dst[0]->bins );
|
||||
// dst[0] = src[0] + ... + src[count-1]
|
||||
for( i = 0; i < count; i++ )
|
||||
cvAdd( src[i]->bins, dst[0]->bins, dst[0]->bins );
|
||||
|
||||
cvDiv( 0, dst[0]->bins, dst[0]->bins );
|
||||
|
||||
// dst[i] = src[i]*(1/dst[0])
|
||||
for( i = count - 1; i >= 0; i-- )
|
||||
cvMul( src[i]->bins, dst[0]->bins, dst[i]->bins );
|
||||
}
|
||||
|
||||
|
||||
class EqualizeHistCalcHist_Invoker : public cv::ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
|
@ -2320,7 +2320,7 @@ static void HoughCircles( InputArray _image, OutputArray _circles,
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_Error( Error::StsBadArg, "Unrecognized method id. Actually only CV_HOUGH_GRADIENT is supported." );
|
||||
CV_Error( Error::StsBadArg, "Unrecognized method id. Actually only cv::HOUGH_GRADIENT is supported." );
|
||||
}
|
||||
}
|
||||
|
||||
@ -2332,161 +2332,3 @@ void HoughCircles( InputArray _image, OutputArray _circles,
|
||||
HoughCircles(_image, _circles, method, dp, minDist, param1, param2, minRadius, maxRadius, -1, 3);
|
||||
}
|
||||
} // \namespace cv
|
||||
|
||||
|
||||
/* Wrapper function for standard hough transform */
|
||||
CV_IMPL CvSeq*
|
||||
cvHoughLines2( CvArr* src_image, void* lineStorage, int method,
|
||||
double rho, double theta, int threshold,
|
||||
double param1, double param2,
|
||||
double min_theta, double max_theta )
|
||||
{
|
||||
cv::Mat image = cv::cvarrToMat(src_image);
|
||||
std::vector<cv::Vec2f> l2;
|
||||
std::vector<cv::Vec4i> l4;
|
||||
|
||||
CvMat* mat = 0;
|
||||
CvSeq* lines = 0;
|
||||
CvSeq lines_header;
|
||||
CvSeqBlock lines_block;
|
||||
int lineType, elemSize;
|
||||
int linesMax = INT_MAX;
|
||||
int iparam1, iparam2;
|
||||
|
||||
if( !lineStorage )
|
||||
CV_Error(cv::Error::StsNullPtr, "NULL destination" );
|
||||
|
||||
if( rho <= 0 || theta <= 0 || threshold <= 0 )
|
||||
CV_Error( cv::Error::StsOutOfRange, "rho, theta and threshold must be positive" );
|
||||
|
||||
if( method != CV_HOUGH_PROBABILISTIC )
|
||||
{
|
||||
lineType = CV_32FC2;
|
||||
elemSize = sizeof(float)*2;
|
||||
}
|
||||
else
|
||||
{
|
||||
lineType = CV_32SC4;
|
||||
elemSize = sizeof(int)*4;
|
||||
}
|
||||
|
||||
bool isStorage = isStorageOrMat(lineStorage);
|
||||
|
||||
if( isStorage )
|
||||
{
|
||||
lines = cvCreateSeq( lineType, sizeof(CvSeq), elemSize, (CvMemStorage*)lineStorage );
|
||||
}
|
||||
else
|
||||
{
|
||||
mat = (CvMat*)lineStorage;
|
||||
|
||||
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) )
|
||||
CV_Error( CV_StsBadArg,
|
||||
"The destination matrix should be continuous and have a single row or a single column" );
|
||||
|
||||
if( CV_MAT_TYPE( mat->type ) != lineType )
|
||||
CV_Error( CV_StsBadArg,
|
||||
"The destination matrix data type is inappropriate, see the manual" );
|
||||
|
||||
lines = cvMakeSeqHeaderForArray( lineType, sizeof(CvSeq), elemSize, mat->data.ptr,
|
||||
mat->rows + mat->cols - 1, &lines_header, &lines_block );
|
||||
linesMax = lines->total;
|
||||
cvClearSeq( lines );
|
||||
}
|
||||
|
||||
iparam1 = cvRound(param1);
|
||||
iparam2 = cvRound(param2);
|
||||
|
||||
switch( method )
|
||||
{
|
||||
case CV_HOUGH_STANDARD:
|
||||
HoughLinesStandard( image, l2, CV_32FC2, (float)rho,
|
||||
(float)theta, threshold, linesMax, min_theta, max_theta );
|
||||
break;
|
||||
case CV_HOUGH_MULTI_SCALE:
|
||||
HoughLinesSDiv( image, l2, CV_32FC2, (float)rho, (float)theta,
|
||||
threshold, iparam1, iparam2, linesMax, min_theta, max_theta );
|
||||
break;
|
||||
case CV_HOUGH_PROBABILISTIC:
|
||||
HoughLinesProbabilistic( image, (float)rho, (float)theta,
|
||||
threshold, iparam1, iparam2, l4, linesMax );
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "Unrecognized method id" );
|
||||
}
|
||||
|
||||
int nlines = (int)(l2.size() + l4.size());
|
||||
|
||||
if( !isStorage )
|
||||
{
|
||||
if( mat->cols > mat->rows )
|
||||
mat->cols = nlines;
|
||||
else
|
||||
mat->rows = nlines;
|
||||
}
|
||||
|
||||
if( nlines )
|
||||
{
|
||||
cv::Mat lx = method == CV_HOUGH_STANDARD || method == CV_HOUGH_MULTI_SCALE ?
|
||||
cv::Mat(nlines, 1, CV_32FC2, &l2[0]) : cv::Mat(nlines, 1, CV_32SC4, &l4[0]);
|
||||
|
||||
if (isStorage)
|
||||
{
|
||||
cvSeqPushMulti(lines, lx.ptr(), nlines);
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Mat dst(nlines, 1, lx.type(), mat->data.ptr);
|
||||
lx.copyTo(dst);
|
||||
}
|
||||
}
|
||||
|
||||
if( isStorage )
|
||||
return lines;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL CvSeq*
|
||||
cvHoughCircles( CvArr* src_image, void* circle_storage,
|
||||
int method, double dp, double min_dist,
|
||||
double param1, double param2,
|
||||
int min_radius, int max_radius )
|
||||
{
|
||||
CvSeq* circles = NULL;
|
||||
int circles_max = INT_MAX;
|
||||
cv::Mat src = cv::cvarrToMat(src_image), circles_mat;
|
||||
|
||||
if( !circle_storage )
|
||||
CV_Error( CV_StsNullPtr, "NULL destination" );
|
||||
|
||||
bool isStorage = isStorageOrMat(circle_storage);
|
||||
|
||||
if(isStorage)
|
||||
{
|
||||
circles = cvCreateSeq( CV_32FC3, sizeof(CvSeq),
|
||||
sizeof(float)*3, (CvMemStorage*)circle_storage );
|
||||
}
|
||||
else
|
||||
{
|
||||
CvSeq circles_header;
|
||||
CvSeqBlock circles_block;
|
||||
CvMat *mat = (CvMat*)circle_storage;
|
||||
|
||||
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) ||
|
||||
CV_MAT_TYPE(mat->type) != CV_32FC3 )
|
||||
CV_Error( CV_StsBadArg,
|
||||
"The destination matrix should be continuous and have a single row or a single column" );
|
||||
|
||||
circles = cvMakeSeqHeaderForArray( CV_32FC3, sizeof(CvSeq), sizeof(float)*3,
|
||||
mat->data.ptr, mat->rows + mat->cols - 1, &circles_header, &circles_block );
|
||||
circles_max = circles->total;
|
||||
cvClearSeq( circles );
|
||||
}
|
||||
|
||||
cv::HoughCircles(src, circles_mat, method, dp, min_dist, param1, param2, min_radius, max_radius, circles_max, 3);
|
||||
cvSeqPushMulti(circles, circles_mat.data, (int)circles_mat.total());
|
||||
return circles;
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -1395,7 +1395,7 @@ static bool ocl_linearPolar(InputArray _src, OutputArray _dst,
|
||||
size_t h = dsize.height;
|
||||
String buildOptions;
|
||||
unsigned mem_size = 32;
|
||||
if (flags & CV_WARP_INVERSE_MAP)
|
||||
if (flags & cv::WARP_INVERSE_MAP)
|
||||
{
|
||||
buildOptions = "-D InverseMap";
|
||||
}
|
||||
@ -1410,7 +1410,7 @@ static bool ocl_linearPolar(InputArray _src, OutputArray _dst,
|
||||
ocl::KernelArg ocl_cp_sp = ocl::KernelArg::PtrReadWrite(cp_sp);
|
||||
ocl::KernelArg ocl_r = ocl::KernelArg::PtrReadWrite(r);
|
||||
|
||||
if (!(flags & CV_WARP_INVERSE_MAP))
|
||||
if (!(flags & cv::WARP_INVERSE_MAP))
|
||||
{
|
||||
|
||||
|
||||
@ -1441,7 +1441,7 @@ static bool ocl_linearPolar(InputArray _src, OutputArray _dst,
|
||||
size_t globalThreads[2] = { (size_t)dsize.width , (size_t)dsize.height };
|
||||
size_t localThreads[2] = { mem_size , mem_size };
|
||||
k.run(2, globalThreads, localThreads, false);
|
||||
remap(src, _dst, mapx, mapy, flags & cv::INTER_MAX, (flags & CV_WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT);
|
||||
remap(src, _dst, mapx, mapy, flags & cv::INTER_MAX, (flags & cv::WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT);
|
||||
return true;
|
||||
}
|
||||
static bool ocl_logPolar(InputArray _src, OutputArray _dst,
|
||||
@ -1464,7 +1464,7 @@ static bool ocl_logPolar(InputArray _src, OutputArray _dst,
|
||||
size_t h = dsize.height;
|
||||
String buildOptions;
|
||||
unsigned mem_size = 32;
|
||||
if (flags & CV_WARP_INVERSE_MAP)
|
||||
if (flags & cv::WARP_INVERSE_MAP)
|
||||
{
|
||||
buildOptions = "-D InverseMap";
|
||||
}
|
||||
@ -1481,7 +1481,7 @@ static bool ocl_logPolar(InputArray _src, OutputArray _dst,
|
||||
ocl::KernelArg ocl_cp_sp = ocl::KernelArg::PtrReadWrite(cp_sp);
|
||||
ocl::KernelArg ocl_r = ocl::KernelArg::PtrReadWrite(r);
|
||||
|
||||
if (!(flags & CV_WARP_INVERSE_MAP))
|
||||
if (!(flags & cv::WARP_INVERSE_MAP))
|
||||
{
|
||||
|
||||
|
||||
@ -1512,7 +1512,7 @@ static bool ocl_logPolar(InputArray _src, OutputArray _dst,
|
||||
size_t globalThreads[2] = { (size_t)dsize.width , (size_t)dsize.height };
|
||||
size_t localThreads[2] = { mem_size , mem_size };
|
||||
k.run(2, globalThreads, localThreads, false);
|
||||
remap(src, _dst, mapx, mapy, flags & cv::INTER_MAX, (flags & CV_WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT);
|
||||
remap(src, _dst, mapx, mapy, flags & cv::INTER_MAX, (flags & cv::WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT);
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
@ -3400,45 +3400,6 @@ cv::Mat cv::getAffineTransform(InputArray _src, InputArray _dst)
|
||||
return getAffineTransform((const Point2f*)src.data, (const Point2f*)dst.data);
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvWarpAffine( const CvArr* srcarr, CvArr* dstarr, const CvMat* marr,
|
||||
int flags, CvScalar fillval )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
||||
cv::Mat matrix = cv::cvarrToMat(marr);
|
||||
CV_Assert( src.type() == dst.type() );
|
||||
cv::warpAffine( src, dst, matrix, dst.size(), flags,
|
||||
(flags & CV_WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT,
|
||||
fillval );
|
||||
}
|
||||
|
||||
CV_IMPL void
|
||||
cvWarpPerspective( const CvArr* srcarr, CvArr* dstarr, const CvMat* marr,
|
||||
int flags, CvScalar fillval )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
||||
cv::Mat matrix = cv::cvarrToMat(marr);
|
||||
CV_Assert( src.type() == dst.type() );
|
||||
cv::warpPerspective( src, dst, matrix, dst.size(), flags,
|
||||
(flags & CV_WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT,
|
||||
fillval );
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL CvMat*
|
||||
cvGetPerspectiveTransform( const CvPoint2D32f* src,
|
||||
const CvPoint2D32f* dst,
|
||||
CvMat* matrix )
|
||||
{
|
||||
cv::Mat M0 = cv::cvarrToMat(matrix),
|
||||
M = cv::getPerspectiveTransform((const cv::Point2f*)src, (const cv::Point2f*)dst);
|
||||
CV_Assert( M.size() == M0.size() );
|
||||
M.convertTo(M0, M0.type());
|
||||
return matrix;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/****************************************************************************************
|
||||
PkLab.net 2018 based on cv::linearPolar from OpenCV by J.L. Blanco, Apr 2009
|
||||
****************************************************************************************/
|
||||
@ -3462,7 +3423,7 @@ void cv::warpPolar(InputArray _src, OutputArray _dst, Size dsize,
|
||||
mapy.create(dsize, CV_32F);
|
||||
bool semiLog = (flags & WARP_POLAR_LOG) != 0;
|
||||
|
||||
if (!(flags & CV_WARP_INVERSE_MAP))
|
||||
if (!(flags & cv::WARP_INVERSE_MAP))
|
||||
{
|
||||
CV_Assert(!dsize.empty());
|
||||
double Kangle = CV_2PI / dsize.height;
|
||||
@ -3502,7 +3463,7 @@ void cv::warpPolar(InputArray _src, OutputArray _dst, Size dsize,
|
||||
my[rho] = (float)y;
|
||||
}
|
||||
}
|
||||
remap(_src, _dst, mapx, mapy, flags & cv::INTER_MAX, (flags & CV_WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT);
|
||||
remap(_src, _dst, mapx, mapy, flags & cv::INTER_MAX, (flags & cv::WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -3555,7 +3516,7 @@ void cv::warpPolar(InputArray _src, OutputArray _dst, Size dsize,
|
||||
}
|
||||
}
|
||||
remap(src, _dst, mapx, mapy, flags & cv::INTER_MAX,
|
||||
(flags & CV_WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT);
|
||||
(flags & cv::WARP_FILL_OUTLIERS) ? cv::BORDER_CONSTANT : cv::BORDER_TRANSPARENT);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -331,26 +331,26 @@ static void fitLine2D( const Point2f * points, int count, int dist,
|
||||
|
||||
switch (dist)
|
||||
{
|
||||
case CV_DIST_L2:
|
||||
case cv::DIST_L2:
|
||||
return fitLine2D_wods( points, count, 0, line );
|
||||
|
||||
case CV_DIST_L1:
|
||||
case cv::DIST_L1:
|
||||
calc_weights = weightL1;
|
||||
break;
|
||||
|
||||
case CV_DIST_L12:
|
||||
case cv::DIST_L12:
|
||||
calc_weights = weightL12;
|
||||
break;
|
||||
|
||||
case CV_DIST_FAIR:
|
||||
case cv::DIST_FAIR:
|
||||
calc_weights_param = weightFair;
|
||||
break;
|
||||
|
||||
case CV_DIST_WELSCH:
|
||||
case cv::DIST_WELSCH:
|
||||
calc_weights_param = weightWelsch;
|
||||
break;
|
||||
|
||||
case CV_DIST_HUBER:
|
||||
case cv::DIST_HUBER:
|
||||
calc_weights_param = weightHuber;
|
||||
break;
|
||||
|
||||
@ -475,26 +475,26 @@ static void fitLine3D( Point3f * points, int count, int dist,
|
||||
|
||||
switch (dist)
|
||||
{
|
||||
case CV_DIST_L2:
|
||||
case cv::DIST_L2:
|
||||
return fitLine3D_wods( points, count, 0, line );
|
||||
|
||||
case CV_DIST_L1:
|
||||
case cv::DIST_L1:
|
||||
calc_weights = weightL1;
|
||||
break;
|
||||
|
||||
case CV_DIST_L12:
|
||||
case cv::DIST_L12:
|
||||
calc_weights = weightL12;
|
||||
break;
|
||||
|
||||
case CV_DIST_FAIR:
|
||||
case cv::DIST_FAIR:
|
||||
calc_weights_param = weightFair;
|
||||
break;
|
||||
|
||||
case CV_DIST_WELSCH:
|
||||
case cv::DIST_WELSCH:
|
||||
calc_weights_param = weightWelsch;
|
||||
break;
|
||||
|
||||
case CV_DIST_HUBER:
|
||||
case cv::DIST_HUBER:
|
||||
calc_weights_param = weightHuber;
|
||||
break;
|
||||
|
||||
|
@ -709,99 +709,3 @@ void cv::HuMoments( const Moments& m, OutputArray _hu )
|
||||
CV_Assert( hu.isContinuous() );
|
||||
HuMoments(m, hu.ptr<double>());
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvMoments( const CvArr* arr, CvMoments* moments, int binary )
|
||||
{
|
||||
const IplImage* img = (const IplImage*)arr;
|
||||
cv::Mat src;
|
||||
if( CV_IS_IMAGE(arr) && img->roi && img->roi->coi > 0 )
|
||||
cv::extractImageCOI(arr, src, img->roi->coi-1);
|
||||
else
|
||||
src = cv::cvarrToMat(arr);
|
||||
cv::Moments m = cv::moments(src, binary != 0);
|
||||
CV_Assert( moments != 0 );
|
||||
*moments = cvMoments(m);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL double cvGetSpatialMoment( CvMoments * moments, int x_order, int y_order )
|
||||
{
|
||||
int order = x_order + y_order;
|
||||
|
||||
if( !moments )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
if( (x_order | y_order) < 0 || order > 3 )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
|
||||
return (&(moments->m00))[order + (order >> 1) + (order > 2) * 2 + y_order];
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL double cvGetCentralMoment( CvMoments * moments, int x_order, int y_order )
|
||||
{
|
||||
int order = x_order + y_order;
|
||||
|
||||
if( !moments )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
if( (x_order | y_order) < 0 || order > 3 )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
|
||||
return order >= 2 ? (&(moments->m00))[4 + order * 3 + y_order] :
|
||||
order == 0 ? moments->m00 : 0;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL double cvGetNormalizedCentralMoment( CvMoments * moments, int x_order, int y_order )
|
||||
{
|
||||
int order = x_order + y_order;
|
||||
|
||||
double mu = cvGetCentralMoment( moments, x_order, y_order );
|
||||
double m00s = moments->inv_sqrt_m00;
|
||||
|
||||
while( --order >= 0 )
|
||||
mu *= m00s;
|
||||
return mu * m00s * m00s;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvGetHuMoments( CvMoments * mState, CvHuMoments * HuState )
|
||||
{
|
||||
if( !mState || !HuState )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
|
||||
double m00s = mState->inv_sqrt_m00, m00 = m00s * m00s, s2 = m00 * m00, s3 = s2 * m00s;
|
||||
|
||||
double nu20 = mState->mu20 * s2,
|
||||
nu11 = mState->mu11 * s2,
|
||||
nu02 = mState->mu02 * s2,
|
||||
nu30 = mState->mu30 * s3,
|
||||
nu21 = mState->mu21 * s3, nu12 = mState->mu12 * s3, nu03 = mState->mu03 * s3;
|
||||
|
||||
double t0 = nu30 + nu12;
|
||||
double t1 = nu21 + nu03;
|
||||
|
||||
double q0 = t0 * t0, q1 = t1 * t1;
|
||||
|
||||
double n4 = 4 * nu11;
|
||||
double s = nu20 + nu02;
|
||||
double d = nu20 - nu02;
|
||||
|
||||
HuState->hu1 = s;
|
||||
HuState->hu2 = d * d + n4 * nu11;
|
||||
HuState->hu4 = q0 + q1;
|
||||
HuState->hu6 = d * (q0 - q1) + n4 * t0 * t1;
|
||||
|
||||
t0 *= q0 - 3 * q1;
|
||||
t1 *= 3 * q0 - q1;
|
||||
|
||||
q0 = nu30 - 3 * nu12;
|
||||
q1 = 3 * nu21 - nu03;
|
||||
|
||||
HuState->hu3 = q0 * q0 + q1 * q1;
|
||||
HuState->hu5 = q0 * t0 + q1 * t1;
|
||||
HuState->hu7 = q1 * t0 - q0 * t1;
|
||||
}
|
||||
|
||||
|
||||
/* End of file. */
|
||||
|
@ -1254,112 +1254,3 @@ void morphologyEx( InputArray _src, OutputArray _dst, int op,
|
||||
}
|
||||
|
||||
} // namespace cv
|
||||
|
||||
CV_IMPL IplConvKernel *
|
||||
cvCreateStructuringElementEx( int cols, int rows,
|
||||
int anchorX, int anchorY,
|
||||
int shape, int *values )
|
||||
{
|
||||
cv::Size ksize = cv::Size(cols, rows);
|
||||
cv::Point anchor = cv::Point(anchorX, anchorY);
|
||||
CV_Assert( cols > 0 && rows > 0 && anchor.inside(cv::Rect(0,0,cols,rows)) &&
|
||||
(shape != CV_SHAPE_CUSTOM || values != 0));
|
||||
|
||||
int i, size = rows * cols;
|
||||
int element_size = sizeof(IplConvKernel) + size*sizeof(int);
|
||||
IplConvKernel *element = (IplConvKernel*)cvAlloc(element_size + 32);
|
||||
|
||||
element->nCols = cols;
|
||||
element->nRows = rows;
|
||||
element->anchorX = anchorX;
|
||||
element->anchorY = anchorY;
|
||||
element->nShiftR = shape < CV_SHAPE_ELLIPSE ? shape : CV_SHAPE_CUSTOM;
|
||||
element->values = (int*)(element + 1);
|
||||
|
||||
if( shape == CV_SHAPE_CUSTOM )
|
||||
{
|
||||
for( i = 0; i < size; i++ )
|
||||
element->values[i] = values[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Mat elem = cv::getStructuringElement(shape, ksize, anchor);
|
||||
for( i = 0; i < size; i++ )
|
||||
element->values[i] = elem.ptr()[i];
|
||||
}
|
||||
|
||||
return element;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvReleaseStructuringElement( IplConvKernel ** element )
|
||||
{
|
||||
if( !element )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
cvFree( element );
|
||||
}
|
||||
|
||||
|
||||
static void convertConvKernel( const IplConvKernel* src, cv::Mat& dst, cv::Point& anchor )
|
||||
{
|
||||
if(!src)
|
||||
{
|
||||
anchor = cv::Point(1,1);
|
||||
dst.release();
|
||||
return;
|
||||
}
|
||||
anchor = cv::Point(src->anchorX, src->anchorY);
|
||||
dst.create(src->nRows, src->nCols, CV_8U);
|
||||
|
||||
int i, size = src->nRows*src->nCols;
|
||||
for( i = 0; i < size; i++ )
|
||||
dst.ptr()[i] = (uchar)(src->values[i] != 0);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvErode( const CvArr* srcarr, CvArr* dstarr, IplConvKernel* element, int iterations )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), kernel;
|
||||
CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
|
||||
cv::Point anchor;
|
||||
convertConvKernel( element, kernel, anchor );
|
||||
cv::erode( src, dst, kernel, anchor, iterations, cv::BORDER_REPLICATE );
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvDilate( const CvArr* srcarr, CvArr* dstarr, IplConvKernel* element, int iterations )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), kernel;
|
||||
CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
|
||||
cv::Point anchor;
|
||||
convertConvKernel( element, kernel, anchor );
|
||||
cv::dilate( src, dst, kernel, anchor, iterations, cv::BORDER_REPLICATE );
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvMorphologyEx( const void* srcarr, void* dstarr, void*,
|
||||
IplConvKernel* element, int op, int iterations )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), kernel;
|
||||
CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
|
||||
cv::Point anchor;
|
||||
IplConvKernel* temp_element = NULL;
|
||||
if (!element)
|
||||
{
|
||||
temp_element = cvCreateStructuringElementEx(3, 3, 1, 1, CV_SHAPE_RECT);
|
||||
} else {
|
||||
temp_element = element;
|
||||
}
|
||||
convertConvKernel( temp_element, kernel, anchor );
|
||||
if (!element)
|
||||
{
|
||||
cvReleaseStructuringElement(&temp_element);
|
||||
}
|
||||
cv::morphologyEx( src, dst, op, kernel, anchor, iterations, cv::BORDER_REPLICATE );
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -1549,21 +1549,3 @@ void cv::buildPyramid( InputArray _src, OutputArrayOfArrays _dst, int maxlevel,
|
||||
for( ; i <= maxlevel; i++ )
|
||||
pyrDown( _dst.getMatRef(i-1), _dst.getMatRef(i), Size(), borderType );
|
||||
}
|
||||
|
||||
CV_IMPL void cvPyrDown( const void* srcarr, void* dstarr, int _filter )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
||||
|
||||
CV_Assert( _filter == CV_GAUSSIAN_5x5 && src.type() == dst.type());
|
||||
cv::pyrDown( src, dst, dst.size() );
|
||||
}
|
||||
|
||||
CV_IMPL void cvPyrUp( const void* srcarr, void* dstarr, int _filter )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
||||
|
||||
CV_Assert( _filter == CV_GAUSSIAN_5x5 && src.type() == dst.type());
|
||||
cv::pyrUp( src, dst, dst.size() );
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -4088,15 +4088,3 @@ void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
|
||||
|
||||
hal::resize(src.type(), src.data, src.step, src.cols, src.rows, dst.data, dst.step, dst.cols, dst.rows, inv_scale_x, inv_scale_y, interpolation);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvResize( const CvArr* srcarr, CvArr* dstarr, int method )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
||||
CV_Assert( src.type() == dst.type() );
|
||||
cv::resize( src, dst, dst.size(), (double)dst.cols/src.cols,
|
||||
(double)dst.rows/src.rows, method );
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -267,98 +267,6 @@ static void getRectSubPix_8u32f
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
getQuadrangleSubPix_8u32f_CnR( const uchar* src, size_t src_step, Size src_size,
|
||||
float* dst, size_t dst_step, Size win_size,
|
||||
const double *matrix, int cn )
|
||||
{
|
||||
int x, y, k;
|
||||
double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2];
|
||||
double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5];
|
||||
|
||||
src_step /= sizeof(src[0]);
|
||||
dst_step /= sizeof(dst[0]);
|
||||
|
||||
for( y = 0; y < win_size.height; y++, dst += dst_step )
|
||||
{
|
||||
double xs = A12*y + A13;
|
||||
double ys = A22*y + A23;
|
||||
double xe = A11*(win_size.width-1) + A12*y + A13;
|
||||
double ye = A21*(win_size.width-1) + A22*y + A23;
|
||||
|
||||
if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) &&
|
||||
(unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) &&
|
||||
(unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) &&
|
||||
(unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3))
|
||||
{
|
||||
for( x = 0; x < win_size.width; x++ )
|
||||
{
|
||||
int ixs = cvFloor( xs );
|
||||
int iys = cvFloor( ys );
|
||||
const uchar *ptr = src + src_step*iys;
|
||||
float a = (float)(xs - ixs), b = (float)(ys - iys), a1 = 1.f - a, b1 = 1.f - b;
|
||||
float w00 = a1*b1, w01 = a*b1, w10 = a1*b, w11 = a*b;
|
||||
xs += A11;
|
||||
ys += A21;
|
||||
|
||||
if( cn == 1 )
|
||||
{
|
||||
ptr += ixs;
|
||||
dst[x] = ptr[0]*w00 + ptr[1]*w01 + ptr[src_step]*w10 + ptr[src_step+1]*w11;
|
||||
}
|
||||
else if( cn == 3 )
|
||||
{
|
||||
ptr += ixs*3;
|
||||
float t0 = ptr[0]*w00 + ptr[3]*w01 + ptr[src_step]*w10 + ptr[src_step+3]*w11;
|
||||
float t1 = ptr[1]*w00 + ptr[4]*w01 + ptr[src_step+1]*w10 + ptr[src_step+4]*w11;
|
||||
float t2 = ptr[2]*w00 + ptr[5]*w01 + ptr[src_step+2]*w10 + ptr[src_step+5]*w11;
|
||||
|
||||
dst[x*3] = t0;
|
||||
dst[x*3+1] = t1;
|
||||
dst[x*3+2] = t2;
|
||||
}
|
||||
else
|
||||
{
|
||||
ptr += ixs*cn;
|
||||
for( k = 0; k < cn; k++ )
|
||||
dst[x*cn+k] = ptr[k]*w00 + ptr[k+cn]*w01 +
|
||||
ptr[src_step+k]*w10 + ptr[src_step+k+cn]*w11;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( x = 0; x < win_size.width; x++ )
|
||||
{
|
||||
int ixs = cvFloor( xs ), iys = cvFloor( ys );
|
||||
float a = (float)(xs - ixs), b = (float)(ys - iys), a1 = 1.f - a, b1 = 1.f - b;
|
||||
float w00 = a1*b1, w01 = a*b1, w10 = a1*b, w11 = a*b;
|
||||
const uchar *ptr0, *ptr1;
|
||||
xs += A11; ys += A21;
|
||||
|
||||
if( (unsigned)iys < (unsigned)(src_size.height-1) )
|
||||
ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step;
|
||||
else
|
||||
ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step;
|
||||
|
||||
if( (unsigned)ixs < (unsigned)(src_size.width-1) )
|
||||
{
|
||||
ptr0 += ixs*cn; ptr1 += ixs*cn;
|
||||
for( k = 0; k < cn; k++ )
|
||||
dst[x*cn + k] = ptr0[k]*w00 + ptr0[k+cn]*w01 + ptr1[k]*w10 + ptr1[k+cn]*w11;
|
||||
}
|
||||
else
|
||||
{
|
||||
ixs = ixs < 0 ? 0 : src_size.width - 1;
|
||||
ptr0 += ixs*cn; ptr1 += ixs*cn;
|
||||
for( k = 0; k < cn; k++ )
|
||||
dst[x*cn + k] = ptr0[k]*b1 + ptr1[k]*b;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
@ -419,37 +327,3 @@ void cv::getRectSubPix( InputArray _image, Size patchSize, Point2f center,
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "Unsupported combination of input and output formats");
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvGetQuadrangleSubPix( const void* srcarr, void* dstarr, const CvMat* mat )
|
||||
{
|
||||
const cv::Mat src = cv::cvarrToMat(srcarr), m = cv::cvarrToMat(mat);
|
||||
cv::Mat dst = cv::cvarrToMat(dstarr);
|
||||
|
||||
CV_Assert( src.channels() == dst.channels() );
|
||||
|
||||
cv::Size win_size = dst.size();
|
||||
double matrix[6] = {0};
|
||||
cv::Mat M(2, 3, CV_64F, matrix);
|
||||
m.convertTo(M, CV_64F);
|
||||
double dx = (win_size.width - 1)*0.5;
|
||||
double dy = (win_size.height - 1)*0.5;
|
||||
matrix[2] -= matrix[0]*dx + matrix[1]*dy;
|
||||
matrix[5] -= matrix[3]*dx + matrix[4]*dy;
|
||||
|
||||
if( src.depth() == CV_8U && dst.depth() == CV_32F )
|
||||
cv::getQuadrangleSubPix_8u32f_CnR( src.ptr(), src.step, src.size(),
|
||||
dst.ptr<float>(), dst.step, dst.size(),
|
||||
matrix, src.channels());
|
||||
else
|
||||
{
|
||||
CV_Assert( src.depth() == dst.depth() );
|
||||
cv::warpAffine(src, dst, M, dst.size(),
|
||||
cv::INTER_LINEAR + cv::WARP_INVERSE_MAP,
|
||||
cv::BORDER_REPLICATE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* End of file. */
|
||||
|
@ -394,7 +394,6 @@ void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
|
||||
dst_pyramid[level].create( src_pyramid[level].rows,
|
||||
src_pyramid[level].cols, src_pyramid[level].type() );
|
||||
cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() );
|
||||
//CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA ));
|
||||
}
|
||||
|
||||
mask0.create(src0.rows, src0.cols, CV_8UC1);
|
||||
@ -419,7 +418,6 @@ void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
|
||||
m = cv::Mat(size.height, size.width, CV_8UC1, mask0.ptr());
|
||||
dstep = (int)dst_pyramid[level+1].step;
|
||||
dptr = dst_pyramid[level+1].ptr() + dstep + cn;
|
||||
//cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC );
|
||||
cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() );
|
||||
m.setTo(cv::Scalar::all(0));
|
||||
|
||||
|
@ -861,659 +861,3 @@ cv::RotatedRect cv::fitEllipseDirect( InputArray _points )
|
||||
}
|
||||
return box;
|
||||
}
|
||||
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
// Calculates bounding rectangle of a point set or retrieves already calculated
|
||||
static Rect pointSetBoundingRect( const Mat& points )
|
||||
{
|
||||
int npoints = points.checkVector(2);
|
||||
int depth = points.depth();
|
||||
CV_Assert(npoints >= 0 && (depth == CV_32F || depth == CV_32S));
|
||||
|
||||
int xmin = 0, ymin = 0, xmax = -1, ymax = -1, i;
|
||||
bool is_float = depth == CV_32F;
|
||||
|
||||
if( npoints == 0 )
|
||||
return Rect();
|
||||
|
||||
#if CV_SIMD
|
||||
const int64_t* pts = points.ptr<int64_t>();
|
||||
|
||||
if( !is_float )
|
||||
{
|
||||
v_int32 minval, maxval;
|
||||
minval = maxval = v_reinterpret_as_s32(vx_setall_s64(*pts)); //min[0]=pt.x, min[1]=pt.y, min[2]=pt.x, min[3]=pt.y
|
||||
for( i = 1; i <= npoints - v_int32::nlanes/2; i+= v_int32::nlanes/2 )
|
||||
{
|
||||
v_int32 ptXY2 = v_reinterpret_as_s32(vx_load(pts + i));
|
||||
minval = v_min(ptXY2, minval);
|
||||
maxval = v_max(ptXY2, maxval);
|
||||
}
|
||||
minval = v_min(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval))));
|
||||
maxval = v_max(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
||||
if( i <= npoints - v_int32::nlanes/4 )
|
||||
{
|
||||
v_int32 ptXY = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(vx_load_low(pts + i))));
|
||||
minval = v_min(ptXY, minval);
|
||||
maxval = v_max(ptXY, maxval);
|
||||
i += v_int64::nlanes/2;
|
||||
}
|
||||
for(int j = 16; j < CV_SIMD_WIDTH; j*=2)
|
||||
{
|
||||
minval = v_min(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval))));
|
||||
maxval = v_max(v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
||||
}
|
||||
xmin = minval.get0();
|
||||
xmax = maxval.get0();
|
||||
ymin = v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval))).get0();
|
||||
ymax = v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval))).get0();
|
||||
#if CV_SIMD_WIDTH > 16
|
||||
if( i < npoints )
|
||||
{
|
||||
v_int32x4 minval2, maxval2;
|
||||
minval2 = maxval2 = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
||||
for( i++; i < npoints; i++ )
|
||||
{
|
||||
v_int32x4 ptXY = v_reinterpret_as_s32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
||||
minval2 = v_min(ptXY, minval2);
|
||||
maxval2 = v_max(ptXY, maxval2);
|
||||
}
|
||||
xmin = min(xmin, minval2.get0());
|
||||
xmax = max(xmax, maxval2.get0());
|
||||
ymin = min(ymin, v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(minval2))).get0());
|
||||
ymax = max(ymax, v_reinterpret_as_s32(v_expand_high(v_reinterpret_as_u32(maxval2))).get0());
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
v_float32 minval, maxval;
|
||||
minval = maxval = v_reinterpret_as_f32(vx_setall_s64(*pts)); //min[0]=pt.x, min[1]=pt.y, min[2]=pt.x, min[3]=pt.y
|
||||
for( i = 1; i <= npoints - v_float32::nlanes/2; i+= v_float32::nlanes/2 )
|
||||
{
|
||||
v_float32 ptXY2 = v_reinterpret_as_f32(vx_load(pts + i));
|
||||
minval = v_min(ptXY2, minval);
|
||||
maxval = v_max(ptXY2, maxval);
|
||||
}
|
||||
minval = v_min(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval))));
|
||||
maxval = v_max(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
||||
if( i <= npoints - v_float32::nlanes/4 )
|
||||
{
|
||||
v_float32 ptXY = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(vx_load_low(pts + i))));
|
||||
minval = v_min(ptXY, minval);
|
||||
maxval = v_max(ptXY, maxval);
|
||||
i += v_float32::nlanes/4;
|
||||
}
|
||||
for(int j = 16; j < CV_SIMD_WIDTH; j*=2)
|
||||
{
|
||||
minval = v_min(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(minval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval))));
|
||||
maxval = v_max(v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(maxval))), v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval))));
|
||||
}
|
||||
xmin = cvFloor(minval.get0());
|
||||
xmax = cvFloor(maxval.get0());
|
||||
ymin = cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval))).get0());
|
||||
ymax = cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval))).get0());
|
||||
#if CV_SIMD_WIDTH > 16
|
||||
if( i < npoints )
|
||||
{
|
||||
v_float32x4 minval2, maxval2;
|
||||
minval2 = maxval2 = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
||||
for( i++; i < npoints; i++ )
|
||||
{
|
||||
v_float32x4 ptXY = v_reinterpret_as_f32(v_expand_low(v_reinterpret_as_u32(v_load_low(pts + i))));
|
||||
minval2 = v_min(ptXY, minval2);
|
||||
maxval2 = v_max(ptXY, maxval2);
|
||||
}
|
||||
xmin = min(xmin, cvFloor(minval2.get0()));
|
||||
xmax = max(xmax, cvFloor(maxval2.get0()));
|
||||
ymin = min(ymin, cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(minval2))).get0()));
|
||||
ymax = max(ymax, cvFloor(v_reinterpret_as_f32(v_expand_high(v_reinterpret_as_u32(maxval2))).get0()));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
const Point* pts = points.ptr<Point>();
|
||||
Point pt = pts[0];
|
||||
|
||||
if( !is_float )
|
||||
{
|
||||
xmin = xmax = pt.x;
|
||||
ymin = ymax = pt.y;
|
||||
|
||||
for( i = 1; i < npoints; i++ )
|
||||
{
|
||||
pt = pts[i];
|
||||
|
||||
if( xmin > pt.x )
|
||||
xmin = pt.x;
|
||||
|
||||
if( xmax < pt.x )
|
||||
xmax = pt.x;
|
||||
|
||||
if( ymin > pt.y )
|
||||
ymin = pt.y;
|
||||
|
||||
if( ymax < pt.y )
|
||||
ymax = pt.y;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Cv32suf v;
|
||||
// init values
|
||||
xmin = xmax = CV_TOGGLE_FLT(pt.x);
|
||||
ymin = ymax = CV_TOGGLE_FLT(pt.y);
|
||||
|
||||
for( i = 1; i < npoints; i++ )
|
||||
{
|
||||
pt = pts[i];
|
||||
pt.x = CV_TOGGLE_FLT(pt.x);
|
||||
pt.y = CV_TOGGLE_FLT(pt.y);
|
||||
|
||||
if( xmin > pt.x )
|
||||
xmin = pt.x;
|
||||
|
||||
if( xmax < pt.x )
|
||||
xmax = pt.x;
|
||||
|
||||
if( ymin > pt.y )
|
||||
ymin = pt.y;
|
||||
|
||||
if( ymax < pt.y )
|
||||
ymax = pt.y;
|
||||
}
|
||||
|
||||
v.i = CV_TOGGLE_FLT(xmin); xmin = cvFloor(v.f);
|
||||
v.i = CV_TOGGLE_FLT(ymin); ymin = cvFloor(v.f);
|
||||
// because right and bottom sides of the bounding rectangle are not inclusive
|
||||
// (note +1 in width and height calculation below), cvFloor is used here instead of cvCeil
|
||||
v.i = CV_TOGGLE_FLT(xmax); xmax = cvFloor(v.f);
|
||||
v.i = CV_TOGGLE_FLT(ymax); ymax = cvFloor(v.f);
|
||||
}
|
||||
#endif
|
||||
|
||||
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
|
||||
}
|
||||
|
||||
|
||||
static Rect maskBoundingRect( const Mat& img )
|
||||
{
|
||||
CV_Assert( img.depth() <= CV_8S && img.channels() == 1 );
|
||||
|
||||
Size size = img.size();
|
||||
int xmin = size.width, ymin = -1, xmax = -1, ymax = -1, i, j, k;
|
||||
|
||||
for( i = 0; i < size.height; i++ )
|
||||
{
|
||||
const uchar* _ptr = img.ptr(i);
|
||||
const uchar* ptr = (const uchar*)alignPtr(_ptr, 4);
|
||||
int have_nz = 0, k_min, offset = (int)(ptr - _ptr);
|
||||
j = 0;
|
||||
offset = MIN(offset, size.width);
|
||||
for( ; j < offset; j++ )
|
||||
if( _ptr[j] )
|
||||
{
|
||||
have_nz = 1;
|
||||
break;
|
||||
}
|
||||
if( j < offset )
|
||||
{
|
||||
if( j < xmin )
|
||||
xmin = j;
|
||||
if( j > xmax )
|
||||
xmax = j;
|
||||
}
|
||||
if( offset < size.width )
|
||||
{
|
||||
xmin -= offset;
|
||||
xmax -= offset;
|
||||
size.width -= offset;
|
||||
j = 0;
|
||||
for( ; j <= xmin - 4; j += 4 )
|
||||
if( *((int*)(ptr+j)) )
|
||||
break;
|
||||
for( ; j < xmin; j++ )
|
||||
if( ptr[j] )
|
||||
{
|
||||
xmin = j;
|
||||
if( j > xmax )
|
||||
xmax = j;
|
||||
have_nz = 1;
|
||||
break;
|
||||
}
|
||||
k_min = MAX(j-1, xmax);
|
||||
k = size.width - 1;
|
||||
for( ; k > k_min && (k&3) != 3; k-- )
|
||||
if( ptr[k] )
|
||||
break;
|
||||
if( k > k_min && (k&3) == 3 )
|
||||
{
|
||||
for( ; k > k_min+3; k -= 4 )
|
||||
if( *((int*)(ptr+k-3)) )
|
||||
break;
|
||||
}
|
||||
for( ; k > k_min; k-- )
|
||||
if( ptr[k] )
|
||||
{
|
||||
xmax = k;
|
||||
have_nz = 1;
|
||||
break;
|
||||
}
|
||||
if( !have_nz )
|
||||
{
|
||||
j &= ~3;
|
||||
for( ; j <= k - 3; j += 4 )
|
||||
if( *((int*)(ptr+j)) )
|
||||
break;
|
||||
for( ; j <= k; j++ )
|
||||
if( ptr[j] )
|
||||
{
|
||||
have_nz = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
xmin += offset;
|
||||
xmax += offset;
|
||||
size.width += offset;
|
||||
}
|
||||
if( have_nz )
|
||||
{
|
||||
if( ymin < 0 )
|
||||
ymin = i;
|
||||
ymax = i;
|
||||
}
|
||||
}
|
||||
|
||||
if( xmin >= size.width )
|
||||
xmin = ymin = 0;
|
||||
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
cv::Rect cv::boundingRect(InputArray array)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat m = array.getMat();
|
||||
return m.depth() <= CV_8U ? maskBoundingRect(m) : pointSetBoundingRect(m);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////// C API ///////////////////////////////////////////
|
||||
|
||||
static void
|
||||
icvMemCopy( double **buf1, double **buf2, double **buf3, int *b_max )
|
||||
{
|
||||
CV_Assert( (*buf1 != NULL || *buf2 != NULL) && *buf3 != NULL );
|
||||
|
||||
int bb = *b_max;
|
||||
if( *buf2 == NULL )
|
||||
{
|
||||
*b_max = 2 * (*b_max);
|
||||
*buf2 = (double *)cvAlloc( (*b_max) * sizeof( double ));
|
||||
|
||||
memcpy( *buf2, *buf3, bb * sizeof( double ));
|
||||
|
||||
*buf3 = *buf2;
|
||||
cvFree( buf1 );
|
||||
*buf1 = NULL;
|
||||
}
|
||||
else
|
||||
{
|
||||
*b_max = 2 * (*b_max);
|
||||
*buf1 = (double *) cvAlloc( (*b_max) * sizeof( double ));
|
||||
|
||||
memcpy( *buf1, *buf3, bb * sizeof( double ));
|
||||
|
||||
*buf3 = *buf1;
|
||||
cvFree( buf2 );
|
||||
*buf2 = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* area of a contour sector */
|
||||
static double icvContourSecArea( CvSeq * contour, CvSlice slice )
|
||||
{
|
||||
cv::Point pt; /* pointer to points */
|
||||
cv::Point pt_s, pt_e; /* first and last points */
|
||||
CvSeqReader reader; /* points reader of contour */
|
||||
|
||||
int p_max = 2, p_ind;
|
||||
int lpt, flag, i;
|
||||
double a00; /* unnormalized moments m00 */
|
||||
double xi, yi, xi_1, yi_1, x0, y0, dxy, sk, sk1, t;
|
||||
double x_s, y_s, nx, ny, dx, dy, du, dv;
|
||||
double eps = 1.e-5;
|
||||
double *p_are1, *p_are2, *p_are;
|
||||
double area = 0;
|
||||
|
||||
CV_Assert( contour != NULL && CV_IS_SEQ_POINT_SET( contour ));
|
||||
|
||||
lpt = cvSliceLength( slice, contour );
|
||||
/*if( n2 >= n1 )
|
||||
lpt = n2 - n1 + 1;
|
||||
else
|
||||
lpt = contour->total - n1 + n2 + 1;*/
|
||||
|
||||
if( contour->total <= 0 || lpt <= 2 )
|
||||
return 0.;
|
||||
|
||||
a00 = x0 = y0 = xi_1 = yi_1 = 0;
|
||||
sk1 = 0;
|
||||
flag = 0;
|
||||
dxy = 0;
|
||||
p_are1 = (double *) cvAlloc( p_max * sizeof( double ));
|
||||
|
||||
p_are = p_are1;
|
||||
p_are2 = NULL;
|
||||
|
||||
cvStartReadSeq( contour, &reader, 0 );
|
||||
cvSetSeqReaderPos( &reader, slice.start_index );
|
||||
{ CvPoint pt_s_ = CV_STRUCT_INITIALIZER; CV_READ_SEQ_ELEM(pt_s_, reader); pt_s = pt_s_; }
|
||||
p_ind = 0;
|
||||
cvSetSeqReaderPos( &reader, slice.end_index );
|
||||
{ CvPoint pt_e_ = CV_STRUCT_INITIALIZER; CV_READ_SEQ_ELEM(pt_e_, reader); pt_e = pt_e_; }
|
||||
|
||||
/* normal coefficients */
|
||||
nx = pt_s.y - pt_e.y;
|
||||
ny = pt_e.x - pt_s.x;
|
||||
cvSetSeqReaderPos( &reader, slice.start_index );
|
||||
|
||||
while( lpt-- > 0 )
|
||||
{
|
||||
{ CvPoint pt_ = CV_STRUCT_INITIALIZER; CV_READ_SEQ_ELEM(pt_, reader); pt = pt_; }
|
||||
|
||||
if( flag == 0 )
|
||||
{
|
||||
xi_1 = (double) pt.x;
|
||||
yi_1 = (double) pt.y;
|
||||
x0 = xi_1;
|
||||
y0 = yi_1;
|
||||
sk1 = 0;
|
||||
flag = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
xi = (double) pt.x;
|
||||
yi = (double) pt.y;
|
||||
|
||||
/**************** edges intersection examination **************************/
|
||||
sk = nx * (xi - pt_s.x) + ny * (yi - pt_s.y);
|
||||
if( (fabs( sk ) < eps && lpt > 0) || sk * sk1 < -eps )
|
||||
{
|
||||
if( fabs( sk ) < eps )
|
||||
{
|
||||
dxy = xi_1 * yi - xi * yi_1;
|
||||
a00 = a00 + dxy;
|
||||
dxy = xi * y0 - x0 * yi;
|
||||
a00 = a00 + dxy;
|
||||
|
||||
if( p_ind >= p_max )
|
||||
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max );
|
||||
|
||||
p_are[p_ind] = a00 / 2.;
|
||||
p_ind++;
|
||||
a00 = 0;
|
||||
sk1 = 0;
|
||||
x0 = xi;
|
||||
y0 = yi;
|
||||
dxy = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* define intersection point */
|
||||
dv = yi - yi_1;
|
||||
du = xi - xi_1;
|
||||
dx = ny;
|
||||
dy = -nx;
|
||||
if( fabs( du ) > eps )
|
||||
t = ((yi_1 - pt_s.y) * du + dv * (pt_s.x - xi_1)) /
|
||||
(du * dy - dx * dv);
|
||||
else
|
||||
t = (xi_1 - pt_s.x) / dx;
|
||||
if( t > eps && t < 1 - eps )
|
||||
{
|
||||
x_s = pt_s.x + t * dx;
|
||||
y_s = pt_s.y + t * dy;
|
||||
dxy = xi_1 * y_s - x_s * yi_1;
|
||||
a00 += dxy;
|
||||
dxy = x_s * y0 - x0 * y_s;
|
||||
a00 += dxy;
|
||||
if( p_ind >= p_max )
|
||||
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max );
|
||||
|
||||
p_are[p_ind] = a00 / 2.;
|
||||
p_ind++;
|
||||
|
||||
a00 = 0;
|
||||
sk1 = 0;
|
||||
x0 = x_s;
|
||||
y0 = y_s;
|
||||
dxy = x_s * yi - xi * y_s;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
dxy = xi_1 * yi - xi * yi_1;
|
||||
|
||||
a00 += dxy;
|
||||
xi_1 = xi;
|
||||
yi_1 = yi;
|
||||
sk1 = sk;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
xi = x0;
|
||||
yi = y0;
|
||||
dxy = xi_1 * yi - xi * yi_1;
|
||||
|
||||
a00 += dxy;
|
||||
|
||||
if( p_ind >= p_max )
|
||||
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max );
|
||||
|
||||
p_are[p_ind] = a00 / 2.;
|
||||
p_ind++;
|
||||
|
||||
// common area calculation
|
||||
area = 0;
|
||||
for( i = 0; i < p_ind; i++ )
|
||||
area += fabs( p_are[i] );
|
||||
|
||||
if( p_are1 != NULL )
|
||||
cvFree( &p_are1 );
|
||||
else if( p_are2 != NULL )
|
||||
cvFree( &p_are2 );
|
||||
|
||||
return area;
|
||||
}
|
||||
|
||||
|
||||
/* external contour area function */
|
||||
CV_IMPL double
|
||||
cvContourArea( const void *array, CvSlice slice, int oriented )
|
||||
{
|
||||
double area = 0;
|
||||
|
||||
CvContour contour_header;
|
||||
CvSeq* contour = 0;
|
||||
CvSeqBlock block;
|
||||
|
||||
if( CV_IS_SEQ( array ))
|
||||
{
|
||||
contour = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POLYLINE( contour ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
}
|
||||
else
|
||||
{
|
||||
contour = cvPointSeqFromMat( CV_SEQ_KIND_CURVE, array, &contour_header, &block );
|
||||
}
|
||||
|
||||
if( cvSliceLength( slice, contour ) == contour->total )
|
||||
{
|
||||
cv::AutoBuffer<double> abuf;
|
||||
cv::Mat points = cv::cvarrToMat(contour, false, false, 0, &abuf);
|
||||
return cv::contourArea( points, oriented !=0 );
|
||||
}
|
||||
|
||||
if( CV_SEQ_ELTYPE( contour ) != CV_32SC2 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"Only curves with integer coordinates are supported in case of contour slice" );
|
||||
area = icvContourSecArea( contour, slice );
|
||||
return oriented ? area : fabs(area);
|
||||
}
|
||||
|
||||
|
||||
/* calculates length of a curve (e.g. contour perimeter) */
|
||||
CV_IMPL double
|
||||
cvArcLength( const void *array, CvSlice slice, int is_closed )
|
||||
{
|
||||
double perimeter = 0;
|
||||
|
||||
int i, j = 0, count;
|
||||
const int N = 16;
|
||||
float buf[N];
|
||||
CvMat buffer = cvMat( 1, N, CV_32F, buf );
|
||||
CvSeqReader reader;
|
||||
CvContour contour_header;
|
||||
CvSeq* contour = 0;
|
||||
CvSeqBlock block;
|
||||
|
||||
if( CV_IS_SEQ( array ))
|
||||
{
|
||||
contour = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POLYLINE( contour ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
if( is_closed < 0 )
|
||||
is_closed = CV_IS_SEQ_CLOSED( contour );
|
||||
}
|
||||
else
|
||||
{
|
||||
is_closed = is_closed > 0;
|
||||
contour = cvPointSeqFromMat(
|
||||
CV_SEQ_KIND_CURVE | (is_closed ? CV_SEQ_FLAG_CLOSED : 0),
|
||||
array, &contour_header, &block );
|
||||
}
|
||||
|
||||
if( contour->total > 1 )
|
||||
{
|
||||
int is_float = CV_SEQ_ELTYPE( contour ) == CV_32FC2;
|
||||
|
||||
cvStartReadSeq( contour, &reader, 0 );
|
||||
cvSetSeqReaderPos( &reader, slice.start_index );
|
||||
count = cvSliceLength( slice, contour );
|
||||
|
||||
count -= !is_closed && count == contour->total;
|
||||
|
||||
// scroll the reader by 1 point
|
||||
reader.prev_elem = reader.ptr;
|
||||
CV_NEXT_SEQ_ELEM( sizeof(CvPoint), reader );
|
||||
|
||||
for( i = 0; i < count; i++ )
|
||||
{
|
||||
float dx, dy;
|
||||
|
||||
if( !is_float )
|
||||
{
|
||||
CvPoint* pt = (CvPoint*)reader.ptr;
|
||||
CvPoint* prev_pt = (CvPoint*)reader.prev_elem;
|
||||
|
||||
dx = (float)pt->x - (float)prev_pt->x;
|
||||
dy = (float)pt->y - (float)prev_pt->y;
|
||||
}
|
||||
else
|
||||
{
|
||||
CvPoint2D32f* pt = (CvPoint2D32f*)reader.ptr;
|
||||
CvPoint2D32f* prev_pt = (CvPoint2D32f*)reader.prev_elem;
|
||||
|
||||
dx = pt->x - prev_pt->x;
|
||||
dy = pt->y - prev_pt->y;
|
||||
}
|
||||
|
||||
reader.prev_elem = reader.ptr;
|
||||
CV_NEXT_SEQ_ELEM( contour->elem_size, reader );
|
||||
// Bugfix by Axel at rubico.com 2010-03-22, affects closed slices only
|
||||
// wraparound not handled by CV_NEXT_SEQ_ELEM
|
||||
if( is_closed && i == count - 2 )
|
||||
cvSetSeqReaderPos( &reader, slice.start_index );
|
||||
|
||||
buffer.data.fl[j] = dx * dx + dy * dy;
|
||||
if( ++j == N || i == count - 1 )
|
||||
{
|
||||
buffer.cols = j;
|
||||
cvPow( &buffer, &buffer, 0.5 );
|
||||
for( ; j > 0; j-- )
|
||||
perimeter += buffer.data.fl[j-1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return perimeter;
|
||||
}
|
||||
|
||||
|
||||
/* Calculates bounding rectangle of a point set or retrieves already calculated */
|
||||
CV_IMPL CvRect
|
||||
cvBoundingRect( CvArr* array, int update )
|
||||
{
|
||||
cv::Rect rect;
|
||||
CvContour contour_header;
|
||||
CvSeq* ptseq = 0;
|
||||
CvSeqBlock block;
|
||||
|
||||
CvMat stub, *mat = 0;
|
||||
int calculate = update;
|
||||
|
||||
if( CV_IS_SEQ( array ))
|
||||
{
|
||||
ptseq = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POINT_SET( ptseq ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
|
||||
if( ptseq->header_size < (int)sizeof(CvContour))
|
||||
{
|
||||
update = 0;
|
||||
calculate = 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
mat = cvGetMat( array, &stub );
|
||||
if( CV_MAT_TYPE(mat->type) == CV_32SC2 ||
|
||||
CV_MAT_TYPE(mat->type) == CV_32FC2 )
|
||||
{
|
||||
ptseq = cvPointSeqFromMat(CV_SEQ_KIND_GENERIC, mat, &contour_header, &block);
|
||||
mat = 0;
|
||||
}
|
||||
else if( CV_MAT_TYPE(mat->type) != CV_8UC1 &&
|
||||
CV_MAT_TYPE(mat->type) != CV_8SC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"The image/matrix format is not supported by the function" );
|
||||
update = 0;
|
||||
calculate = 1;
|
||||
}
|
||||
|
||||
if( !calculate )
|
||||
return ((CvContour*)ptseq)->rect;
|
||||
|
||||
if( mat )
|
||||
{
|
||||
rect = cvRect(cv::maskBoundingRect(cv::cvarrToMat(mat)));
|
||||
}
|
||||
else if( ptseq->total )
|
||||
{
|
||||
cv::AutoBuffer<double> abuf;
|
||||
rect = cvRect(cv::pointSetBoundingRect(cv::cvarrToMat(ptseq, false, false, 0, &abuf)));
|
||||
}
|
||||
if( update )
|
||||
((CvContour*)ptseq)->rect = cvRect(rect);
|
||||
return cvRect(rect);
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -755,33 +755,3 @@ void GaussianBlur(InputArray _src, OutputArray _dst, Size ksize,
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
CV_IMPL void
|
||||
cvSmooth( const void* srcarr, void* dstarr, int smooth_type,
|
||||
int param1, int param2, double param3, double param4 )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0;
|
||||
|
||||
CV_Assert( dst.size() == src.size() &&
|
||||
(smooth_type == CV_BLUR_NO_SCALE || dst.type() == src.type()) );
|
||||
|
||||
if( param2 <= 0 )
|
||||
param2 = param1;
|
||||
|
||||
if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE )
|
||||
cv::boxFilter( src, dst, dst.depth(), cv::Size(param1, param2), cv::Point(-1,-1),
|
||||
smooth_type == CV_BLUR, cv::BORDER_REPLICATE );
|
||||
else if( smooth_type == CV_GAUSSIAN )
|
||||
cv::GaussianBlur( src, dst, cv::Size(param1, param2), param3, param4, cv::BORDER_REPLICATE );
|
||||
else if( smooth_type == CV_MEDIAN )
|
||||
cv::medianBlur( src, dst, param1 );
|
||||
else
|
||||
cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE );
|
||||
|
||||
if( dst.data != dst0.data )
|
||||
CV_Error( CV_StsUnmatchedFormats, "The destination image does not have the proper type" );
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -465,30 +465,3 @@ void integral( InputArray src, OutputArray sum, OutputArray sqsum, int sdepth, i
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
CV_IMPL void
|
||||
cvIntegral( const CvArr* image, CvArr* sumImage,
|
||||
CvArr* sumSqImage, CvArr* tiltedSumImage )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(image), sum = cv::cvarrToMat(sumImage), sum0 = sum;
|
||||
cv::Mat sqsum0, sqsum, tilted0, tilted;
|
||||
cv::Mat *psqsum = 0, *ptilted = 0;
|
||||
|
||||
if( sumSqImage )
|
||||
{
|
||||
sqsum0 = sqsum = cv::cvarrToMat(sumSqImage);
|
||||
psqsum = &sqsum;
|
||||
}
|
||||
|
||||
if( tiltedSumImage )
|
||||
{
|
||||
tilted0 = tilted = cv::cvarrToMat(tiltedSumImage);
|
||||
ptilted = &tilted;
|
||||
}
|
||||
cv::integral( src, sum, psqsum ? cv::_OutputArray(*psqsum) : cv::_OutputArray(),
|
||||
ptilted ? cv::_OutputArray(*ptilted) : cv::_OutputArray(), sum.depth() );
|
||||
|
||||
CV_Assert( sum.data == sum0.data && sqsum.data == sqsum0.data && tilted.data == tilted0.data );
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -315,7 +315,7 @@ static bool matchTemplate_CCORR(InputArray _image, InputArray _templ, OutputArra
|
||||
|
||||
static bool matchTemplate_CCORR_NORMED(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
||||
matchTemplate(_image, _templ, _result, cv::TM_CCORR);
|
||||
|
||||
int type = _image.type(), cn = CV_MAT_CN(type);
|
||||
|
||||
@ -373,7 +373,7 @@ static bool matchTemplate_SQDIFF(InputArray _image, InputArray _templ, OutputArr
|
||||
return( matchTemplateNaive_SQDIFF(_image, _templ, _result));
|
||||
else
|
||||
{
|
||||
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
||||
matchTemplate(_image, _templ, _result, cv::TM_CCORR);
|
||||
|
||||
int type = _image.type(), cn = CV_MAT_CN(type);
|
||||
|
||||
@ -404,7 +404,7 @@ static bool matchTemplate_SQDIFF(InputArray _image, InputArray _templ, OutputArr
|
||||
|
||||
static bool matchTemplate_SQDIFF_NORMED(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
||||
matchTemplate(_image, _templ, _result, cv::TM_CCORR);
|
||||
|
||||
int type = _image.type(), cn = CV_MAT_CN(type);
|
||||
|
||||
@ -436,7 +436,7 @@ static bool matchTemplate_SQDIFF_NORMED(InputArray _image, InputArray _templ, Ou
|
||||
|
||||
static bool matchTemplate_CCOEFF(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
||||
matchTemplate(_image, _templ, _result, cv::TM_CCORR);
|
||||
|
||||
UMat image_sums, temp;
|
||||
integral(_image, image_sums, CV_32F);
|
||||
@ -471,7 +471,7 @@ static bool matchTemplate_CCOEFF(InputArray _image, InputArray _templ, OutputArr
|
||||
|
||||
static bool matchTemplate_CCOEFF_NORMED(InputArray _image, InputArray _templ, OutputArray _result)
|
||||
{
|
||||
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
||||
matchTemplate(_image, _templ, _result, cv::TM_CCORR);
|
||||
|
||||
UMat temp, image_sums, image_sqsums;
|
||||
integral(_image, image_sums, image_sqsums, CV_32F, CV_32F);
|
||||
@ -796,7 +796,7 @@ static void matchTemplateMask( InputArray _img, InputArray _templ, OutputArray _
|
||||
merge(maskChannels.data(), templ.channels(), mask);
|
||||
}
|
||||
|
||||
if (method == CV_TM_SQDIFF || method == CV_TM_SQDIFF_NORMED)
|
||||
if (method == cv::TM_SQDIFF || method == cv::TM_SQDIFF_NORMED)
|
||||
{
|
||||
Mat temp_result(corrSize, CV_32F);
|
||||
Mat img2 = img.mul(img);
|
||||
@ -810,19 +810,19 @@ static void matchTemplateMask( InputArray _img, InputArray _templ, OutputArray _
|
||||
// for normalization.
|
||||
result = -2 * result + temp_result + templ2_mask2_sum;
|
||||
|
||||
if (method == CV_TM_SQDIFF_NORMED)
|
||||
if (method == cv::TM_SQDIFF_NORMED)
|
||||
{
|
||||
sqrt(templ2_mask2_sum * temp_result, temp_result);
|
||||
result /= temp_result;
|
||||
}
|
||||
}
|
||||
else if (method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED)
|
||||
else if (method == cv::TM_CCORR || method == cv::TM_CCORR_NORMED)
|
||||
{
|
||||
// If the mul() is ever unnested, declare MatExpr, *not* Mat, to be more efficient.
|
||||
Mat templ_mask2 = templ.mul(mask.mul(mask));
|
||||
crossCorr(img, templ_mask2, result, Point(0,0), 0, 0);
|
||||
|
||||
if (method == CV_TM_CCORR_NORMED)
|
||||
if (method == cv::TM_CCORR_NORMED)
|
||||
{
|
||||
Mat temp_result(corrSize, CV_32F);
|
||||
Mat img2 = img.mul(img);
|
||||
@ -834,7 +834,7 @@ static void matchTemplateMask( InputArray _img, InputArray _templ, OutputArray _
|
||||
result /= temp_result;
|
||||
}
|
||||
}
|
||||
else if (method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED)
|
||||
else if (method == cv::TM_CCOEFF || method == cv::TM_CCOEFF_NORMED)
|
||||
{
|
||||
// Do mul() inline or declare MatExpr where possible, *not* Mat, to be more efficient.
|
||||
|
||||
@ -864,7 +864,7 @@ static void matchTemplateMask( InputArray _img, InputArray _templ, OutputArray _
|
||||
// transform back, but now with only one channel
|
||||
result -= temp_res.reshape(1, result.rows);
|
||||
}
|
||||
if (method == CV_TM_CCOEFF_NORMED)
|
||||
if (method == cv::TM_CCOEFF_NORMED)
|
||||
{
|
||||
// norm(T')
|
||||
double norm_templx = norm(mask.mul(templ - sum(mask.mul(templ)).div(mask_sum)),
|
||||
@ -905,14 +905,14 @@ static void matchTemplateMask( InputArray _img, InputArray _templ, OutputArray _
|
||||
|
||||
static void common_matchTemplate( Mat& img, Mat& templ, Mat& result, int method, int cn )
|
||||
{
|
||||
if( method == CV_TM_CCORR )
|
||||
if( method == cv::TM_CCORR )
|
||||
return;
|
||||
|
||||
int numType = method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED ? 0 :
|
||||
method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED ? 1 : 2;
|
||||
bool isNormed = method == CV_TM_CCORR_NORMED ||
|
||||
method == CV_TM_SQDIFF_NORMED ||
|
||||
method == CV_TM_CCOEFF_NORMED;
|
||||
int numType = method == cv::TM_CCORR || method == cv::TM_CCORR_NORMED ? 0 :
|
||||
method == cv::TM_CCOEFF || method == cv::TM_CCOEFF_NORMED ? 1 : 2;
|
||||
bool isNormed = method == cv::TM_CCORR_NORMED ||
|
||||
method == cv::TM_SQDIFF_NORMED ||
|
||||
method == cv::TM_CCOEFF_NORMED;
|
||||
|
||||
double invArea = 1./((double)templ.rows * templ.cols);
|
||||
|
||||
@ -921,7 +921,7 @@ static void common_matchTemplate( Mat& img, Mat& templ, Mat& result, int method,
|
||||
double *q0 = 0, *q1 = 0, *q2 = 0, *q3 = 0;
|
||||
double templNorm = 0, templSum2 = 0;
|
||||
|
||||
if( method == CV_TM_CCOEFF )
|
||||
if( method == cv::TM_CCOEFF )
|
||||
{
|
||||
integral(img, sum, CV_64F);
|
||||
templMean = mean(templ);
|
||||
@ -933,7 +933,7 @@ static void common_matchTemplate( Mat& img, Mat& templ, Mat& result, int method,
|
||||
|
||||
templNorm = templSdv[0]*templSdv[0] + templSdv[1]*templSdv[1] + templSdv[2]*templSdv[2] + templSdv[3]*templSdv[3];
|
||||
|
||||
if( templNorm < DBL_EPSILON && method == CV_TM_CCOEFF_NORMED )
|
||||
if( templNorm < DBL_EPSILON && method == cv::TM_CCOEFF_NORMED )
|
||||
{
|
||||
result = Scalar::all(1);
|
||||
return;
|
||||
@ -1020,7 +1020,7 @@ static void common_matchTemplate( Mat& img, Mat& templ, Mat& result, int method,
|
||||
else if( fabs(num) < t*1.125 )
|
||||
num = num > 0 ? 1 : -1;
|
||||
else
|
||||
num = method != CV_TM_SQDIFF_NORMED ? 0 : 1;
|
||||
num = method != cv::TM_SQDIFF_NORMED ? 0 : 1;
|
||||
}
|
||||
|
||||
rrow[j] = (float)num;
|
||||
@ -1116,30 +1116,30 @@ static bool ipp_matchTemplate( Mat& img, Mat& templ, Mat& result, int method)
|
||||
if(templ.size().area()*4 > img.size().area())
|
||||
return false;
|
||||
|
||||
if(method == CV_TM_SQDIFF)
|
||||
if(method == cv::TM_SQDIFF)
|
||||
{
|
||||
if(ipp_sqrDistance(img, templ, result))
|
||||
return true;
|
||||
}
|
||||
else if(method == CV_TM_SQDIFF_NORMED)
|
||||
else if(method == cv::TM_SQDIFF_NORMED)
|
||||
{
|
||||
if(ipp_crossCorr(img, templ, result, false))
|
||||
{
|
||||
common_matchTemplate(img, templ, result, CV_TM_SQDIFF_NORMED, 1);
|
||||
common_matchTemplate(img, templ, result, cv::TM_SQDIFF_NORMED, 1);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
else if(method == CV_TM_CCORR)
|
||||
else if(method == cv::TM_CCORR)
|
||||
{
|
||||
if(ipp_crossCorr(img, templ, result, false))
|
||||
return true;
|
||||
}
|
||||
else if(method == CV_TM_CCORR_NORMED)
|
||||
else if(method == cv::TM_CCORR_NORMED)
|
||||
{
|
||||
if(ipp_crossCorr(img, templ, result, true))
|
||||
return true;
|
||||
}
|
||||
else if(method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED)
|
||||
else if(method == cv::TM_CCOEFF || method == cv::TM_CCOEFF_NORMED)
|
||||
{
|
||||
if(ipp_crossCorr(img, templ, result, false))
|
||||
{
|
||||
@ -1160,7 +1160,7 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
int type = _img.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
||||
CV_Assert( CV_TM_SQDIFF <= method && method <= CV_TM_CCOEFF_NORMED );
|
||||
CV_Assert( cv::TM_SQDIFF <= method && method <= cv::TM_CCOEFF_NORMED );
|
||||
CV_Assert( (depth == CV_8U || depth == CV_32F) && type == _templ.type() && _img.dims() <= 2 );
|
||||
|
||||
if (!_mask.empty())
|
||||
|
@ -1545,18 +1545,18 @@ double cv::threshold( InputArray _src, OutputArray _dst, double thresh, double m
|
||||
ocl_threshold(_src, _dst, thresh, maxval, type), thresh)
|
||||
|
||||
Mat src = _src.getMat();
|
||||
int automatic_thresh = (type & ~CV_THRESH_MASK);
|
||||
int automatic_thresh = (type & ~cv::THRESH_MASK);
|
||||
type &= THRESH_MASK;
|
||||
|
||||
CV_Assert( automatic_thresh != (CV_THRESH_OTSU | CV_THRESH_TRIANGLE) );
|
||||
if( automatic_thresh == CV_THRESH_OTSU )
|
||||
CV_Assert( automatic_thresh != (cv::THRESH_OTSU | cv::THRESH_TRIANGLE) );
|
||||
if( automatic_thresh == cv::THRESH_OTSU )
|
||||
{
|
||||
int src_type = src.type();
|
||||
CV_CheckType(src_type, src_type == CV_8UC1 || src_type == CV_16UC1, "THRESH_OTSU mode");
|
||||
thresh = src.type() == CV_8UC1 ? getThreshVal_Otsu_8u( src )
|
||||
: getThreshVal_Otsu_16u( src );
|
||||
}
|
||||
else if( automatic_thresh == CV_THRESH_TRIANGLE )
|
||||
else if( automatic_thresh == cv::THRESH_TRIANGLE )
|
||||
{
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
thresh = getThreshVal_Triangle_8u( src );
|
||||
@ -1711,10 +1711,10 @@ void cv::adaptiveThreshold( InputArray _src, OutputArray _dst, double maxValue,
|
||||
int idelta = type == THRESH_BINARY ? cvCeil(delta) : cvFloor(delta);
|
||||
uchar tab[768];
|
||||
|
||||
if( type == CV_THRESH_BINARY )
|
||||
if( type == cv::THRESH_BINARY )
|
||||
for( i = 0; i < 768; i++ )
|
||||
tab[i] = (uchar)(i - 255 > -idelta ? imaxval : 0);
|
||||
else if( type == CV_THRESH_BINARY_INV )
|
||||
else if( type == cv::THRESH_BINARY_INV )
|
||||
for( i = 0; i < 768; i++ )
|
||||
tab[i] = (uchar)(i - 255 <= -idelta ? imaxval : 0);
|
||||
else
|
||||
@ -1736,19 +1736,3 @@ void cv::adaptiveThreshold( InputArray _src, OutputArray _dst, double maxValue,
|
||||
ddata[j] = tab[sdata[j] - mdata[j] + 255];
|
||||
}
|
||||
}
|
||||
|
||||
CV_IMPL double
|
||||
cvThreshold( const void* srcarr, void* dstarr, double thresh, double maxval, int type )
|
||||
{
|
||||
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst;
|
||||
|
||||
CV_Assert( src.size == dst.size && src.channels() == dst.channels() &&
|
||||
(src.depth() == dst.depth() || dst.depth() == CV_8U));
|
||||
|
||||
thresh = cv::threshold( src, dst, thresh, maxval, type );
|
||||
if( dst0.data != dst.data )
|
||||
dst.convertTo( dst0, dst0.depth() );
|
||||
return thresh;
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -41,38 +41,5 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
CV_IMPL CvSeq* cvPointSeqFromMat( int seq_kind, const CvArr* arr,
|
||||
CvContour* contour_header, CvSeqBlock* block )
|
||||
{
|
||||
CV_Assert( arr != 0 && contour_header != 0 && block != 0 );
|
||||
|
||||
int eltype;
|
||||
CvMat hdr;
|
||||
CvMat* mat = (CvMat*)arr;
|
||||
|
||||
if( !CV_IS_MAT( mat ))
|
||||
CV_Error( CV_StsBadArg, "Input array is not a valid matrix" );
|
||||
|
||||
if( CV_MAT_CN(mat->type) == 1 && mat->width == 2 )
|
||||
mat = cvReshape(mat, &hdr, 2);
|
||||
|
||||
eltype = CV_MAT_TYPE( mat->type );
|
||||
if( eltype != CV_32SC2 && eltype != CV_32FC2 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
"The matrix can not be converted to point sequence because of "
|
||||
"inappropriate element type" );
|
||||
|
||||
if( (mat->width != 1 && mat->height != 1) || !CV_IS_MAT_CONT(mat->type))
|
||||
CV_Error( CV_StsBadArg,
|
||||
"The matrix converted to point sequence must be "
|
||||
"1-dimensional and continuous" );
|
||||
|
||||
cvMakeSeqHeaderForArray(
|
||||
(seq_kind & (CV_SEQ_KIND_MASK|CV_SEQ_FLAG_CLOSED)) | eltype,
|
||||
sizeof(CvContour), CV_ELEM_SIZE(eltype), mat->data.ptr,
|
||||
mat->width*mat->height, (CvSeq*)contour_header, block );
|
||||
|
||||
return (CvSeq*)contour_header;
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -51,7 +51,7 @@ namespace ocl {
|
||||
|
||||
///////////////////////////////////////////// matchTemplate //////////////////////////////////////////////////////////
|
||||
|
||||
CV_ENUM(MatchTemplType, CV_TM_CCORR, CV_TM_CCORR_NORMED, CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED)
|
||||
CV_ENUM(MatchTemplType, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
|
||||
|
||||
PARAM_TEST_CASE(MatchTemplate, MatDepth, Channels, MatchTemplType, bool)
|
||||
{
|
||||
|
@ -55,307 +55,6 @@ namespace opencv_test { namespace {
|
||||
// a subset of vertices of the original contour.
|
||||
//
|
||||
|
||||
class CV_ApproxPolyTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_ApproxPolyTest();
|
||||
~CV_ApproxPolyTest();
|
||||
void clear();
|
||||
//int write_default_params(CvFileStorage* fs);
|
||||
|
||||
protected:
|
||||
//int read_params( const cv::FileStorage& fs );
|
||||
|
||||
int check_slice( CvPoint StartPt, CvPoint EndPt,
|
||||
CvSeqReader* SrcReader, float Eps,
|
||||
int* j, int Count );
|
||||
int check( CvSeq* SrcSeq, CvSeq* DstSeq, float Eps );
|
||||
|
||||
bool get_contour( int /*type*/, CvSeq** Seq, int* d,
|
||||
CvMemStorage* storage );
|
||||
|
||||
void run(int);
|
||||
};
|
||||
|
||||
|
||||
CV_ApproxPolyTest::CV_ApproxPolyTest()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
CV_ApproxPolyTest::~CV_ApproxPolyTest()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
|
||||
void CV_ApproxPolyTest::clear()
|
||||
{
|
||||
cvtest::BaseTest::clear();
|
||||
}
|
||||
|
||||
|
||||
/*int CV_ApproxPolyTest::write_default_params( CvFileStorage* fs )
|
||||
{
|
||||
cvtest::BaseTest::write_default_params( fs );
|
||||
if( ts->get_testing_mode() != cvtest::TS::TIMING_MODE )
|
||||
{
|
||||
write_param( fs, "test_case_count", test_case_count );
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int CV_ApproxPolyTest::read_params( const cv::FileStorage& fs )
|
||||
{
|
||||
int code = cvtest::BaseTest::read_params( fs );
|
||||
if( code < 0 )
|
||||
return code;
|
||||
|
||||
test_case_count = cvReadInt( find_param( fs, "test_case_count" ), test_case_count );
|
||||
min_log_size = cvtest::clipInt( min_log_size, 1, 10 );
|
||||
return 0;
|
||||
}*/
|
||||
|
||||
|
||||
bool CV_ApproxPolyTest::get_contour( int /*type*/, CvSeq** Seq, int* d,
|
||||
CvMemStorage* storage )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
int max_x = INT_MIN, max_y = INT_MIN, min_x = INT_MAX, min_y = INT_MAX;
|
||||
int i;
|
||||
CvSeq* seq;
|
||||
int total = cvtest::randInt(rng) % 1000 + 1;
|
||||
Point center;
|
||||
int radius, angle;
|
||||
double deg_to_rad = CV_PI/180.;
|
||||
Point pt;
|
||||
|
||||
center.x = cvtest::randInt( rng ) % 1000;
|
||||
center.y = cvtest::randInt( rng ) % 1000;
|
||||
radius = cvtest::randInt( rng ) % 1000;
|
||||
angle = cvtest::randInt( rng ) % 360;
|
||||
|
||||
seq = cvCreateSeq( CV_SEQ_POLYGON, sizeof(CvContour), sizeof(CvPoint), storage );
|
||||
|
||||
for( i = 0; i < total; i++ )
|
||||
{
|
||||
int d_radius = cvtest::randInt( rng ) % 10 - 5;
|
||||
int d_angle = 360/total;//cvtest::randInt( rng ) % 10 - 5;
|
||||
pt.x = cvRound( center.x + radius*cos(angle*deg_to_rad));
|
||||
pt.y = cvRound( center.x - radius*sin(angle*deg_to_rad));
|
||||
radius += d_radius;
|
||||
angle += d_angle;
|
||||
cvSeqPush( seq, &pt );
|
||||
|
||||
max_x = MAX( max_x, pt.x );
|
||||
max_y = MAX( max_y, pt.y );
|
||||
|
||||
min_x = MIN( min_x, pt.x );
|
||||
min_y = MIN( min_y, pt.y );
|
||||
}
|
||||
|
||||
*d = (max_x - min_x)*(max_x - min_x) + (max_y - min_y)*(max_y - min_y);
|
||||
*Seq = seq;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
int CV_ApproxPolyTest::check_slice( CvPoint StartPt, CvPoint EndPt,
|
||||
CvSeqReader* SrcReader, float Eps,
|
||||
int* _j, int Count )
|
||||
{
|
||||
///////////
|
||||
Point Pt;
|
||||
///////////
|
||||
bool flag;
|
||||
double dy,dx;
|
||||
double A,B,C;
|
||||
double Sq;
|
||||
double sin_a = 0;
|
||||
double cos_a = 0;
|
||||
double d = 0;
|
||||
double dist;
|
||||
///////////
|
||||
int j, TotalErrors = 0;
|
||||
|
||||
////////////////////////////////
|
||||
if( SrcReader == NULL )
|
||||
{
|
||||
CV_Assert( false );
|
||||
return 0;
|
||||
}
|
||||
|
||||
///////// init line ////////////
|
||||
flag = true;
|
||||
|
||||
dx = (double)StartPt.x - (double)EndPt.x;
|
||||
dy = (double)StartPt.y - (double)EndPt.y;
|
||||
|
||||
if( ( dx == 0 ) && ( dy == 0 ) ) flag = false;
|
||||
else
|
||||
{
|
||||
A = -dy;
|
||||
B = dx;
|
||||
C = dy * (double)StartPt.x - dx * (double)StartPt.y;
|
||||
Sq = sqrt( A*A + B*B );
|
||||
|
||||
sin_a = B/Sq;
|
||||
cos_a = A/Sq;
|
||||
d = C/Sq;
|
||||
}
|
||||
|
||||
/////// find start point and check distance ////////
|
||||
for( j = *_j; j < Count; j++ )
|
||||
{
|
||||
{ CvPoint pt_ = CV_STRUCT_INITIALIZER; CV_READ_SEQ_ELEM(pt_, *SrcReader); Pt = pt_; }
|
||||
if( StartPt.x == Pt.x && StartPt.y == Pt.y ) break;
|
||||
else
|
||||
{
|
||||
if( flag ) dist = sin_a * Pt.y + cos_a * Pt.x - d;
|
||||
else dist = sqrt( (double)(EndPt.y - Pt.y)*(EndPt.y - Pt.y) + (EndPt.x - Pt.x)*(EndPt.x - Pt.x) );
|
||||
if( dist > Eps ) TotalErrors++;
|
||||
}
|
||||
}
|
||||
|
||||
*_j = j;
|
||||
|
||||
(void) TotalErrors; // To avoid -Wunused-but-set-variable warning
|
||||
//return TotalErrors;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int CV_ApproxPolyTest::check( CvSeq* SrcSeq, CvSeq* DstSeq, float Eps )
|
||||
{
|
||||
//////////
|
||||
CvSeqReader DstReader;
|
||||
CvSeqReader SrcReader;
|
||||
CvPoint StartPt = {0, 0}, EndPt = {0, 0};
|
||||
///////////
|
||||
int TotalErrors = 0;
|
||||
///////////
|
||||
int Count;
|
||||
int i,j;
|
||||
|
||||
CV_Assert( SrcSeq && DstSeq );
|
||||
|
||||
////////// init ////////////////////
|
||||
Count = SrcSeq->total;
|
||||
|
||||
cvStartReadSeq( DstSeq, &DstReader, 0 );
|
||||
cvStartReadSeq( SrcSeq, &SrcReader, 0 );
|
||||
|
||||
CV_READ_SEQ_ELEM( StartPt, DstReader );
|
||||
for( i = 0 ; i < Count ; )
|
||||
{
|
||||
CV_READ_SEQ_ELEM( EndPt, SrcReader );
|
||||
i++;
|
||||
if( StartPt.x == EndPt.x && StartPt.y == EndPt.y ) break;
|
||||
}
|
||||
|
||||
///////// start ////////////////
|
||||
for( i = 1, j = 0 ; i <= DstSeq->total ; )
|
||||
{
|
||||
///////// read slice ////////////
|
||||
EndPt.x = StartPt.x;
|
||||
EndPt.y = StartPt.y;
|
||||
CV_READ_SEQ_ELEM( StartPt, DstReader );
|
||||
i++;
|
||||
|
||||
TotalErrors += check_slice( StartPt, EndPt, &SrcReader, Eps, &j, Count );
|
||||
|
||||
if( j > Count )
|
||||
{
|
||||
TotalErrors++;
|
||||
return TotalErrors;
|
||||
} //if( !flag )
|
||||
|
||||
} // for( int i = 0 ; i < DstSeq->total ; i++ )
|
||||
|
||||
return TotalErrors;
|
||||
}
|
||||
|
||||
|
||||
//extern CvTestContourGenerator cvTsTestContours[];
|
||||
|
||||
void CV_ApproxPolyTest::run( int /*start_from*/ )
|
||||
{
|
||||
int code = cvtest::TS::OK;
|
||||
CvMemStorage* storage = 0;
|
||||
////////////// Variables ////////////////
|
||||
int IntervalsCount = 10;
|
||||
///////////
|
||||
//CvTestContourGenerator Cont;
|
||||
CvSeq* SrcSeq = NULL;
|
||||
CvSeq* DstSeq;
|
||||
int iDiam;
|
||||
float dDiam, Eps, EpsStep;
|
||||
|
||||
for( int i = 0; i < 30; i++ )
|
||||
{
|
||||
CvMemStoragePos pos;
|
||||
|
||||
ts->update_context( this, i, false );
|
||||
|
||||
///////////////////// init contour /////////
|
||||
dDiam = 0;
|
||||
while( sqrt(dDiam) / IntervalsCount == 0 )
|
||||
{
|
||||
if( storage != 0 )
|
||||
cvReleaseMemStorage(&storage);
|
||||
|
||||
storage = cvCreateMemStorage( 0 );
|
||||
if( get_contour( 0, &SrcSeq, &iDiam, storage ) )
|
||||
dDiam = (float)iDiam;
|
||||
}
|
||||
dDiam = (float)sqrt( dDiam );
|
||||
|
||||
storage = SrcSeq->storage;
|
||||
|
||||
////////////////// test /////////////
|
||||
EpsStep = dDiam / IntervalsCount ;
|
||||
for( Eps = EpsStep ; Eps < dDiam ; Eps += EpsStep )
|
||||
{
|
||||
cvSaveMemStoragePos( storage, &pos );
|
||||
|
||||
////////// call function ////////////
|
||||
DstSeq = cvApproxPoly( SrcSeq, SrcSeq->header_size, storage,
|
||||
CV_POLY_APPROX_DP, Eps );
|
||||
|
||||
if( DstSeq == NULL )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG,
|
||||
"cvApproxPoly returned NULL for contour #%d, epsilon = %g\n", i, Eps );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
goto _exit_;
|
||||
} // if( DstSeq == NULL )
|
||||
|
||||
code = check( SrcSeq, DstSeq, Eps );
|
||||
if( code != 0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG,
|
||||
"Incorrect result for the contour #%d approximated with epsilon=%g\n", i, Eps );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
goto _exit_;
|
||||
}
|
||||
|
||||
cvRestoreMemStoragePos( storage, &pos );
|
||||
} // for( Eps = EpsStep ; Eps <= Diam ; Eps += EpsStep )
|
||||
|
||||
///////////// free memory ///////////////////
|
||||
cvReleaseMemStorage(&storage);
|
||||
} // for( int i = 0; NULL != ( Cont = Contours[i] ) ; i++ )
|
||||
|
||||
_exit_:
|
||||
cvReleaseMemStorage(&storage);
|
||||
|
||||
if( code < 0 )
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
|
||||
TEST(Imgproc_ApproxPoly, accuracy) { CV_ApproxPolyTest test; test.safe_run(); }
|
||||
|
||||
//Tests to make sure that unreasonable epsilon (error)
|
||||
//values never get passed to the Douglas-Peucker algorithm.
|
||||
TEST(Imgproc_ApproxPoly, bad_epsilon)
|
||||
|
@ -160,7 +160,7 @@ void CV_CannyTest::run_func()
|
||||
{
|
||||
cv::Mat _out = cv::cvarrToMat(test_array[OUTPUT][0]);
|
||||
cv::Canny(cv::cvarrToMat(test_array[INPUT][0]), _out, threshold1, threshold2,
|
||||
aperture_size + (use_true_gradient ? CV_CANNY_L2_GRADIENT : 0));
|
||||
aperture_size, use_true_gradient);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -76,7 +76,6 @@ protected:
|
||||
bool inplace;
|
||||
bool custom_inv_transform;
|
||||
int fwd_code, inv_code;
|
||||
bool test_cpp;
|
||||
int hue_range;
|
||||
bool srgb;
|
||||
};
|
||||
@ -97,7 +96,6 @@ CV_ColorCvtBaseTest::CV_ColorCvtBaseTest( bool _custom_inv_transform, bool _allo
|
||||
|
||||
fwd_code_str = inv_code_str = 0;
|
||||
|
||||
test_cpp = false;
|
||||
hue_range = 0;
|
||||
blue_idx = 0;
|
||||
srgb = false;
|
||||
@ -147,7 +145,6 @@ void CV_ColorCvtBaseTest::get_test_array_types_and_sizes( int test_case_idx,
|
||||
types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_MAKETYPE(depth, cn);
|
||||
|
||||
inplace = cn == 3 && cvtest::randInt(rng) % 2 != 0;
|
||||
test_cpp = (cvtest::randInt(rng) & 256) == 0;
|
||||
}
|
||||
|
||||
|
||||
@ -164,20 +161,14 @@ void CV_ColorCvtBaseTest::run_func()
|
||||
CvArr* out0 = test_array[OUTPUT][0];
|
||||
cv::Mat _out0 = cv::cvarrToMat(out0), _out1 = cv::cvarrToMat(test_array[OUTPUT][1]);
|
||||
|
||||
if(!test_cpp)
|
||||
cvCvtColor( inplace ? out0 : test_array[INPUT][0], out0, fwd_code );
|
||||
else
|
||||
cv::cvtColor( cv::cvarrToMat(inplace ? out0 : test_array[INPUT][0]), _out0, fwd_code, _out0.channels());
|
||||
cv::cvtColor( cv::cvarrToMat(inplace ? out0 : test_array[INPUT][0]), _out0, fwd_code, _out0.channels());
|
||||
|
||||
if( inplace )
|
||||
{
|
||||
cvCopy( out0, test_array[OUTPUT][1] );
|
||||
out0 = test_array[OUTPUT][1];
|
||||
}
|
||||
if(!test_cpp)
|
||||
cvCvtColor( out0, test_array[OUTPUT][1], inv_code );
|
||||
else
|
||||
cv::cvtColor(cv::cvarrToMat(out0), _out1, inv_code, _out1.channels());
|
||||
cv::cvtColor(cv::cvarrToMat(out0), _out1, inv_code, _out1.channels());
|
||||
}
|
||||
|
||||
|
||||
@ -1077,7 +1068,7 @@ double CV_ColorLabTest::get_success_error_level( int /*test_case_idx*/, int i, i
|
||||
{
|
||||
int depth = test_mat[i][j].depth();
|
||||
// j == 0 is for forward code, j == 1 is for inverse code
|
||||
return (depth == CV_8U) ? (srgb ? 32 : 8) :
|
||||
return (depth == CV_8U) ? (srgb ? 37 : 8) :
|
||||
//(depth == CV_16U) ? 32 : // 16u is disabled
|
||||
srgb ? ((j == 0) ? 0.4 : 0.0055) : 1e-3;
|
||||
}
|
||||
@ -1256,7 +1247,7 @@ double CV_ColorLuvTest::get_success_error_level( int /*test_case_idx*/, int i, i
|
||||
{
|
||||
int depth = test_mat[i][j].depth();
|
||||
// j == 0 is for forward code, j == 1 is for inverse code
|
||||
return (depth == CV_8U) ? (srgb ? 36 : 8) :
|
||||
return (depth == CV_8U) ? (srgb ? 37 : 8) :
|
||||
//(depth == CV_16U) ? 32 : // 16u is disabled
|
||||
5e-2;
|
||||
}
|
||||
@ -1730,13 +1721,8 @@ double CV_ColorBayerTest::get_success_error_level( int /*test_case_idx*/, int /*
|
||||
|
||||
void CV_ColorBayerTest::run_func()
|
||||
{
|
||||
if(!test_cpp)
|
||||
cvCvtColor( test_array[INPUT][0], test_array[OUTPUT][0], fwd_code );
|
||||
else
|
||||
{
|
||||
cv::Mat _out = cv::cvarrToMat(test_array[OUTPUT][0]);
|
||||
cv::cvtColor(cv::cvarrToMat(test_array[INPUT][0]), _out, fwd_code, _out.channels());
|
||||
}
|
||||
cv::Mat _out = cv::cvarrToMat(test_array[OUTPUT][0]);
|
||||
cv::cvtColor(cv::cvarrToMat(test_array[INPUT][0]), _out, fwd_code, _out.channels());
|
||||
}
|
||||
|
||||
|
||||
|
@ -44,372 +44,6 @@
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
class CV_FindContourTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
enum { NUM_IMG = 4 };
|
||||
|
||||
CV_FindContourTest();
|
||||
~CV_FindContourTest();
|
||||
void clear();
|
||||
|
||||
protected:
|
||||
int read_params( const cv::FileStorage& fs );
|
||||
int prepare_test_case( int test_case_idx );
|
||||
int validate_test_results( int test_case_idx );
|
||||
void run_func();
|
||||
|
||||
int min_blob_size, max_blob_size;
|
||||
int blob_count, max_log_blob_count;
|
||||
int retr_mode, approx_method;
|
||||
|
||||
int min_log_img_width, max_log_img_width;
|
||||
int min_log_img_height, max_log_img_height;
|
||||
Size img_size;
|
||||
int count, count2;
|
||||
|
||||
IplImage* img[NUM_IMG];
|
||||
CvMemStorage* storage;
|
||||
CvSeq *contours, *contours2, *chain;
|
||||
|
||||
static const bool useVeryWideImages =
|
||||
#if SIZE_MAX <= 0xffffffff
|
||||
// 32-bit: don't even try the very wide images
|
||||
false
|
||||
#else
|
||||
// 64-bit: test with very wide images
|
||||
true
|
||||
#endif
|
||||
;
|
||||
};
|
||||
|
||||
|
||||
CV_FindContourTest::CV_FindContourTest()
|
||||
{
|
||||
int i;
|
||||
|
||||
test_case_count = useVeryWideImages ? 10 : 300;
|
||||
min_blob_size = 1;
|
||||
max_blob_size = 50;
|
||||
max_log_blob_count = 10;
|
||||
|
||||
min_log_img_width = useVeryWideImages ? 17 : 3;
|
||||
max_log_img_width = useVeryWideImages ? 17 : 10;
|
||||
|
||||
min_log_img_height = 3;
|
||||
max_log_img_height = 10;
|
||||
|
||||
for( i = 0; i < NUM_IMG; i++ )
|
||||
img[i] = 0;
|
||||
|
||||
storage = 0;
|
||||
}
|
||||
|
||||
|
||||
CV_FindContourTest::~CV_FindContourTest()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
|
||||
void CV_FindContourTest::clear()
|
||||
{
|
||||
int i;
|
||||
|
||||
cvtest::BaseTest::clear();
|
||||
|
||||
for( i = 0; i < NUM_IMG; i++ )
|
||||
cvReleaseImage( &img[i] );
|
||||
|
||||
cvReleaseMemStorage( &storage );
|
||||
}
|
||||
|
||||
|
||||
int CV_FindContourTest::read_params( const cv::FileStorage& fs )
|
||||
{
|
||||
int t;
|
||||
int code = cvtest::BaseTest::read_params( fs );
|
||||
|
||||
if( code < 0 )
|
||||
return code;
|
||||
|
||||
read( find_param( fs, "min_blob_size" ), min_blob_size, min_blob_size );
|
||||
read( find_param( fs, "max_blob_size" ), max_blob_size, max_blob_size );
|
||||
read( find_param( fs, "max_log_blob_count" ), max_log_blob_count, max_log_blob_count );
|
||||
read( find_param( fs, "min_log_img_width" ), min_log_img_width, min_log_img_width );
|
||||
read( find_param( fs, "max_log_img_width" ), max_log_img_width, max_log_img_width );
|
||||
read( find_param( fs, "min_log_img_height"), min_log_img_height, min_log_img_height );
|
||||
read( find_param( fs, "max_log_img_height"), max_log_img_height, max_log_img_height );
|
||||
|
||||
min_blob_size = cvtest::clipInt( min_blob_size, 1, 100 );
|
||||
max_blob_size = cvtest::clipInt( max_blob_size, 1, 100 );
|
||||
|
||||
if( min_blob_size > max_blob_size )
|
||||
CV_SWAP( min_blob_size, max_blob_size, t );
|
||||
|
||||
max_log_blob_count = cvtest::clipInt( max_log_blob_count, 1, 10 );
|
||||
|
||||
min_log_img_width = cvtest::clipInt( min_log_img_width, 1, useVeryWideImages ? 17 : 10 );
|
||||
min_log_img_width = cvtest::clipInt( max_log_img_width, 1, useVeryWideImages ? 17 : 10 );
|
||||
min_log_img_height = cvtest::clipInt( min_log_img_height, 1, 10 );
|
||||
min_log_img_height = cvtest::clipInt( max_log_img_height, 1, 10 );
|
||||
|
||||
if( min_log_img_width > max_log_img_width )
|
||||
std::swap( min_log_img_width, max_log_img_width );
|
||||
|
||||
if (min_log_img_height > max_log_img_height)
|
||||
std::swap(min_log_img_height, max_log_img_height);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
cvTsGenerateBlobImage( IplImage* img, int min_blob_size, int max_blob_size,
|
||||
int blob_count, int min_brightness, int max_brightness,
|
||||
RNG& rng )
|
||||
{
|
||||
int i;
|
||||
Size size;
|
||||
|
||||
CV_Assert(img->depth == IPL_DEPTH_8U && img->nChannels == 1);
|
||||
|
||||
cvZero( img );
|
||||
|
||||
// keep the border clear
|
||||
cvSetImageROI( img, cvRect(1,1,img->width-2,img->height-2) );
|
||||
size = cvGetSize( img );
|
||||
|
||||
for( i = 0; i < blob_count; i++ )
|
||||
{
|
||||
Point center;
|
||||
Size axes;
|
||||
int angle = cvtest::randInt(rng) % 180;
|
||||
int brightness = cvtest::randInt(rng) %
|
||||
(max_brightness - min_brightness) + min_brightness;
|
||||
center.x = cvtest::randInt(rng) % size.width;
|
||||
center.y = cvtest::randInt(rng) % size.height;
|
||||
|
||||
axes.width = (cvtest::randInt(rng) %
|
||||
(max_blob_size - min_blob_size) + min_blob_size + 1)/2;
|
||||
axes.height = (cvtest::randInt(rng) %
|
||||
(max_blob_size - min_blob_size) + min_blob_size + 1)/2;
|
||||
|
||||
cvEllipse( img, cvPoint(center), cvSize(axes), angle, 0, 360, cvScalar(brightness), CV_FILLED );
|
||||
}
|
||||
|
||||
cvResetImageROI( img );
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
cvTsMarkContours( IplImage* img, int val )
|
||||
{
|
||||
int i, j;
|
||||
int step = img->widthStep;
|
||||
|
||||
CV_Assert( img->depth == IPL_DEPTH_8U && img->nChannels == 1 && (val&1) != 0);
|
||||
|
||||
for( i = 1; i < img->height - 1; i++ )
|
||||
for( j = 1; j < img->width - 1; j++ )
|
||||
{
|
||||
uchar* t = (uchar*)(img->imageData + img->widthStep*i + j);
|
||||
if( *t == 1 && (t[-step] == 0 || t[-1] == 0 || t[1] == 0 || t[step] == 0))
|
||||
*t = (uchar)val;
|
||||
}
|
||||
|
||||
cvThreshold( img, img, val - 2, val, CV_THRESH_BINARY );
|
||||
}
|
||||
|
||||
|
||||
int CV_FindContourTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
const int min_brightness = 0, max_brightness = 2;
|
||||
int i, code = cvtest::BaseTest::prepare_test_case( test_case_idx );
|
||||
|
||||
if( code < 0 )
|
||||
return code;
|
||||
|
||||
clear();
|
||||
|
||||
blob_count = cvRound(exp(cvtest::randReal(rng)*max_log_blob_count*CV_LOG2));
|
||||
|
||||
img_size.width = cvRound(exp((cvtest::randReal(rng)*
|
||||
(max_log_img_width - min_log_img_width) + min_log_img_width)*CV_LOG2));
|
||||
img_size.height = cvRound(exp((cvtest::randReal(rng)*
|
||||
(max_log_img_height - min_log_img_height) + min_log_img_height)*CV_LOG2));
|
||||
|
||||
approx_method = cvtest::randInt( rng ) % 4 + 1;
|
||||
retr_mode = cvtest::randInt( rng ) % 4;
|
||||
|
||||
storage = cvCreateMemStorage( 1 << 10 );
|
||||
|
||||
for( i = 0; i < NUM_IMG; i++ )
|
||||
img[i] = cvCreateImage( cvSize(img_size), 8, 1 );
|
||||
|
||||
cvTsGenerateBlobImage( img[0], min_blob_size, max_blob_size,
|
||||
blob_count, min_brightness, max_brightness, rng );
|
||||
|
||||
cvCopy( img[0], img[1] );
|
||||
cvCopy( img[0], img[2] );
|
||||
|
||||
cvTsMarkContours( img[1], 255 );
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
void CV_FindContourTest::run_func()
|
||||
{
|
||||
contours = contours2 = chain = 0;
|
||||
count = cvFindContours( img[2], storage, &contours, sizeof(CvContour), retr_mode, approx_method );
|
||||
|
||||
cvZero( img[3] );
|
||||
|
||||
if( contours && retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
|
||||
cvDrawContours( img[3], contours, cvScalar(255), cvScalar(255), INT_MAX, -1 );
|
||||
|
||||
cvCopy( img[0], img[2] );
|
||||
|
||||
count2 = cvFindContours( img[2], storage, &chain, sizeof(CvChain), retr_mode, CV_CHAIN_CODE );
|
||||
|
||||
if( chain )
|
||||
contours2 = cvApproxChains( chain, storage, approx_method, 0, 0, 1 );
|
||||
|
||||
cvZero( img[2] );
|
||||
|
||||
if( contours && retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
|
||||
cvDrawContours( img[2], contours2, cvScalar(255), cvScalar(255), INT_MAX );
|
||||
}
|
||||
|
||||
|
||||
// the whole testing is done here, run_func() is not utilized in this test
|
||||
int CV_FindContourTest::validate_test_results( int /*test_case_idx*/ )
|
||||
{
|
||||
int code = cvtest::TS::OK;
|
||||
|
||||
cvCmpS( img[0], 0, img[0], CV_CMP_GT );
|
||||
|
||||
if( count != count2 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "The number of contours retrieved with different "
|
||||
"approximation methods is not the same\n"
|
||||
"(%d contour(s) for method %d vs %d contour(s) for method %d)\n",
|
||||
count, approx_method, count2, CV_CHAIN_CODE );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
}
|
||||
|
||||
if( retr_mode != CV_RETR_EXTERNAL && approx_method < CV_CHAIN_APPROX_TC89_L1 )
|
||||
{
|
||||
Mat _img[4];
|
||||
for( int i = 0; i < 4; i++ )
|
||||
_img[i] = cvarrToMat(img[i]);
|
||||
|
||||
code = cvtest::cmpEps2(ts, _img[0], _img[3], 0, true, "Comparing original image with the map of filled contours" );
|
||||
|
||||
if( code < 0 )
|
||||
goto _exit_;
|
||||
|
||||
code = cvtest::cmpEps2( ts, _img[1], _img[2], 0, true,
|
||||
"Comparing contour outline vs manually produced edge map" );
|
||||
|
||||
if( code < 0 )
|
||||
goto _exit_;
|
||||
}
|
||||
|
||||
if( contours )
|
||||
{
|
||||
CvTreeNodeIterator iterator1;
|
||||
CvTreeNodeIterator iterator2;
|
||||
int count3;
|
||||
|
||||
for(int i = 0; i < 2; i++ )
|
||||
{
|
||||
CvTreeNodeIterator iterator;
|
||||
cvInitTreeNodeIterator( &iterator, i == 0 ? contours : contours2, INT_MAX );
|
||||
|
||||
for( count3 = 0; cvNextTreeNode( &iterator ) != 0; count3++ )
|
||||
;
|
||||
|
||||
if( count3 != count )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG,
|
||||
"The returned number of retrieved contours (using the approx_method = %d) does not match\n"
|
||||
"to the actual number of contours in the tree/list (returned %d, actual %d)\n",
|
||||
i == 0 ? approx_method : 0, count, count3 );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
goto _exit_;
|
||||
}
|
||||
}
|
||||
|
||||
cvInitTreeNodeIterator( &iterator1, contours, INT_MAX );
|
||||
cvInitTreeNodeIterator( &iterator2, contours2, INT_MAX );
|
||||
|
||||
for( count3 = 0; count3 < count; count3++ )
|
||||
{
|
||||
CvSeq* seq1 = (CvSeq*)cvNextTreeNode( &iterator1 );
|
||||
CvSeq* seq2 = (CvSeq*)cvNextTreeNode( &iterator2 );
|
||||
CvSeqReader reader1;
|
||||
CvSeqReader reader2;
|
||||
|
||||
if( !seq1 || !seq2 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG,
|
||||
"There are NULL pointers in the original contour tree or the "
|
||||
"tree produced by cvApproxChains\n" );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
goto _exit_;
|
||||
}
|
||||
|
||||
cvStartReadSeq( seq1, &reader1 );
|
||||
cvStartReadSeq( seq2, &reader2 );
|
||||
|
||||
if( seq1->total != seq2->total )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG,
|
||||
"The original contour #%d has %d points, while the corresponding contour has %d point\n",
|
||||
count3, seq1->total, seq2->total );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
goto _exit_;
|
||||
}
|
||||
|
||||
for(int i = 0; i < seq1->total; i++ )
|
||||
{
|
||||
CvPoint pt1 = {0, 0};
|
||||
CvPoint pt2 = {0, 0};
|
||||
|
||||
CV_READ_SEQ_ELEM( pt1, reader1 );
|
||||
CV_READ_SEQ_ELEM( pt2, reader2 );
|
||||
|
||||
if( pt1.x != pt2.x || pt1.y != pt2.y )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG,
|
||||
"The point #%d in the contour #%d is different from the corresponding point "
|
||||
"in the approximated chain ((%d,%d) vs (%d,%d)", count3, i, pt1.x, pt1.y, pt2.x, pt2.y );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
goto _exit_;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
_exit_:
|
||||
if( code < 0 )
|
||||
{
|
||||
#if 0
|
||||
cvNamedWindow( "test", 0 );
|
||||
cvShowImage( "test", img[0] );
|
||||
cvWaitKey();
|
||||
#endif
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
|
||||
return code;
|
||||
}
|
||||
|
||||
TEST(Imgproc_FindContours, accuracy) { CV_FindContourTest test; test.safe_run(); }
|
||||
|
||||
//rotate/flip a quadrant appropriately
|
||||
static void rot(int n, int *x, int *y, int rx, int ry)
|
||||
{
|
||||
|
@ -174,15 +174,12 @@ protected:
|
||||
int dims;
|
||||
bool enable_flt_points;
|
||||
|
||||
CvMemStorage* storage;
|
||||
CvSeq* points1;
|
||||
CvMat* points2;
|
||||
void* points;
|
||||
void* result;
|
||||
double low_high_range;
|
||||
Scalar low, high;
|
||||
|
||||
bool test_cpp;
|
||||
};
|
||||
|
||||
|
||||
@ -191,7 +188,6 @@ CV_BaseShapeDescrTest::CV_BaseShapeDescrTest()
|
||||
points1 = 0;
|
||||
points2 = 0;
|
||||
points = 0;
|
||||
storage = 0;
|
||||
test_case_count = 500;
|
||||
min_log_size = 0;
|
||||
max_log_size = 10;
|
||||
@ -199,8 +195,6 @@ CV_BaseShapeDescrTest::CV_BaseShapeDescrTest()
|
||||
low_high_range = 50;
|
||||
dims = 2;
|
||||
enable_flt_points = true;
|
||||
|
||||
test_cpp = false;
|
||||
}
|
||||
|
||||
|
||||
@ -213,7 +207,6 @@ CV_BaseShapeDescrTest::~CV_BaseShapeDescrTest()
|
||||
void CV_BaseShapeDescrTest::clear()
|
||||
{
|
||||
cvtest::BaseTest::clear();
|
||||
cvReleaseMemStorage( &storage );
|
||||
cvReleaseMat( &points2 );
|
||||
points1 = 0;
|
||||
points = 0;
|
||||
@ -306,7 +299,6 @@ void CV_BaseShapeDescrTest::generate_point_set( void* pointsSet )
|
||||
int CV_BaseShapeDescrTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
int size;
|
||||
int use_storage = 0;
|
||||
int point_type;
|
||||
int i;
|
||||
RNG& rng = ts->get_rng();
|
||||
@ -315,26 +307,15 @@ int CV_BaseShapeDescrTest::prepare_test_case( int test_case_idx )
|
||||
|
||||
clear();
|
||||
size = cvRound( exp((cvtest::randReal(rng) * (max_log_size - min_log_size) + min_log_size)*CV_LOG2) );
|
||||
use_storage = cvtest::randInt(rng) % 2;
|
||||
point_type = CV_MAKETYPE(cvtest::randInt(rng) %
|
||||
(enable_flt_points ? 2 : 1) ? CV_32F : CV_32S, dims);
|
||||
|
||||
if( use_storage )
|
||||
{
|
||||
storage = cvCreateMemStorage( (cvtest::randInt(rng)%10 + 1)*1024 );
|
||||
points1 = cvCreateSeq( point_type, sizeof(CvSeq), CV_ELEM_SIZE(point_type), storage );
|
||||
cvSeqPushMulti( points1, 0, size );
|
||||
points = points1;
|
||||
}
|
||||
else
|
||||
{
|
||||
int rows = 1, cols = size;
|
||||
if( cvtest::randInt(rng) % 2 )
|
||||
rows = size, cols = 1;
|
||||
int rows = 1, cols = size;
|
||||
if( cvtest::randInt(rng) % 2 )
|
||||
rows = size, cols = 1;
|
||||
|
||||
points2 = cvCreateMat( rows, cols, point_type );
|
||||
points = points2;
|
||||
}
|
||||
points2 = cvCreateMat( rows, cols, point_type );
|
||||
points = points2;
|
||||
|
||||
for( i = 0; i < 4; i++ )
|
||||
{
|
||||
@ -350,8 +331,6 @@ int CV_BaseShapeDescrTest::prepare_test_case( int test_case_idx )
|
||||
}
|
||||
|
||||
generate_point_set( points );
|
||||
|
||||
test_cpp = (cvtest::randInt(rng) & 16) == 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -403,8 +382,7 @@ protected:
|
||||
|
||||
CvSeq* hull1;
|
||||
CvMat* hull2;
|
||||
void* hull_storage;
|
||||
int orientation;
|
||||
bool clockwise;
|
||||
int return_points;
|
||||
};
|
||||
|
||||
@ -413,8 +391,8 @@ CV_ConvHullTest::CV_ConvHullTest()
|
||||
{
|
||||
hull1 = 0;
|
||||
hull2 = 0;
|
||||
hull_storage = 0;
|
||||
orientation = return_points = 0;
|
||||
return_points = 0;
|
||||
clockwise = false;
|
||||
}
|
||||
|
||||
|
||||
@ -429,43 +407,30 @@ void CV_ConvHullTest::clear()
|
||||
CV_BaseShapeDescrTest::clear();
|
||||
cvReleaseMat( &hull2 );
|
||||
hull1 = 0;
|
||||
hull_storage = 0;
|
||||
}
|
||||
|
||||
|
||||
int CV_ConvHullTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
int code = CV_BaseShapeDescrTest::prepare_test_case( test_case_idx );
|
||||
int use_storage_for_hull = 0;
|
||||
RNG& rng = ts->get_rng();
|
||||
|
||||
if( code <= 0 )
|
||||
return code;
|
||||
|
||||
orientation = cvtest::randInt(rng) % 2 ? CV_CLOCKWISE : CV_COUNTER_CLOCKWISE;
|
||||
clockwise = cvtest::randInt(rng) % 2 != 0;
|
||||
return_points = cvtest::randInt(rng) % 2;
|
||||
|
||||
use_storage_for_hull = (cvtest::randInt(rng) % 2) && !test_cpp;
|
||||
if( use_storage_for_hull )
|
||||
{
|
||||
if( !storage )
|
||||
storage = cvCreateMemStorage( (cvtest::randInt(rng)%10 + 1)*1024 );
|
||||
hull_storage = storage;
|
||||
}
|
||||
int rows, cols;
|
||||
int sz = points1 ? points1->total : points2->cols + points2->rows - 1;
|
||||
int point_type = points1 ? CV_SEQ_ELTYPE(points1) : CV_MAT_TYPE(points2->type);
|
||||
|
||||
if( cvtest::randInt(rng) % 2 )
|
||||
rows = sz, cols = 1;
|
||||
else
|
||||
{
|
||||
int rows, cols;
|
||||
int sz = points1 ? points1->total : points2->cols + points2->rows - 1;
|
||||
int point_type = points1 ? CV_SEQ_ELTYPE(points1) : CV_MAT_TYPE(points2->type);
|
||||
rows = 1, cols = sz;
|
||||
|
||||
if( cvtest::randInt(rng) % 2 )
|
||||
rows = sz, cols = 1;
|
||||
else
|
||||
rows = 1, cols = sz;
|
||||
|
||||
hull2 = cvCreateMat( rows, cols, return_points ? point_type : CV_32SC1 );
|
||||
hull_storage = hull2;
|
||||
}
|
||||
hull2 = cvCreateMat( rows, cols, return_points ? point_type : CV_32SC1 );
|
||||
|
||||
return code;
|
||||
}
|
||||
@ -473,39 +438,33 @@ int CV_ConvHullTest::prepare_test_case( int test_case_idx )
|
||||
|
||||
void CV_ConvHullTest::run_func()
|
||||
{
|
||||
if(!test_cpp)
|
||||
hull1 = cvConvexHull2( points, hull_storage, orientation, return_points );
|
||||
else
|
||||
cv::Mat _points = cv::cvarrToMat(points);
|
||||
size_t n = 0;
|
||||
if( !return_points )
|
||||
{
|
||||
cv::Mat _points = cv::cvarrToMat(points);
|
||||
bool clockwise = orientation == CV_CLOCKWISE;
|
||||
size_t n = 0;
|
||||
if( !return_points )
|
||||
{
|
||||
std::vector<int> _hull;
|
||||
cv::convexHull(_points, _hull, clockwise);
|
||||
n = _hull.size();
|
||||
memcpy(hull2->data.ptr, &_hull[0], n*sizeof(_hull[0]));
|
||||
}
|
||||
else if(_points.type() == CV_32SC2)
|
||||
{
|
||||
std::vector<cv::Point> _hull;
|
||||
cv::convexHull(_points, _hull, clockwise);
|
||||
n = _hull.size();
|
||||
memcpy(hull2->data.ptr, &_hull[0], n*sizeof(_hull[0]));
|
||||
}
|
||||
else if(_points.type() == CV_32FC2)
|
||||
{
|
||||
std::vector<cv::Point2f> _hull;
|
||||
cv::convexHull(_points, _hull, clockwise);
|
||||
n = _hull.size();
|
||||
memcpy(hull2->data.ptr, &_hull[0], n*sizeof(_hull[0]));
|
||||
}
|
||||
if(hull2->rows > hull2->cols)
|
||||
hull2->rows = (int)n;
|
||||
else
|
||||
hull2->cols = (int)n;
|
||||
std::vector<int> _hull;
|
||||
cv::convexHull(_points, _hull, clockwise);
|
||||
n = _hull.size();
|
||||
memcpy(hull2->data.ptr, &_hull[0], n*sizeof(_hull[0]));
|
||||
}
|
||||
else if(_points.type() == CV_32SC2)
|
||||
{
|
||||
std::vector<cv::Point> _hull;
|
||||
cv::convexHull(_points, _hull, clockwise);
|
||||
n = _hull.size();
|
||||
memcpy(hull2->data.ptr, &_hull[0], n*sizeof(_hull[0]));
|
||||
}
|
||||
else if(_points.type() == CV_32FC2)
|
||||
{
|
||||
std::vector<cv::Point2f> _hull;
|
||||
cv::convexHull(_points, _hull, clockwise);
|
||||
n = _hull.size();
|
||||
memcpy(hull2->data.ptr, &_hull[0], n*sizeof(_hull[0]));
|
||||
}
|
||||
if(hull2->rows > hull2->cols)
|
||||
hull2->rows = (int)n;
|
||||
else
|
||||
hull2->cols = (int)n;
|
||||
}
|
||||
|
||||
|
||||
@ -589,7 +548,7 @@ int CV_ConvHullTest::validate_test_results( int test_case_idx )
|
||||
float dx0 = pt1.x - pt0.x, dy0 = pt1.y - pt0.y;
|
||||
float dx1 = pt2.x - pt1.x, dy1 = pt2.y - pt1.y;
|
||||
double t = (double)dx0*dy1 - (double)dx1*dy0;
|
||||
if( (t < 0) ^ (orientation != CV_COUNTER_CLOCKWISE) )
|
||||
if( (t < 0) ^ clockwise )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "The convex hull is not convex or has a wrong orientation (vtx %d)\n", i );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
@ -1056,115 +1015,6 @@ TEST(Imgproc_minEnclosingCircle, regression_16051) {
|
||||
EXPECT_NEAR(2.1024551f, radius, 1e-3);
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
* Perimeter Test *
|
||||
\****************************************************************************************/
|
||||
|
||||
class CV_PerimeterTest : public CV_BaseShapeDescrTest
|
||||
{
|
||||
public:
|
||||
CV_PerimeterTest();
|
||||
|
||||
protected:
|
||||
int prepare_test_case( int test_case_idx );
|
||||
void run_func(void);
|
||||
int validate_test_results( int test_case_idx );
|
||||
CvSlice slice;
|
||||
int is_closed;
|
||||
double result;
|
||||
};
|
||||
|
||||
|
||||
CV_PerimeterTest::CV_PerimeterTest()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
int CV_PerimeterTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
int code = CV_BaseShapeDescrTest::prepare_test_case( test_case_idx );
|
||||
RNG& rng = ts->get_rng();
|
||||
int total;
|
||||
|
||||
if( code < 0 )
|
||||
return code;
|
||||
|
||||
is_closed = cvtest::randInt(rng) % 2;
|
||||
|
||||
if( points1 )
|
||||
{
|
||||
points1->flags |= CV_SEQ_KIND_CURVE;
|
||||
if( is_closed )
|
||||
points1->flags |= CV_SEQ_FLAG_CLOSED;
|
||||
total = points1->total;
|
||||
}
|
||||
else
|
||||
total = points2->cols + points2->rows - 1;
|
||||
|
||||
if( (cvtest::randInt(rng) % 3) && !test_cpp )
|
||||
{
|
||||
slice.start_index = cvtest::randInt(rng) % total;
|
||||
slice.end_index = cvtest::randInt(rng) % total;
|
||||
}
|
||||
else
|
||||
slice = CV_WHOLE_SEQ;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
void CV_PerimeterTest::run_func()
|
||||
{
|
||||
if(!test_cpp)
|
||||
result = cvArcLength( points, slice, points1 ? -1 : is_closed );
|
||||
else
|
||||
result = cv::arcLength(cv::cvarrToMat(points),
|
||||
!points1 ? is_closed != 0 : (points1->flags & CV_SEQ_FLAG_CLOSED) != 0);
|
||||
}
|
||||
|
||||
|
||||
int CV_PerimeterTest::validate_test_results( int test_case_idx )
|
||||
{
|
||||
int code = CV_BaseShapeDescrTest::validate_test_results( test_case_idx );
|
||||
int i, len = slice.end_index - slice.start_index, total = points2->cols + points2->rows - 1;
|
||||
double result0 = 0;
|
||||
Point2f prev_pt, pt;
|
||||
CvPoint2D32f *ptr;
|
||||
|
||||
if( len < 0 )
|
||||
len += total;
|
||||
|
||||
len = MIN( len, total );
|
||||
//len -= !is_closed && len == total;
|
||||
|
||||
ptr = (CvPoint2D32f*)points2->data.fl;
|
||||
prev_pt = ptr[(is_closed ? slice.start_index+len-1 : slice.start_index) % total];
|
||||
|
||||
for( i = 0; i < len + (len < total && (!is_closed || len==1)); i++ )
|
||||
{
|
||||
pt = ptr[(i + slice.start_index) % total];
|
||||
double dx = pt.x - prev_pt.x, dy = pt.y - prev_pt.y;
|
||||
result0 += sqrt(dx*dx + dy*dy);
|
||||
prev_pt = pt;
|
||||
}
|
||||
|
||||
if( cvIsNaN(result) || cvIsInf(result) )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "cvArcLength() returned invalid value (%g)\n", result );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
}
|
||||
else if( fabs(result - result0) > FLT_EPSILON*100*result0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "The function returned %g, while the correct result is %g\n", result, result0 );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
}
|
||||
|
||||
if( code < 0 )
|
||||
ts->set_failed_test_info( code );
|
||||
return code;
|
||||
}
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* FitEllipse Test *
|
||||
\****************************************************************************************/
|
||||
@ -1530,7 +1380,7 @@ int CV_FitLineTest::prepare_test_case( int test_case_idx )
|
||||
max_log_size = MAX(min_log_size,max_log_size);
|
||||
int code = CV_BaseShapeDescrTest::prepare_test_case( test_case_idx );
|
||||
dist_type = cvtest::randInt(rng) % 6 + 1;
|
||||
dist_type += dist_type == CV_DIST_C;
|
||||
dist_type += dist_type == cv::DIST_C;
|
||||
reps = 0.1; aeps = 0.01;
|
||||
return code;
|
||||
}
|
||||
@ -1624,290 +1474,15 @@ _exit_:
|
||||
return code;
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
* ContourMoments Test *
|
||||
\****************************************************************************************/
|
||||
|
||||
|
||||
static void
|
||||
cvTsGenerateTousledBlob( CvPoint2D32f center, CvSize2D32f axes,
|
||||
double max_r_scale, double angle, CvArr* points, RNG& rng )
|
||||
{
|
||||
int i, total, point_type;
|
||||
uchar* data = 0;
|
||||
CvSeqReader reader;
|
||||
memset( &reader, 0, sizeof(reader) );
|
||||
|
||||
if( CV_IS_SEQ(points) )
|
||||
{
|
||||
CvSeq* ptseq = (CvSeq*)points;
|
||||
total = ptseq->total;
|
||||
point_type = CV_SEQ_ELTYPE(ptseq);
|
||||
cvStartReadSeq( ptseq, &reader );
|
||||
}
|
||||
else
|
||||
{
|
||||
CvMat* ptm = (CvMat*)points;
|
||||
CV_Assert( CV_IS_MAT(ptm) && CV_IS_MAT_CONT(ptm->type) );
|
||||
total = ptm->rows + ptm->cols - 1;
|
||||
point_type = CV_MAT_TYPE(ptm->type);
|
||||
data = ptm->data.ptr;
|
||||
}
|
||||
|
||||
CV_Assert( point_type == CV_32SC2 || point_type == CV_32FC2 );
|
||||
|
||||
for( i = 0; i < total; i++ )
|
||||
{
|
||||
CvPoint* pp;
|
||||
Point2f p;
|
||||
|
||||
double phi0 = 2*CV_PI*i/total;
|
||||
double phi = CV_PI*angle/180.;
|
||||
double t = cvtest::randReal(rng)*max_r_scale + (1 - max_r_scale);
|
||||
double ta = axes.height*t;
|
||||
double tb = axes.width*t;
|
||||
double c0 = cos(phi0)*ta, s0 = sin(phi0)*tb;
|
||||
double c = cos(phi), s = sin(phi);
|
||||
p.x = (float)(c0*c - s0*s + center.x);
|
||||
p.y = (float)(c0*s + s0*c + center.y);
|
||||
|
||||
if( reader.ptr )
|
||||
{
|
||||
pp = (CvPoint*)reader.ptr;
|
||||
CV_NEXT_SEQ_ELEM( sizeof(*pp), reader );
|
||||
}
|
||||
else
|
||||
pp = ((CvPoint*)data) + i;
|
||||
|
||||
if( point_type == CV_32SC2 )
|
||||
{
|
||||
pp->x = cvRound(p.x);
|
||||
pp->y = cvRound(p.y);
|
||||
}
|
||||
else
|
||||
*(CvPoint2D32f*)pp = cvPoint2D32f(p);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class CV_ContourMomentsTest : public CV_BaseShapeDescrTest
|
||||
{
|
||||
public:
|
||||
CV_ContourMomentsTest();
|
||||
|
||||
protected:
|
||||
int prepare_test_case( int test_case_idx );
|
||||
void generate_point_set( void* points );
|
||||
void run_func(void);
|
||||
int validate_test_results( int test_case_idx );
|
||||
CvMoments moments0, moments;
|
||||
double area0, area;
|
||||
Size2f axes;
|
||||
Point2f center;
|
||||
int max_max_r_scale;
|
||||
double max_r_scale, angle;
|
||||
Size img_size;
|
||||
};
|
||||
|
||||
|
||||
CV_ContourMomentsTest::CV_ContourMomentsTest()
|
||||
{
|
||||
min_log_size = 3;
|
||||
max_log_size = 8;
|
||||
max_max_r_scale = 15;
|
||||
low_high_range = 200;
|
||||
enable_flt_points = false;
|
||||
}
|
||||
|
||||
|
||||
void CV_ContourMomentsTest::generate_point_set( void* pointsSet )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
float max_sz;
|
||||
|
||||
axes.width = (float)((cvtest::randReal(rng)*0.9 + 0.1)*low_high_range);
|
||||
axes.height = (float)((cvtest::randReal(rng)*0.9 + 0.1)*low_high_range);
|
||||
max_sz = MAX(axes.width, axes.height);
|
||||
|
||||
img_size.width = img_size.height = cvRound(low_high_range*2.2);
|
||||
|
||||
center.x = (float)(img_size.width*0.5 + (cvtest::randReal(rng)-0.5)*(img_size.width - max_sz*2)*0.8);
|
||||
center.y = (float)(img_size.height*0.5 + (cvtest::randReal(rng)-0.5)*(img_size.height - max_sz*2)*0.8);
|
||||
|
||||
CV_Assert( 0 < center.x - max_sz && center.x + max_sz < img_size.width &&
|
||||
0 < center.y - max_sz && center.y + max_sz < img_size.height );
|
||||
|
||||
max_r_scale = cvtest::randReal(rng)*max_max_r_scale*0.01;
|
||||
angle = cvtest::randReal(rng)*360;
|
||||
|
||||
cvTsGenerateTousledBlob( cvPoint2D32f(center), cvSize2D32f(axes), max_r_scale, angle, pointsSet, rng );
|
||||
|
||||
if( points1 )
|
||||
points1->flags = CV_SEQ_MAGIC_VAL + CV_SEQ_POLYGON;
|
||||
}
|
||||
|
||||
|
||||
int CV_ContourMomentsTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
min_log_size = MAX(min_log_size,3);
|
||||
max_log_size = MIN(max_log_size,8);
|
||||
max_log_size = MAX(min_log_size,max_log_size);
|
||||
int code = CV_BaseShapeDescrTest::prepare_test_case( test_case_idx );
|
||||
return code;
|
||||
}
|
||||
|
||||
|
||||
void CV_ContourMomentsTest::run_func()
|
||||
{
|
||||
moments = cvMoments(cv::moments(cv::cvarrToMat(points)));
|
||||
area = cv::contourArea(cv::cvarrToMat(points));
|
||||
}
|
||||
|
||||
|
||||
int CV_ContourMomentsTest::validate_test_results( int test_case_idx )
|
||||
{
|
||||
int code = CV_BaseShapeDescrTest::validate_test_results( test_case_idx );
|
||||
int i, n = (int)(sizeof(moments)/sizeof(moments.inv_sqrt_m00));
|
||||
CvMat* img = cvCreateMat( img_size.height, img_size.width, CV_8UC1 );
|
||||
CvPoint* pt = (CvPoint*)points2->data.i;
|
||||
int count = points2->cols + points2->rows - 1;
|
||||
double max_v0 = 0;
|
||||
|
||||
cvZero(img);
|
||||
cvFillPoly( img, &pt, &count, 1, cvScalarAll(1));
|
||||
cvMoments( img, &moments0 );
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
double t = fabs((&moments0.m00)[i]);
|
||||
max_v0 = MAX(max_v0, t);
|
||||
}
|
||||
|
||||
for( i = 0; i <= n; i++ )
|
||||
{
|
||||
double v = i < n ? (&moments.m00)[i] : area;
|
||||
double v0 = i < n ? (&moments0.m00)[i] : moments0.m00;
|
||||
|
||||
if( cvIsNaN(v) || cvIsInf(v) )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG,
|
||||
"The contour %s is invalid (=%g)\n", i < n ? "moment" : "area", v );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
break;
|
||||
}
|
||||
|
||||
if( fabs(v - v0) > 0.1*max_v0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG,
|
||||
"The computed contour %s is %g, while it should be %g\n",
|
||||
i < n ? "moment" : "area", v, v0 );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if( code < 0 )
|
||||
{
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
|
||||
cvReleaseMat( &img );
|
||||
return code;
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////// Perimeter/Area/Slice test ///////////////////////////////////
|
||||
|
||||
class CV_PerimeterAreaSliceTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_PerimeterAreaSliceTest();
|
||||
~CV_PerimeterAreaSliceTest();
|
||||
protected:
|
||||
void run(int);
|
||||
};
|
||||
|
||||
CV_PerimeterAreaSliceTest::CV_PerimeterAreaSliceTest()
|
||||
{
|
||||
}
|
||||
CV_PerimeterAreaSliceTest::~CV_PerimeterAreaSliceTest() {}
|
||||
|
||||
void CV_PerimeterAreaSliceTest::run( int )
|
||||
{
|
||||
Ptr<CvMemStorage> storage(cvCreateMemStorage());
|
||||
RNG& rng = theRNG();
|
||||
const double min_r = 90, max_r = 120;
|
||||
|
||||
for( int i = 0; i < 100; i++ )
|
||||
{
|
||||
ts->update_context( this, i, true );
|
||||
int n = rng.uniform(3, 30);
|
||||
cvClearMemStorage(storage);
|
||||
CvSeq* contour = cvCreateSeq(CV_SEQ_POLYGON, sizeof(CvSeq), sizeof(CvPoint), storage);
|
||||
double dphi = CV_PI*2/n;
|
||||
Point center;
|
||||
center.x = rng.uniform(cvCeil(max_r), cvFloor(640-max_r));
|
||||
center.y = rng.uniform(cvCeil(max_r), cvFloor(480-max_r));
|
||||
|
||||
for( int j = 0; j < n; j++ )
|
||||
{
|
||||
CvPoint pt = CV_STRUCT_INITIALIZER;
|
||||
double r = rng.uniform(min_r, max_r);
|
||||
double phi = j*dphi;
|
||||
pt.x = cvRound(center.x + r*cos(phi));
|
||||
pt.y = cvRound(center.y - r*sin(phi));
|
||||
cvSeqPush(contour, &pt);
|
||||
}
|
||||
|
||||
CvSlice slice = {0, 0};
|
||||
for(;;)
|
||||
{
|
||||
slice.start_index = rng.uniform(-n/2, 3*n/2);
|
||||
slice.end_index = rng.uniform(-n/2, 3*n/2);
|
||||
int len = cvSliceLength(slice, contour);
|
||||
if( len > 2 )
|
||||
break;
|
||||
}
|
||||
CvSeq *cslice = cvSeqSlice(contour, slice);
|
||||
/*printf( "%d. (%d, %d) of %d, length = %d, length1 = %d\n",
|
||||
i, slice.start_index, slice.end_index,
|
||||
contour->total, cvSliceLength(slice, contour), cslice->total );
|
||||
|
||||
double area0 = cvContourArea(cslice);
|
||||
double area1 = cvContourArea(contour, slice);
|
||||
if( area0 != area1 )
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG,
|
||||
"The contour area slice is computed differently (%g vs %g)\n", area0, area1 );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}*/
|
||||
|
||||
double len0 = cvArcLength(cslice, CV_WHOLE_SEQ, 1);
|
||||
double len1 = cvArcLength(contour, slice, 1);
|
||||
if( len0 != len1 )
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG,
|
||||
"The contour arc length is computed differently (%g vs %g)\n", len0, len1 );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
}
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
|
||||
|
||||
TEST(Imgproc_ConvexHull, accuracy) { CV_ConvHullTest test; test.safe_run(); }
|
||||
TEST(Imgproc_MinAreaRect, accuracy) { CV_MinAreaRectTest test; test.safe_run(); }
|
||||
TEST(Imgproc_MinTriangle, accuracy) { CV_MinTriangleTest test; test.safe_run(); }
|
||||
TEST(Imgproc_MinCircle, accuracy) { CV_MinCircleTest test; test.safe_run(); }
|
||||
TEST(Imgproc_MinCircle2, accuracy) { CV_MinCircleTest2 test; test.safe_run(); }
|
||||
TEST(Imgproc_ContourPerimeter, accuracy) { CV_PerimeterTest test; test.safe_run(); }
|
||||
TEST(Imgproc_FitEllipse, accuracy) { CV_FitEllipseTest test; test.safe_run(); }
|
||||
TEST(Imgproc_FitEllipse, parallel) { CV_FitEllipseParallelTest test; test.safe_run(); }
|
||||
TEST(Imgproc_FitLine, accuracy) { CV_FitLineTest test; test.safe_run(); }
|
||||
TEST(Imgproc_ContourMoments, accuracy) { CV_ContourMomentsTest test; test.safe_run(); }
|
||||
TEST(Imgproc_ContourPerimeterSlice, accuracy) { CV_PerimeterAreaSliceTest test; test.safe_run(); }
|
||||
TEST(Imgproc_FitEllipse, small) { CV_FitEllipseSmallTest test; test.safe_run(); }
|
||||
|
||||
|
||||
|
@ -43,246 +43,6 @@
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
class CV_DisTransTest : public cvtest::ArrayTest
|
||||
{
|
||||
public:
|
||||
CV_DisTransTest();
|
||||
|
||||
protected:
|
||||
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
double get_success_error_level( int test_case_idx, int i, int j );
|
||||
void run_func();
|
||||
void prepare_to_validation( int );
|
||||
|
||||
void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
|
||||
int prepare_test_case( int test_case_idx );
|
||||
|
||||
int mask_size;
|
||||
int dist_type;
|
||||
int fill_labels;
|
||||
float mask[3];
|
||||
};
|
||||
|
||||
|
||||
CV_DisTransTest::CV_DisTransTest()
|
||||
{
|
||||
test_array[INPUT].push_back(NULL);
|
||||
test_array[OUTPUT].push_back(NULL);
|
||||
test_array[OUTPUT].push_back(NULL);
|
||||
test_array[REF_OUTPUT].push_back(NULL);
|
||||
test_array[REF_OUTPUT].push_back(NULL);
|
||||
optional_mask = false;
|
||||
element_wise_relative_error = true;
|
||||
}
|
||||
|
||||
|
||||
void CV_DisTransTest::get_test_array_types_and_sizes( int test_case_idx,
|
||||
vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
|
||||
types[INPUT][0] = CV_8UC1;
|
||||
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1;
|
||||
types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_32SC1;
|
||||
|
||||
if( cvtest::randInt(rng) & 1 )
|
||||
{
|
||||
mask_size = 3;
|
||||
}
|
||||
else
|
||||
{
|
||||
mask_size = 5;
|
||||
}
|
||||
|
||||
dist_type = cvtest::randInt(rng) % 3;
|
||||
dist_type = dist_type == 0 ? CV_DIST_C : dist_type == 1 ? CV_DIST_L1 : CV_DIST_L2;
|
||||
|
||||
// for now, check only the "labeled" distance transform mode
|
||||
fill_labels = 0;
|
||||
|
||||
if( !fill_labels )
|
||||
sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(0,0);
|
||||
}
|
||||
|
||||
|
||||
double CV_DisTransTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||||
{
|
||||
Size sz = test_mat[INPUT][0].size();
|
||||
return dist_type == CV_DIST_C || dist_type == CV_DIST_L1 ? 0 : 0.01*MAX(sz.width, sz.height);
|
||||
}
|
||||
|
||||
|
||||
void CV_DisTransTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
|
||||
{
|
||||
cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
|
||||
if( i == INPUT && CV_MAT_DEPTH(type) == CV_8U )
|
||||
{
|
||||
low = Scalar::all(0);
|
||||
high = Scalar::all(10);
|
||||
}
|
||||
}
|
||||
|
||||
int CV_DisTransTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
|
||||
if( code > 0 )
|
||||
{
|
||||
// the function's response to an "all-nonzeros" image is not determined,
|
||||
// so put at least one zero point
|
||||
Mat& mat = test_mat[INPUT][0];
|
||||
RNG& rng = ts->get_rng();
|
||||
int i = cvtest::randInt(rng) % mat.rows;
|
||||
int j = cvtest::randInt(rng) % mat.cols;
|
||||
mat.at<uchar>(i,j) = 0;
|
||||
}
|
||||
|
||||
return code;
|
||||
}
|
||||
|
||||
|
||||
void CV_DisTransTest::run_func()
|
||||
{
|
||||
cvDistTransform( test_array[INPUT][0], test_array[OUTPUT][0], dist_type, mask_size,
|
||||
dist_type == CV_DIST_USER ? mask : 0, test_array[OUTPUT][1] );
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
cvTsDistTransform( const CvMat* _src, CvMat* _dst, int dist_type,
|
||||
int mask_size, float* _mask, CvMat* /*_labels*/ )
|
||||
{
|
||||
int i, j, k;
|
||||
int width = _src->cols, height = _src->rows;
|
||||
const float init_val = 1e6;
|
||||
float mask[3];
|
||||
CvMat* temp;
|
||||
int ofs[16] = {0};
|
||||
float delta[16];
|
||||
int tstep, count;
|
||||
|
||||
CV_Assert( mask_size == 3 || mask_size == 5 );
|
||||
|
||||
if( dist_type == CV_DIST_USER )
|
||||
memcpy( mask, _mask, sizeof(mask) );
|
||||
else if( dist_type == CV_DIST_C )
|
||||
{
|
||||
mask_size = 3;
|
||||
mask[0] = mask[1] = 1.f;
|
||||
}
|
||||
else if( dist_type == CV_DIST_L1 )
|
||||
{
|
||||
mask_size = 3;
|
||||
mask[0] = 1.f;
|
||||
mask[1] = 2.f;
|
||||
}
|
||||
else if( mask_size == 3 )
|
||||
{
|
||||
mask[0] = 0.955f;
|
||||
mask[1] = 1.3693f;
|
||||
}
|
||||
else
|
||||
{
|
||||
mask[0] = 1.0f;
|
||||
mask[1] = 1.4f;
|
||||
mask[2] = 2.1969f;
|
||||
}
|
||||
|
||||
temp = cvCreateMat( height + mask_size-1, width + mask_size-1, CV_32F );
|
||||
tstep = temp->step / sizeof(float);
|
||||
|
||||
if( mask_size == 3 )
|
||||
{
|
||||
count = 4;
|
||||
ofs[0] = -1; delta[0] = mask[0];
|
||||
ofs[1] = -tstep-1; delta[1] = mask[1];
|
||||
ofs[2] = -tstep; delta[2] = mask[0];
|
||||
ofs[3] = -tstep+1; delta[3] = mask[1];
|
||||
}
|
||||
else
|
||||
{
|
||||
count = 8;
|
||||
ofs[0] = -1; delta[0] = mask[0];
|
||||
ofs[1] = -tstep-2; delta[1] = mask[2];
|
||||
ofs[2] = -tstep-1; delta[2] = mask[1];
|
||||
ofs[3] = -tstep; delta[3] = mask[0];
|
||||
ofs[4] = -tstep+1; delta[4] = mask[1];
|
||||
ofs[5] = -tstep+2; delta[5] = mask[2];
|
||||
ofs[6] = -tstep*2-1; delta[6] = mask[2];
|
||||
ofs[7] = -tstep*2+1; delta[7] = mask[2];
|
||||
}
|
||||
|
||||
for( i = 0; i < mask_size/2; i++ )
|
||||
{
|
||||
float* t0 = (float*)(temp->data.ptr + i*temp->step);
|
||||
float* t1 = (float*)(temp->data.ptr + (temp->rows - i - 1)*temp->step);
|
||||
|
||||
for( j = 0; j < width + mask_size - 1; j++ )
|
||||
t0[j] = t1[j] = init_val;
|
||||
}
|
||||
|
||||
for( i = 0; i < height; i++ )
|
||||
{
|
||||
uchar* s = _src->data.ptr + i*_src->step;
|
||||
float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);
|
||||
|
||||
for( j = 0; j < mask_size/2; j++ )
|
||||
tmp[-j-1] = tmp[j + width] = init_val;
|
||||
|
||||
for( j = 0; j < width; j++ )
|
||||
{
|
||||
if( s[j] == 0 )
|
||||
tmp[j] = 0;
|
||||
else
|
||||
{
|
||||
float min_dist = init_val;
|
||||
for( k = 0; k < count; k++ )
|
||||
{
|
||||
float t = tmp[j+ofs[k]] + delta[k];
|
||||
if( min_dist > t )
|
||||
min_dist = t;
|
||||
}
|
||||
tmp[j] = min_dist;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for( i = height - 1; i >= 0; i-- )
|
||||
{
|
||||
float* d = (float*)(_dst->data.ptr + i*_dst->step);
|
||||
float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);
|
||||
|
||||
for( j = width - 1; j >= 0; j-- )
|
||||
{
|
||||
float min_dist = tmp[j];
|
||||
if( min_dist > mask[0] )
|
||||
{
|
||||
for( k = 0; k < count; k++ )
|
||||
{
|
||||
float t = tmp[j-ofs[k]] + delta[k];
|
||||
if( min_dist > t )
|
||||
min_dist = t;
|
||||
}
|
||||
tmp[j] = min_dist;
|
||||
}
|
||||
d[j] = min_dist;
|
||||
}
|
||||
}
|
||||
|
||||
cvReleaseMat( &temp );
|
||||
}
|
||||
|
||||
|
||||
void CV_DisTransTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
{
|
||||
CvMat _input = cvMat(test_mat[INPUT][0]), _output = cvMat(test_mat[REF_OUTPUT][0]);
|
||||
|
||||
cvTsDistTransform( &_input, &_output, dist_type, mask_size, mask, 0 );
|
||||
}
|
||||
|
||||
|
||||
TEST(Imgproc_DistanceTransform, accuracy) { CV_DisTransTest test; test.safe_run(); }
|
||||
|
||||
BIGDATA_TEST(Imgproc_DistanceTransform, large_image_12218)
|
||||
{
|
||||
const int lls_maxcnt = 79992000; // labels's maximum count
|
||||
|
@ -131,7 +131,7 @@ void CV_DrawingTest_CPP::draw( Mat& img )
|
||||
|
||||
p2 = Point(3,imgSize.height+1000);
|
||||
if( clipLine(Rect(0,0,imgSize.width,imgSize.height), p1, p2) && clipLine(imgSize, p1, p2) )
|
||||
circle( img, Point(500,300), 50, cvColorToScalar(255,CV_8UC3), 5, 8, 1 ); // draw
|
||||
circle( img, Point(500,300), 50, Scalar(255, 0, 0), 5, 8, 1 ); // draw
|
||||
|
||||
p1 = Point(imgSize.width,1), p2 = Point(imgSize.width,3);
|
||||
if( clipLine(Rect(0,0,imgSize.width,imgSize.height), p1, p2) && clipLine(imgSize, p1, p2) )
|
||||
@ -147,7 +147,7 @@ void CV_DrawingTest_CPP::draw( Mat& img )
|
||||
ellipse2Poly( Point(430,180), Size(100,150), 30, 0, 150, 20, polyline );
|
||||
pts = &polyline[0];
|
||||
n = (int)polyline.size();
|
||||
polylines( img, &pts, &n, 1, false, Scalar(0,0,150), 4, CV_AA );
|
||||
polylines( img, &pts, &n, 1, false, Scalar(0,0,150), 4, cv::LINE_AA );
|
||||
n = 0;
|
||||
for( vector<Point>::const_iterator it = polyline.begin(); n < (int)polyline.size()-1; ++it, n++ )
|
||||
{
|
||||
@ -195,43 +195,43 @@ void CV_DrawingTest_CPP::draw( Mat& img )
|
||||
|
||||
textSize = getTextSize( text2, FONT_HERSHEY_SIMPLEX, fontScale, thickness, &baseline);
|
||||
textOrg = Point(5,5)+Point(0,textSize.height+dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SIMPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SIMPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
fontScale = 1;
|
||||
textSize = getTextSize( text2, FONT_HERSHEY_PLAIN, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0,textSize.height+dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_PLAIN, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_PLAIN, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
fontScale = 0.5;
|
||||
textSize = getTextSize( text2, FONT_HERSHEY_DUPLEX, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0,textSize.height+dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_DUPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_DUPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
textSize = getTextSize( text2, FONT_HERSHEY_COMPLEX, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0,textSize.height+dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_COMPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_COMPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
textSize = getTextSize( text2, FONT_HERSHEY_TRIPLEX, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0,textSize.height+dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_TRIPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_TRIPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
fontScale = 1;
|
||||
textSize = getTextSize( text2, FONT_HERSHEY_COMPLEX_SMALL, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0,180) + Point(0,textSize.height+dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_COMPLEX_SMALL, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_COMPLEX_SMALL, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
textSize = getTextSize( text2, FONT_HERSHEY_SCRIPT_SIMPLEX, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0,textSize.height+dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SCRIPT_SIMPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SCRIPT_SIMPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
textSize = getTextSize( text2, FONT_HERSHEY_SCRIPT_COMPLEX, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0,textSize.height+dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SCRIPT_COMPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SCRIPT_COMPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
dist = 15, fontScale = 0.5;
|
||||
textSize = getTextSize( text2, FONT_ITALIC, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0,textSize.height+dist);
|
||||
putText(img, text2, textOrg, FONT_ITALIC, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_ITALIC, fontScale, color, thickness, cv::LINE_AA);
|
||||
}
|
||||
|
||||
int CV_DrawingTest_CPP::checkLineIterator( Mat& img )
|
||||
@ -324,7 +324,7 @@ void CV_DrawingTest_Far::draw(Mat& img)
|
||||
|
||||
p2 = Point(32768 + 3, imgSize.height + 1000);
|
||||
if (clipLine(Rect(32768 + 0, 0, imgSize.width, imgSize.height), p1, p2) && clipLine(imgSize, p1, p2))
|
||||
circle(img, Point(65536 + 500, 300), 50, cvColorToScalar(255, CV_8UC3), 5, 8, 1); // draw
|
||||
circle(img, Point(65536 + 500, 300), 50, Scalar(255, 0, 0), 5, 8, 1); // draw
|
||||
|
||||
p1 = Point(imgSize.width, 1), p2 = Point(imgSize.width, 3);
|
||||
if (clipLine(Rect(32768 + 0, 0, imgSize.width, imgSize.height), p1, p2) && clipLine(imgSize, p1, p2))
|
||||
@ -340,7 +340,7 @@ void CV_DrawingTest_Far::draw(Mat& img)
|
||||
ellipse2Poly(Point(32768 + 430, 180), Size(100, 150), 30, 0, 150, 20, polyline);
|
||||
pts = &polyline[0];
|
||||
n = (int)polyline.size();
|
||||
polylines(img, &pts, &n, 1, false, Scalar(0, 0, 150), 4, CV_AA);
|
||||
polylines(img, &pts, &n, 1, false, Scalar(0, 0, 150), 4, cv::LINE_AA);
|
||||
n = 0;
|
||||
for (vector<Point>::const_iterator it = polyline.begin(); n < (int)polyline.size() - 1; ++it, n++)
|
||||
{
|
||||
@ -388,43 +388,43 @@ void CV_DrawingTest_Far::draw(Mat& img)
|
||||
|
||||
textSize = getTextSize(text2, FONT_HERSHEY_SIMPLEX, fontScale, thickness, &baseline);
|
||||
textOrg = Point(32768 + 5, 5) + Point(0, textSize.height + dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SIMPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SIMPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
fontScale = 1;
|
||||
textSize = getTextSize(text2, FONT_HERSHEY_PLAIN, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0, textSize.height + dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_PLAIN, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_PLAIN, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
fontScale = 0.5;
|
||||
textSize = getTextSize(text2, FONT_HERSHEY_DUPLEX, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0, textSize.height + dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_DUPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_DUPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
textSize = getTextSize(text2, FONT_HERSHEY_COMPLEX, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0, textSize.height + dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_COMPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_COMPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
textSize = getTextSize(text2, FONT_HERSHEY_TRIPLEX, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0, textSize.height + dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_TRIPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_TRIPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
fontScale = 1;
|
||||
textSize = getTextSize(text2, FONT_HERSHEY_COMPLEX_SMALL, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0, 180) + Point(0, textSize.height + dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_COMPLEX_SMALL, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_COMPLEX_SMALL, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
textSize = getTextSize(text2, FONT_HERSHEY_SCRIPT_SIMPLEX, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0, textSize.height + dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SCRIPT_SIMPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SCRIPT_SIMPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
textSize = getTextSize(text2, FONT_HERSHEY_SCRIPT_COMPLEX, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0, textSize.height + dist);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SCRIPT_COMPLEX, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_HERSHEY_SCRIPT_COMPLEX, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
dist = 15, fontScale = 0.5;
|
||||
textSize = getTextSize(text2, FONT_ITALIC, fontScale, thickness, &baseline);
|
||||
textOrg += Point(0, textSize.height + dist);
|
||||
putText(img, text2, textOrg, FONT_ITALIC, fontScale, color, thickness, CV_AA);
|
||||
putText(img, text2, textOrg, FONT_ITALIC, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
img = img(Rect(32768, 0, 600, 400)).clone();
|
||||
}
|
||||
@ -520,7 +520,7 @@ protected:
|
||||
Size textSize = getTextSize(*line, *font | italic, fontScale, thickness, &baseline);
|
||||
Point textOrg(0, textSize.height + 2);
|
||||
Mat img(textSize + Size(0, baseline), CV_8UC3, Scalar(255, 255, 255));
|
||||
putText(img, *line, textOrg, *font | italic, fontScale, color, thickness, CV_AA);
|
||||
putText(img, *line, textOrg, *font | italic, fontScale, color, thickness, cv::LINE_AA);
|
||||
|
||||
results.push_back(img);
|
||||
bigSize.width = max(bigSize.width, img.size().width);
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -43,490 +43,6 @@
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
class CV_FloodFillTest : public cvtest::ArrayTest
|
||||
{
|
||||
public:
|
||||
CV_FloodFillTest();
|
||||
|
||||
protected:
|
||||
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
double get_success_error_level( int test_case_idx, int i, int j );
|
||||
void run_func();
|
||||
void prepare_to_validation( int );
|
||||
|
||||
void fill_array( int test_case_idx, int i, int j, Mat& arr );
|
||||
|
||||
/*int write_default_params(CvFileStorage* fs);
|
||||
void get_timing_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types
|
||||
CvSize** whole_sizes, bool *are_images );
|
||||
void print_timing_params( int test_case_idx, char* ptr, int params_left );*/
|
||||
Point seed_pt;
|
||||
Scalar new_val;
|
||||
Scalar l_diff, u_diff;
|
||||
int connectivity;
|
||||
bool use_mask, mask_only;
|
||||
int range_type;
|
||||
int new_mask_val;
|
||||
bool test_cpp;
|
||||
};
|
||||
|
||||
|
||||
CV_FloodFillTest::CV_FloodFillTest()
|
||||
{
|
||||
test_array[INPUT_OUTPUT].push_back(NULL);
|
||||
test_array[INPUT_OUTPUT].push_back(NULL);
|
||||
test_array[REF_INPUT_OUTPUT].push_back(NULL);
|
||||
test_array[REF_INPUT_OUTPUT].push_back(NULL);
|
||||
test_array[OUTPUT].push_back(NULL);
|
||||
test_array[REF_OUTPUT].push_back(NULL);
|
||||
optional_mask = false;
|
||||
element_wise_relative_error = true;
|
||||
|
||||
test_cpp = false;
|
||||
}
|
||||
|
||||
|
||||
void CV_FloodFillTest::get_test_array_types_and_sizes( int test_case_idx,
|
||||
vector<vector<Size> >& sizes,
|
||||
vector<vector<int> >& types )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
int depth, cn;
|
||||
int i;
|
||||
double buff[8];
|
||||
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
|
||||
depth = cvtest::randInt(rng) % 3;
|
||||
depth = depth == 0 ? CV_8U : depth == 1 ? CV_32S : CV_32F;
|
||||
cn = cvtest::randInt(rng) & 1 ? 3 : 1;
|
||||
|
||||
use_mask = (cvtest::randInt(rng) & 1) != 0;
|
||||
connectivity = (cvtest::randInt(rng) & 1) ? 4 : 8;
|
||||
mask_only = use_mask && (cvtest::randInt(rng) & 1) != 0;
|
||||
new_mask_val = cvtest::randInt(rng) & 255;
|
||||
range_type = cvtest::randInt(rng) % 3;
|
||||
|
||||
types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(depth, cn);
|
||||
types[INPUT_OUTPUT][1] = types[REF_INPUT_OUTPUT][1] = CV_8UC1;
|
||||
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1;
|
||||
sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(9,1);
|
||||
|
||||
if( !use_mask )
|
||||
sizes[INPUT_OUTPUT][1] = sizes[REF_INPUT_OUTPUT][1] = cvSize(0,0);
|
||||
else
|
||||
{
|
||||
Size sz = sizes[INPUT_OUTPUT][0];
|
||||
sizes[INPUT_OUTPUT][1] = sizes[REF_INPUT_OUTPUT][1] = Size(sz.width+2,sz.height+2);
|
||||
}
|
||||
|
||||
seed_pt.x = cvtest::randInt(rng) % sizes[INPUT_OUTPUT][0].width;
|
||||
seed_pt.y = cvtest::randInt(rng) % sizes[INPUT_OUTPUT][0].height;
|
||||
|
||||
if( range_type == 0 )
|
||||
l_diff = u_diff = Scalar::all(0.);
|
||||
else
|
||||
{
|
||||
Mat m( 1, 8, CV_16S, buff );
|
||||
rng.fill( m, RNG::NORMAL, Scalar::all(0), Scalar::all(32) );
|
||||
for( i = 0; i < 4; i++ )
|
||||
{
|
||||
l_diff.val[i] = fabs(m.at<short>(i)/16.);
|
||||
u_diff.val[i] = fabs(m.at<short>(i+4)/16.);
|
||||
}
|
||||
}
|
||||
|
||||
new_val = Scalar::all(0.);
|
||||
for( i = 0; i < cn; i++ )
|
||||
new_val.val[i] = cvtest::randReal(rng)*255;
|
||||
|
||||
test_cpp = (cvtest::randInt(rng) & 256) == 0;
|
||||
}
|
||||
|
||||
|
||||
double CV_FloodFillTest::get_success_error_level( int /*test_case_idx*/, int i, int j )
|
||||
{
|
||||
return i == OUTPUT ? FLT_EPSILON : j == 0 ? FLT_EPSILON : 0;
|
||||
}
|
||||
|
||||
|
||||
void CV_FloodFillTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
|
||||
if( i != INPUT && i != INPUT_OUTPUT )
|
||||
{
|
||||
cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
|
||||
return;
|
||||
}
|
||||
|
||||
if( j == 0 )
|
||||
{
|
||||
Mat tmp = arr;
|
||||
Scalar m = Scalar::all(128);
|
||||
Scalar s = Scalar::all(10);
|
||||
|
||||
if( arr.depth() == CV_32FC1 )
|
||||
tmp.create(arr.size(), CV_MAKETYPE(CV_8U, arr.channels()));
|
||||
|
||||
if( range_type == 0 )
|
||||
s = Scalar::all(2);
|
||||
|
||||
rng.fill(tmp, RNG::NORMAL, m, s );
|
||||
if( arr.data != tmp.data )
|
||||
cvtest::convert(tmp, arr, arr.type());
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar l = Scalar::all(-2);
|
||||
Scalar u = Scalar::all(2);
|
||||
cvtest::randUni(rng, arr, l, u );
|
||||
rectangle( arr, Point(0,0), Point(arr.cols-1,arr.rows-1), Scalar::all(1), 1, 8, 0 );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void CV_FloodFillTest::run_func()
|
||||
{
|
||||
int flags = connectivity + (mask_only ? CV_FLOODFILL_MASK_ONLY : 0) +
|
||||
(range_type == 1 ? CV_FLOODFILL_FIXED_RANGE : 0) + (new_mask_val << 8);
|
||||
double* odata = test_mat[OUTPUT][0].ptr<double>();
|
||||
|
||||
if(!test_cpp)
|
||||
{
|
||||
CvConnectedComp comp;
|
||||
cvFloodFill( test_array[INPUT_OUTPUT][0], cvPoint(seed_pt), cvScalar(new_val), cvScalar(l_diff), cvScalar(u_diff), &comp,
|
||||
flags, test_array[INPUT_OUTPUT][1] );
|
||||
odata[0] = comp.area;
|
||||
odata[1] = comp.rect.x;
|
||||
odata[2] = comp.rect.y;
|
||||
odata[3] = comp.rect.width;
|
||||
odata[4] = comp.rect.height;
|
||||
odata[5] = comp.value.val[0];
|
||||
odata[6] = comp.value.val[1];
|
||||
odata[7] = comp.value.val[2];
|
||||
odata[8] = comp.value.val[3];
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Mat img = cv::cvarrToMat(test_array[INPUT_OUTPUT][0]),
|
||||
mask = test_array[INPUT_OUTPUT][1] ? cv::cvarrToMat(test_array[INPUT_OUTPUT][1]) : cv::Mat();
|
||||
cv::Rect rect;
|
||||
int area;
|
||||
if( mask.empty() )
|
||||
area = cv::floodFill( img, seed_pt, new_val, &rect, l_diff, u_diff, flags );
|
||||
else
|
||||
area = cv::floodFill( img, mask, seed_pt, new_val, &rect, l_diff, u_diff, flags );
|
||||
odata[0] = area;
|
||||
odata[1] = rect.x;
|
||||
odata[2] = rect.y;
|
||||
odata[3] = rect.width;
|
||||
odata[4] = rect.height;
|
||||
odata[5] = odata[6] = odata[7] = odata[8] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
typedef struct ff_offset_pair_t
|
||||
{
|
||||
int mofs, iofs;
|
||||
}
|
||||
ff_offset_pair_t;
|
||||
|
||||
static void
|
||||
cvTsFloodFill( CvMat* _img, CvPoint seed_pt, CvScalar new_val,
|
||||
CvScalar l_diff, CvScalar u_diff, CvMat* _mask,
|
||||
double* comp, int connectivity, int range_type,
|
||||
int new_mask_val, bool mask_only )
|
||||
{
|
||||
CvMemStorage* st = cvCreateMemStorage();
|
||||
ff_offset_pair_t p0, p;
|
||||
CvSeq* seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(p0), st );
|
||||
CvMat* tmp = _img;
|
||||
CvMat* mask;
|
||||
CvRect r = cvRect( 0, 0, -1, -1 );
|
||||
int area = 0;
|
||||
int i, j;
|
||||
ushort* m;
|
||||
float* img;
|
||||
int mstep, step;
|
||||
int cn = CV_MAT_CN(_img->type);
|
||||
int mdelta[8], idelta[8], ncount;
|
||||
int cols = _img->cols, rows = _img->rows;
|
||||
int u0 = 0, u1 = 0, u2 = 0;
|
||||
double s0 = 0, s1 = 0, s2 = 0;
|
||||
|
||||
if( CV_MAT_DEPTH(_img->type) == CV_8U || CV_MAT_DEPTH(_img->type) == CV_32S )
|
||||
{
|
||||
tmp = cvCreateMat( rows, cols, CV_MAKETYPE(CV_32F,CV_MAT_CN(_img->type)) );
|
||||
cvtest::convert(cvarrToMat(_img), cvarrToMat(tmp), -1);
|
||||
}
|
||||
|
||||
mask = cvCreateMat( rows + 2, cols + 2, CV_16UC1 );
|
||||
|
||||
if( _mask )
|
||||
cvtest::convert(cvarrToMat(_mask), cvarrToMat(mask), -1);
|
||||
else
|
||||
{
|
||||
Mat m_mask = cvarrToMat(mask);
|
||||
cvtest::set( m_mask, Scalar::all(0), Mat() );
|
||||
cvRectangle( mask, cvPoint(0,0), cvPoint(mask->cols-1,mask->rows-1), cvScalar(Scalar::all(1.)), 1, 8, 0 );
|
||||
}
|
||||
|
||||
new_mask_val = (new_mask_val != 0 ? new_mask_val : 1) << 8;
|
||||
|
||||
m = (ushort*)(mask->data.ptr + mask->step) + 1;
|
||||
mstep = mask->step / sizeof(m[0]);
|
||||
img = tmp->data.fl;
|
||||
step = tmp->step / sizeof(img[0]);
|
||||
|
||||
p0.mofs = seed_pt.y*mstep + seed_pt.x;
|
||||
p0.iofs = seed_pt.y*step + seed_pt.x*cn;
|
||||
|
||||
if( m[p0.mofs] )
|
||||
goto _exit_;
|
||||
|
||||
cvSeqPush( seq, &p0 );
|
||||
m[p0.mofs] = (ushort)new_mask_val;
|
||||
|
||||
if( connectivity == 4 )
|
||||
{
|
||||
ncount = 4;
|
||||
mdelta[0] = -mstep; idelta[0] = -step;
|
||||
mdelta[1] = -1; idelta[1] = -cn;
|
||||
mdelta[2] = 1; idelta[2] = cn;
|
||||
mdelta[3] = mstep; idelta[3] = step;
|
||||
}
|
||||
else
|
||||
{
|
||||
ncount = 8;
|
||||
mdelta[0] = -mstep-1; mdelta[1] = -mstep; mdelta[2] = -mstep+1;
|
||||
idelta[0] = -step-cn; idelta[1] = -step; idelta[2] = -step+cn;
|
||||
|
||||
mdelta[3] = -1; mdelta[4] = 1;
|
||||
idelta[3] = -cn; idelta[4] = cn;
|
||||
|
||||
mdelta[5] = mstep-1; mdelta[6] = mstep; mdelta[7] = mstep+1;
|
||||
idelta[5] = step-cn; idelta[6] = step; idelta[7] = step+cn;
|
||||
}
|
||||
|
||||
if( cn == 1 )
|
||||
{
|
||||
float a0 = (float)-l_diff.val[0];
|
||||
float b0 = (float)u_diff.val[0];
|
||||
|
||||
s0 = img[p0.iofs];
|
||||
|
||||
if( range_type < 2 )
|
||||
{
|
||||
a0 += (float)s0; b0 += (float)s0;
|
||||
}
|
||||
|
||||
while( seq->total )
|
||||
{
|
||||
cvSeqPop( seq, &p0 );
|
||||
float a = a0, b = b0;
|
||||
float* ptr = img + p0.iofs;
|
||||
ushort* mptr = m + p0.mofs;
|
||||
|
||||
if( range_type == 2 )
|
||||
a += ptr[0], b += ptr[0];
|
||||
|
||||
for( i = 0; i < ncount; i++ )
|
||||
{
|
||||
int md = mdelta[i], id = idelta[i];
|
||||
float v;
|
||||
if( !mptr[md] && a <= (v = ptr[id]) && v <= b )
|
||||
{
|
||||
mptr[md] = (ushort)new_mask_val;
|
||||
p.mofs = p0.mofs + md;
|
||||
p.iofs = p0.iofs + id;
|
||||
cvSeqPush( seq, &p );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
float a0 = (float)-l_diff.val[0];
|
||||
float a1 = (float)-l_diff.val[1];
|
||||
float a2 = (float)-l_diff.val[2];
|
||||
float b0 = (float)u_diff.val[0];
|
||||
float b1 = (float)u_diff.val[1];
|
||||
float b2 = (float)u_diff.val[2];
|
||||
|
||||
s0 = img[p0.iofs];
|
||||
s1 = img[p0.iofs + 1];
|
||||
s2 = img[p0.iofs + 2];
|
||||
|
||||
if( range_type < 2 )
|
||||
{
|
||||
a0 += (float)s0; b0 += (float)s0;
|
||||
a1 += (float)s1; b1 += (float)s1;
|
||||
a2 += (float)s2; b2 += (float)s2;
|
||||
}
|
||||
|
||||
while( seq->total )
|
||||
{
|
||||
cvSeqPop( seq, &p0 );
|
||||
float _a0 = a0, _a1 = a1, _a2 = a2;
|
||||
float _b0 = b0, _b1 = b1, _b2 = b2;
|
||||
float* ptr = img + p0.iofs;
|
||||
ushort* mptr = m + p0.mofs;
|
||||
|
||||
if( range_type == 2 )
|
||||
{
|
||||
_a0 += ptr[0]; _b0 += ptr[0];
|
||||
_a1 += ptr[1]; _b1 += ptr[1];
|
||||
_a2 += ptr[2]; _b2 += ptr[2];
|
||||
}
|
||||
|
||||
for( i = 0; i < ncount; i++ )
|
||||
{
|
||||
int md = mdelta[i], id = idelta[i];
|
||||
float v;
|
||||
if( !mptr[md] &&
|
||||
_a0 <= (v = ptr[id]) && v <= _b0 &&
|
||||
_a1 <= (v = ptr[id+1]) && v <= _b1 &&
|
||||
_a2 <= (v = ptr[id+2]) && v <= _b2 )
|
||||
{
|
||||
mptr[md] = (ushort)new_mask_val;
|
||||
p.mofs = p0.mofs + md;
|
||||
p.iofs = p0.iofs + id;
|
||||
cvSeqPush( seq, &p );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
r.x = r.width = seed_pt.x;
|
||||
r.y = r.height = seed_pt.y;
|
||||
|
||||
if( !mask_only )
|
||||
{
|
||||
s0 = new_val.val[0];
|
||||
s1 = new_val.val[1];
|
||||
s2 = new_val.val[2];
|
||||
|
||||
if( tmp != _img )
|
||||
{
|
||||
u0 = saturate_cast<uchar>(s0);
|
||||
u1 = saturate_cast<uchar>(s1);
|
||||
u2 = saturate_cast<uchar>(s2);
|
||||
|
||||
s0 = u0;
|
||||
s1 = u1;
|
||||
s2 = u2;
|
||||
}
|
||||
}
|
||||
else
|
||||
s0 = s1 = s2 = 0;
|
||||
|
||||
new_mask_val >>= 8;
|
||||
|
||||
for( i = 0; i < rows; i++ )
|
||||
{
|
||||
float* ptr = img + i*step;
|
||||
ushort* mptr = m + i*mstep;
|
||||
uchar* dmptr = _mask ? _mask->data.ptr + (i+1)*_mask->step + 1 : 0;
|
||||
double area0 = area;
|
||||
|
||||
for( j = 0; j < cols; j++ )
|
||||
{
|
||||
if( mptr[j] > 255 )
|
||||
{
|
||||
if( dmptr )
|
||||
dmptr[j] = (uchar)new_mask_val;
|
||||
if( !mask_only )
|
||||
{
|
||||
if( cn == 1 )
|
||||
ptr[j] = (float)s0;
|
||||
else
|
||||
{
|
||||
ptr[j*3] = (float)s0;
|
||||
ptr[j*3+1] = (float)s1;
|
||||
ptr[j*3+2] = (float)s2;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if( cn == 1 )
|
||||
s0 += ptr[j];
|
||||
else
|
||||
{
|
||||
s0 += ptr[j*3];
|
||||
s1 += ptr[j*3+1];
|
||||
s2 += ptr[j*3+2];
|
||||
}
|
||||
}
|
||||
|
||||
area++;
|
||||
if( r.x > j )
|
||||
r.x = j;
|
||||
if( r.width < j )
|
||||
r.width = j;
|
||||
}
|
||||
}
|
||||
|
||||
if( area != area0 )
|
||||
{
|
||||
if( r.y > i )
|
||||
r.y = i;
|
||||
if( r.height < i )
|
||||
r.height = i;
|
||||
}
|
||||
}
|
||||
|
||||
_exit_:
|
||||
cvReleaseMat( &mask );
|
||||
if( tmp != _img )
|
||||
{
|
||||
if( !mask_only )
|
||||
cvtest::convert(cvarrToMat(tmp), cvarrToMat(_img), -1);
|
||||
cvReleaseMat( &tmp );
|
||||
}
|
||||
|
||||
comp[0] = area;
|
||||
comp[1] = r.x;
|
||||
comp[2] = r.y;
|
||||
comp[3] = r.width - r.x + 1;
|
||||
comp[4] = r.height - r.y + 1;
|
||||
#if 0
|
||||
if( mask_only )
|
||||
{
|
||||
double t = area ? 1./area : 0;
|
||||
s0 *= t;
|
||||
s1 *= t;
|
||||
s2 *= t;
|
||||
}
|
||||
comp[5] = s0;
|
||||
comp[6] = s1;
|
||||
comp[7] = s2;
|
||||
#else
|
||||
comp[5] = new_val.val[0];
|
||||
comp[6] = new_val.val[1];
|
||||
comp[7] = new_val.val[2];
|
||||
#endif
|
||||
comp[8] = 0;
|
||||
|
||||
cvReleaseMemStorage(&st);
|
||||
}
|
||||
|
||||
|
||||
void CV_FloodFillTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
{
|
||||
double* comp = test_mat[REF_OUTPUT][0].ptr<double>();
|
||||
CvMat _input = cvMat(test_mat[REF_INPUT_OUTPUT][0]);
|
||||
CvMat _mask = cvMat(test_mat[REF_INPUT_OUTPUT][1]);
|
||||
cvTsFloodFill( &_input, cvPoint(seed_pt), cvScalar(new_val), cvScalar(l_diff), cvScalar(u_diff),
|
||||
_mask.data.ptr ? &_mask : 0,
|
||||
comp, connectivity, range_type,
|
||||
new_mask_val, mask_only );
|
||||
if(test_cpp)
|
||||
comp[5] = comp[6] = comp[7] = comp[8] = 0;
|
||||
}
|
||||
|
||||
TEST(Imgproc_FloodFill, accuracy) { CV_FloodFillTest test; test.safe_run(); }
|
||||
|
||||
TEST(Imgproc_FloodFill, maskValue)
|
||||
{
|
||||
const int n = 50;
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -123,7 +123,7 @@ public:
|
||||
|
||||
vector<CircleType> circles;
|
||||
const double dp = 1.0;
|
||||
HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
HoughCircles(src, circles, cv::HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
|
||||
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
||||
#if DEBUG_IMAGES
|
||||
|
@ -197,182 +197,10 @@ int CV_ImgWarpBaseTest::prepare_test_case( int test_case_idx )
|
||||
return code;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////
|
||||
|
||||
class CV_ResizeTest : public CV_ImgWarpBaseTest
|
||||
{
|
||||
public:
|
||||
CV_ResizeTest();
|
||||
|
||||
protected:
|
||||
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
void run_func();
|
||||
void prepare_to_validation( int /*test_case_idx*/ );
|
||||
double get_success_error_level( int test_case_idx, int i, int j );
|
||||
};
|
||||
|
||||
|
||||
CV_ResizeTest::CV_ResizeTest() : CV_ImgWarpBaseTest( false )
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
void CV_ResizeTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
Size sz;
|
||||
|
||||
sz.width = (cvtest::randInt(rng) % sizes[INPUT][0].width) + 1;
|
||||
sz.height = (cvtest::randInt(rng) % sizes[INPUT][0].height) + 1;
|
||||
|
||||
if( cvtest::randInt(rng) & 1 )
|
||||
{
|
||||
int xfactor = cvtest::randInt(rng) % 10 + 1;
|
||||
int yfactor = cvtest::randInt(rng) % 10 + 1;
|
||||
|
||||
if( cvtest::randInt(rng) & 1 )
|
||||
yfactor = xfactor;
|
||||
|
||||
sz.width = sizes[INPUT][0].width / xfactor;
|
||||
sz.width = MAX(sz.width,1);
|
||||
sz.height = sizes[INPUT][0].height / yfactor;
|
||||
sz.height = MAX(sz.height,1);
|
||||
sizes[INPUT][0].width = sz.width * xfactor;
|
||||
sizes[INPUT][0].height = sz.height * yfactor;
|
||||
}
|
||||
|
||||
if( cvtest::randInt(rng) & 1 )
|
||||
sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = sz;
|
||||
else
|
||||
{
|
||||
sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = sizes[INPUT][0];
|
||||
sizes[INPUT][0] = sz;
|
||||
}
|
||||
if( interpolation == 4 &&
|
||||
(MIN(sizes[INPUT][0].width,sizes[INPUT_OUTPUT][0].width) < 4 ||
|
||||
MIN(sizes[INPUT][0].height,sizes[INPUT_OUTPUT][0].height) < 4))
|
||||
interpolation = 2;
|
||||
}
|
||||
|
||||
|
||||
void CV_ResizeTest::run_func()
|
||||
{
|
||||
cvResize( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], interpolation );
|
||||
}
|
||||
|
||||
|
||||
double CV_ResizeTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||||
{
|
||||
int depth = test_mat[INPUT][0].depth();
|
||||
return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 1e-1;
|
||||
}
|
||||
|
||||
|
||||
void CV_ResizeTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
{
|
||||
CvMat _src = cvMat(test_mat[INPUT][0]), _dst = cvMat(test_mat[REF_INPUT_OUTPUT][0]);
|
||||
CvMat *src = &_src, *dst = &_dst;
|
||||
int i, j, k;
|
||||
CvMat* x_idx = cvCreateMat( 1, dst->cols, CV_32SC1 );
|
||||
CvMat* y_idx = cvCreateMat( 1, dst->rows, CV_32SC1 );
|
||||
int* x_tab = x_idx->data.i;
|
||||
int elem_size = CV_ELEM_SIZE(src->type);
|
||||
int drows = dst->rows, dcols = dst->cols;
|
||||
|
||||
if( interpolation == CV_INTER_NN )
|
||||
{
|
||||
for( j = 0; j < dcols; j++ )
|
||||
{
|
||||
int t = (j*src->cols*2 + MIN(src->cols,dcols) - 1)/(dcols*2);
|
||||
t -= t >= src->cols;
|
||||
x_idx->data.i[j] = t*elem_size;
|
||||
}
|
||||
|
||||
for( j = 0; j < drows; j++ )
|
||||
{
|
||||
int t = (j*src->rows*2 + MIN(src->rows,drows) - 1)/(drows*2);
|
||||
t -= t >= src->rows;
|
||||
y_idx->data.i[j] = t;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
double scale_x = (double)src->cols/dcols;
|
||||
double scale_y = (double)src->rows/drows;
|
||||
|
||||
for( j = 0; j < dcols; j++ )
|
||||
{
|
||||
double f = ((j+0.5)*scale_x - 0.5);
|
||||
i = cvRound(f);
|
||||
x_idx->data.i[j] = (i < 0 ? 0 : i >= src->cols ? src->cols - 1 : i)*elem_size;
|
||||
}
|
||||
|
||||
for( j = 0; j < drows; j++ )
|
||||
{
|
||||
double f = ((j+0.5)*scale_y - 0.5);
|
||||
i = cvRound(f);
|
||||
y_idx->data.i[j] = i < 0 ? 0 : i >= src->rows ? src->rows - 1 : i;
|
||||
}
|
||||
}
|
||||
|
||||
for( i = 0; i < drows; i++ )
|
||||
{
|
||||
uchar* dptr = dst->data.ptr + dst->step*i;
|
||||
const uchar* sptr0 = src->data.ptr + src->step*y_idx->data.i[i];
|
||||
|
||||
for( j = 0; j < dcols; j++, dptr += elem_size )
|
||||
{
|
||||
const uchar* sptr = sptr0 + x_tab[j];
|
||||
for( k = 0; k < elem_size; k++ )
|
||||
dptr[k] = sptr[k];
|
||||
}
|
||||
}
|
||||
|
||||
cvReleaseMat( &x_idx );
|
||||
cvReleaseMat( &y_idx );
|
||||
}
|
||||
|
||||
class CV_ResizeExactTest : public CV_ResizeTest
|
||||
{
|
||||
public:
|
||||
CV_ResizeExactTest();
|
||||
|
||||
protected:
|
||||
void get_test_array_types_and_sizes(int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types);
|
||||
};
|
||||
|
||||
|
||||
CV_ResizeExactTest::CV_ResizeExactTest() : CV_ResizeTest()
|
||||
{
|
||||
max_interpolation = 2;
|
||||
}
|
||||
|
||||
|
||||
void CV_ResizeExactTest::get_test_array_types_and_sizes(int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types)
|
||||
{
|
||||
CV_ResizeTest::get_test_array_types_and_sizes(test_case_idx, sizes, types);
|
||||
switch (interpolation)
|
||||
{
|
||||
case 0:
|
||||
interpolation = INTER_LINEAR_EXACT;
|
||||
break;
|
||||
case 1:
|
||||
interpolation = INTER_NEAREST_EXACT;
|
||||
break;
|
||||
default:
|
||||
CV_Assert(interpolation < max_interpolation);
|
||||
}
|
||||
if (CV_MAT_DEPTH(types[INPUT][0]) == CV_32F ||
|
||||
CV_MAT_DEPTH(types[INPUT][0]) == CV_64F)
|
||||
types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(CV_8U, CV_MAT_CN(types[INPUT][0]));
|
||||
}
|
||||
|
||||
/////////////////////////
|
||||
|
||||
static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& mapy,
|
||||
Mat* mask=0, int interpolation=CV_INTER_LINEAR )
|
||||
Mat* mask=0, int interpolation=cv::INTER_LINEAR )
|
||||
{
|
||||
int x, y, k;
|
||||
int drows = dst.rows, dcols = dst.cols;
|
||||
@ -383,7 +211,7 @@ static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& ma
|
||||
int step = (int)(src.step / CV_ELEM_SIZE(depth));
|
||||
int delta;
|
||||
|
||||
if( interpolation != CV_INTER_CUBIC )
|
||||
if( interpolation != cv::INTER_CUBIC )
|
||||
{
|
||||
delta = 0;
|
||||
scols -= 1; srows -= 1;
|
||||
@ -488,243 +316,6 @@ static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& ma
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////
|
||||
|
||||
class CV_WarpAffineTest : public CV_ImgWarpBaseTest
|
||||
{
|
||||
public:
|
||||
CV_WarpAffineTest();
|
||||
|
||||
protected:
|
||||
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
void run_func();
|
||||
int prepare_test_case( int test_case_idx );
|
||||
void prepare_to_validation( int /*test_case_idx*/ );
|
||||
double get_success_error_level( int test_case_idx, int i, int j );
|
||||
};
|
||||
|
||||
|
||||
CV_WarpAffineTest::CV_WarpAffineTest() : CV_ImgWarpBaseTest( true )
|
||||
{
|
||||
//spatial_scale_zoom = spatial_scale_decimate;
|
||||
spatial_scale_decimate = spatial_scale_zoom;
|
||||
}
|
||||
|
||||
|
||||
void CV_WarpAffineTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
||||
{
|
||||
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
Size sz = sizes[INPUT][0];
|
||||
// run for the second time to get output of a different size
|
||||
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
sizes[INPUT][0] = sz;
|
||||
sizes[INPUT][1] = Size( 3, 2 );
|
||||
}
|
||||
|
||||
|
||||
void CV_WarpAffineTest::run_func()
|
||||
{
|
||||
CvMat mtx = cvMat(test_mat[INPUT][1]);
|
||||
cvWarpAffine( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], &mtx, interpolation );
|
||||
}
|
||||
|
||||
|
||||
double CV_WarpAffineTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||||
{
|
||||
int depth = test_mat[INPUT][0].depth();
|
||||
return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2;
|
||||
}
|
||||
|
||||
|
||||
int CV_WarpAffineTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
|
||||
const Mat& src = test_mat[INPUT][0];
|
||||
const Mat& dst = test_mat[INPUT_OUTPUT][0];
|
||||
Mat& mat = test_mat[INPUT][1];
|
||||
Point2f center;
|
||||
double scale, angle;
|
||||
|
||||
if( code <= 0 )
|
||||
return code;
|
||||
|
||||
double buffer[6];
|
||||
Mat tmp( 2, 3, mat.type(), buffer );
|
||||
|
||||
center.x = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.cols);
|
||||
center.y = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.rows);
|
||||
angle = cvtest::randReal(rng)*360;
|
||||
scale = ((double)dst.rows/src.rows + (double)dst.cols/src.cols)*0.5;
|
||||
getRotationMatrix2D(center, angle, scale).convertTo(mat, mat.depth());
|
||||
rng.fill( tmp, CV_RAND_NORMAL, Scalar::all(1.), Scalar::all(0.01) );
|
||||
cv::max(tmp, 0.9, tmp);
|
||||
cv::min(tmp, 1.1, tmp);
|
||||
cv::multiply(tmp, mat, mat, 1.);
|
||||
|
||||
return code;
|
||||
}
|
||||
|
||||
|
||||
void CV_WarpAffineTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
{
|
||||
const Mat& src = test_mat[INPUT][0];
|
||||
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
|
||||
Mat& dst0 = test_mat[INPUT_OUTPUT][0];
|
||||
Mat mapx(dst.size(), CV_32F), mapy(dst.size(), CV_32F);
|
||||
double m[6];
|
||||
Mat srcAb, dstAb( 2, 3, CV_64FC1, m );
|
||||
|
||||
//cvInvert( &tM, &M, CV_LU );
|
||||
// [R|t] -> [R^-1 | -(R^-1)*t]
|
||||
test_mat[INPUT][1].convertTo( srcAb, CV_64F );
|
||||
Mat A = srcAb.colRange(0, 2);
|
||||
Mat b = srcAb.col(2);
|
||||
Mat invA = dstAb.colRange(0, 2);
|
||||
Mat invAb = dstAb.col(2);
|
||||
cv::invert(A, invA, CV_SVD);
|
||||
cv::gemm(invA, b, -1, Mat(), 0, invAb);
|
||||
|
||||
for( int y = 0; y < dst.rows; y++ )
|
||||
for( int x = 0; x < dst.cols; x++ )
|
||||
{
|
||||
mapx.at<float>(y, x) = (float)(x*m[0] + y*m[1] + m[2]);
|
||||
mapy.at<float>(y, x) = (float)(x*m[3] + y*m[4] + m[5]);
|
||||
}
|
||||
|
||||
Mat mask( dst.size(), CV_8U );
|
||||
test_remap( src, dst, mapx, mapy, &mask );
|
||||
dst.setTo(Scalar::all(0), mask);
|
||||
dst0.setTo(Scalar::all(0), mask);
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////
|
||||
|
||||
class CV_WarpPerspectiveTest : public CV_ImgWarpBaseTest
|
||||
{
|
||||
public:
|
||||
CV_WarpPerspectiveTest();
|
||||
|
||||
protected:
|
||||
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
void run_func();
|
||||
int prepare_test_case( int test_case_idx );
|
||||
void prepare_to_validation( int /*test_case_idx*/ );
|
||||
double get_success_error_level( int test_case_idx, int i, int j );
|
||||
};
|
||||
|
||||
|
||||
CV_WarpPerspectiveTest::CV_WarpPerspectiveTest() : CV_ImgWarpBaseTest( true )
|
||||
{
|
||||
//spatial_scale_zoom = spatial_scale_decimate;
|
||||
spatial_scale_decimate = spatial_scale_zoom;
|
||||
}
|
||||
|
||||
|
||||
void CV_WarpPerspectiveTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
||||
{
|
||||
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
Size sz = sizes[INPUT][0];
|
||||
// run for the second time to get output of a different size
|
||||
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
sizes[INPUT][0] = sz;
|
||||
sizes[INPUT][1] = Size( 3, 3 );
|
||||
}
|
||||
|
||||
|
||||
void CV_WarpPerspectiveTest::run_func()
|
||||
{
|
||||
CvMat mtx = cvMat(test_mat[INPUT][1]);
|
||||
cvWarpPerspective( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], &mtx, interpolation );
|
||||
}
|
||||
|
||||
|
||||
double CV_WarpPerspectiveTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||||
{
|
||||
int depth = test_mat[INPUT][0].depth();
|
||||
return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2;
|
||||
}
|
||||
|
||||
|
||||
int CV_WarpPerspectiveTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
|
||||
const CvMat src = cvMat(test_mat[INPUT][0]);
|
||||
const CvMat dst = cvMat(test_mat[INPUT_OUTPUT][0]);
|
||||
Mat& mat = test_mat[INPUT][1];
|
||||
Point2f s[4], d[4];
|
||||
int i;
|
||||
|
||||
if( code <= 0 )
|
||||
return code;
|
||||
|
||||
s[0] = Point2f(0,0);
|
||||
d[0] = Point2f(0,0);
|
||||
s[1] = Point2f(src.cols-1.f,0);
|
||||
d[1] = Point2f(dst.cols-1.f,0);
|
||||
s[2] = Point2f(src.cols-1.f,src.rows-1.f);
|
||||
d[2] = Point2f(dst.cols-1.f,dst.rows-1.f);
|
||||
s[3] = Point2f(0,src.rows-1.f);
|
||||
d[3] = Point2f(0,dst.rows-1.f);
|
||||
|
||||
float bufer[16];
|
||||
Mat tmp( 1, 16, CV_32FC1, bufer );
|
||||
|
||||
rng.fill( tmp, CV_RAND_NORMAL, Scalar::all(0.), Scalar::all(0.1) );
|
||||
|
||||
for( i = 0; i < 4; i++ )
|
||||
{
|
||||
s[i].x += bufer[i*4]*src.cols/2;
|
||||
s[i].y += bufer[i*4+1]*src.rows/2;
|
||||
d[i].x += bufer[i*4+2]*dst.cols/2;
|
||||
d[i].y += bufer[i*4+3]*dst.rows/2;
|
||||
}
|
||||
|
||||
cv::getPerspectiveTransform( s, d ).convertTo( mat, mat.depth() );
|
||||
return code;
|
||||
}
|
||||
|
||||
|
||||
void CV_WarpPerspectiveTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
{
|
||||
Mat& src = test_mat[INPUT][0];
|
||||
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
|
||||
Mat& dst0 = test_mat[INPUT_OUTPUT][0];
|
||||
Mat mapx(dst.size(), CV_32F), mapy(dst.size(), CV_32F);
|
||||
double m[9];
|
||||
Mat srcM, dstM(3, 3, CV_64F, m);
|
||||
|
||||
//cvInvert( &tM, &M, CV_LU );
|
||||
// [R|t] -> [R^-1 | -(R^-1)*t]
|
||||
test_mat[INPUT][1].convertTo( srcM, CV_64F );
|
||||
cv::invert(srcM, dstM, CV_SVD);
|
||||
|
||||
for( int y = 0; y < dst.rows; y++ )
|
||||
{
|
||||
for( int x = 0; x < dst.cols; x++ )
|
||||
{
|
||||
double xs = x*m[0] + y*m[1] + m[2];
|
||||
double ys = x*m[3] + y*m[4] + m[5];
|
||||
double ds = x*m[6] + y*m[7] + m[8];
|
||||
|
||||
ds = ds ? 1./ds : 0;
|
||||
xs *= ds;
|
||||
ys *= ds;
|
||||
|
||||
mapx.at<float>(y, x) = (float)xs;
|
||||
mapy.at<float>(y, x) = (float)ys;
|
||||
}
|
||||
}
|
||||
|
||||
Mat mask( dst.size(), CV_8U );
|
||||
test_remap( src, dst, mapx, mapy, &mask );
|
||||
dst.setTo(Scalar::all(0), mask);
|
||||
dst0.setTo(Scalar::all(0), mask);
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////
|
||||
|
||||
class CV_RemapTest : public CV_ImgWarpBaseTest
|
||||
@ -756,7 +347,7 @@ void CV_RemapTest::get_test_array_types_and_sizes( int test_case_idx, vector<vec
|
||||
{
|
||||
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
types[INPUT][1] = types[INPUT][2] = CV_32FC1;
|
||||
interpolation = CV_INTER_LINEAR;
|
||||
interpolation = cv::INTER_LINEAR;
|
||||
}
|
||||
|
||||
|
||||
@ -911,7 +502,7 @@ void CV_GetRectSubPixTest::get_test_array_types_and_sizes( int test_case_idx, ve
|
||||
|
||||
center.x = (float)(cvtest::randReal(rng)*src_size.width);
|
||||
center.y = (float)(cvtest::randReal(rng)*src_size.height);
|
||||
interpolation = CV_INTER_LINEAR;
|
||||
interpolation = cv::INTER_LINEAR;
|
||||
|
||||
test_cpp = (cvtest::randInt(rng) & 256) == 0;
|
||||
}
|
||||
@ -966,134 +557,6 @@ void CV_GetRectSubPixTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
dst.convertTo(dst0, dst0.depth());
|
||||
}
|
||||
|
||||
|
||||
class CV_GetQuadSubPixTest : public CV_ImgWarpBaseTest
|
||||
{
|
||||
public:
|
||||
CV_GetQuadSubPixTest();
|
||||
|
||||
protected:
|
||||
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
void run_func();
|
||||
int prepare_test_case( int test_case_idx );
|
||||
void prepare_to_validation( int /*test_case_idx*/ );
|
||||
double get_success_error_level( int test_case_idx, int i, int j );
|
||||
};
|
||||
|
||||
|
||||
CV_GetQuadSubPixTest::CV_GetQuadSubPixTest() : CV_ImgWarpBaseTest( true )
|
||||
{
|
||||
//spatial_scale_zoom = spatial_scale_decimate;
|
||||
spatial_scale_decimate = spatial_scale_zoom;
|
||||
}
|
||||
|
||||
|
||||
void CV_GetQuadSubPixTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
||||
{
|
||||
int min_size = 4;
|
||||
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
Size sz = sizes[INPUT][0], dsz;
|
||||
RNG& rng = ts->get_rng();
|
||||
int msz, src_depth = cvtest::randInt(rng) % 2, dst_depth;
|
||||
int cn = cvtest::randInt(rng) % 2 ? 3 : 1;
|
||||
|
||||
dst_depth = src_depth = src_depth == 0 ? CV_8U : CV_32F;
|
||||
if( src_depth < CV_32F && cvtest::randInt(rng) % 2 )
|
||||
dst_depth = CV_32F;
|
||||
|
||||
types[INPUT][0] = CV_MAKETYPE(src_depth,cn);
|
||||
types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(dst_depth,cn);
|
||||
|
||||
sz.width = MAX(sz.width,min_size);
|
||||
sz.height = MAX(sz.height,min_size);
|
||||
sizes[INPUT][0] = sz;
|
||||
msz = MIN( sz.width, sz.height );
|
||||
|
||||
dsz.width = cvRound(sqrt(cvtest::randReal(rng)*msz) + 1);
|
||||
dsz.height = cvRound(sqrt(cvtest::randReal(rng)*msz) + 1);
|
||||
dsz.width = MIN(dsz.width,msz);
|
||||
dsz.height = MIN(dsz.width,msz);
|
||||
dsz.width = MAX(dsz.width,min_size);
|
||||
dsz.height = MAX(dsz.height,min_size);
|
||||
sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = dsz;
|
||||
sizes[INPUT][1] = cvSize( 3, 2 );
|
||||
}
|
||||
|
||||
|
||||
void CV_GetQuadSubPixTest::run_func()
|
||||
{
|
||||
CvMat mtx = cvMat(test_mat[INPUT][1]);
|
||||
cvGetQuadrangleSubPix( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], &mtx );
|
||||
}
|
||||
|
||||
|
||||
double CV_GetQuadSubPixTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||||
{
|
||||
int in_depth = test_mat[INPUT][0].depth();
|
||||
//int out_depth = test_mat[INPUT_OUTPUT][0].depth();
|
||||
|
||||
return in_depth >= CV_32F ? 1e-2 : 4;
|
||||
}
|
||||
|
||||
|
||||
int CV_GetQuadSubPixTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
|
||||
const Mat& src = test_mat[INPUT][0];
|
||||
Mat& mat = test_mat[INPUT][1];
|
||||
Point2f center;
|
||||
double scale, angle;
|
||||
|
||||
if( code <= 0 )
|
||||
return code;
|
||||
|
||||
double a[6];
|
||||
Mat A( 2, 3, CV_64FC1, a );
|
||||
|
||||
center.x = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.cols);
|
||||
center.y = (float)((cvtest::randReal(rng)*1.2 - 0.1)*src.rows);
|
||||
angle = cvtest::randReal(rng)*360;
|
||||
scale = cvtest::randReal(rng)*0.2 + 0.9;
|
||||
|
||||
// y = Ax + b -> x = A^-1(y - b) = A^-1*y - A^-1*b
|
||||
scale = 1./scale;
|
||||
angle = angle*(CV_PI/180.);
|
||||
a[0] = a[4] = cos(angle)*scale;
|
||||
a[1] = sin(angle)*scale;
|
||||
a[3] = -a[1];
|
||||
a[2] = center.x - a[0]*center.x - a[1]*center.y;
|
||||
a[5] = center.y - a[3]*center.x - a[4]*center.y;
|
||||
A.convertTo( mat, mat.depth() );
|
||||
|
||||
return code;
|
||||
}
|
||||
|
||||
|
||||
void CV_GetQuadSubPixTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
{
|
||||
Mat& src0 = test_mat[INPUT][0];
|
||||
Mat& dst0 = test_mat[REF_INPUT_OUTPUT][0];
|
||||
Mat src = src0, dst = dst0;
|
||||
int ftype = CV_MAKETYPE(CV_32F,src0.channels());
|
||||
double a[6], dx = (dst0.cols - 1)*0.5, dy = (dst0.rows - 1)*0.5;
|
||||
Mat A( 2, 3, CV_64F, a );
|
||||
|
||||
if( src.depth() != CV_32F )
|
||||
src0.convertTo(src, CV_32F);
|
||||
|
||||
if( dst.depth() != CV_32F )
|
||||
dst.create(dst0.size(), ftype);
|
||||
|
||||
test_mat[INPUT][1].convertTo( A, CV_64F );
|
||||
a[2] -= a[0]*dx + a[1]*dy;
|
||||
a[5] -= a[3]*dx + a[4]*dy;
|
||||
test_getQuadrangeSubPix( src, dst, a );
|
||||
|
||||
if( dst.data != dst0.data )
|
||||
dst.convertTo(dst0, dst0.depth());
|
||||
}
|
||||
|
||||
////////////////////////////// resizeArea /////////////////////////////////
|
||||
|
||||
template <typename T>
|
||||
@ -1292,13 +755,8 @@ TEST(Imgproc_resize_area, regression_quarter_round)
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
|
||||
TEST(Imgproc_Resize, accuracy) { CV_ResizeTest test; test.safe_run(); }
|
||||
TEST(Imgproc_ResizeExact, accuracy) { CV_ResizeExactTest test; test.safe_run(); }
|
||||
TEST(Imgproc_WarpAffine, accuracy) { CV_WarpAffineTest test; test.safe_run(); }
|
||||
TEST(Imgproc_WarpPerspective, accuracy) { CV_WarpPerspectiveTest test; test.safe_run(); }
|
||||
TEST(Imgproc_Remap, accuracy) { CV_RemapTest test; test.safe_run(); }
|
||||
TEST(Imgproc_GetRectSubPix, accuracy) { CV_GetRectSubPixTest test; test.safe_run(); }
|
||||
TEST(Imgproc_GetQuadSubPix, accuracy) { CV_GetQuadSubPixTest test; test.safe_run(); }
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -1526,11 +984,11 @@ TEST(Imgproc_linearPolar, identity)
|
||||
{
|
||||
linearPolar(src, dst,
|
||||
Point2f((N-1) * 0.5f, (N-1) * 0.5f), N * 0.5f,
|
||||
CV_WARP_FILL_OUTLIERS | CV_INTER_LINEAR | CV_WARP_INVERSE_MAP);
|
||||
cv::WARP_FILL_OUTLIERS | cv::INTER_LINEAR | cv::WARP_INVERSE_MAP);
|
||||
|
||||
linearPolar(dst, src,
|
||||
Point2f((N-1) * 0.5f, (N-1) * 0.5f), N * 0.5f,
|
||||
CV_WARP_FILL_OUTLIERS | CV_INTER_LINEAR);
|
||||
cv::WARP_FILL_OUTLIERS | cv::INTER_LINEAR);
|
||||
|
||||
double psnr = cvtest::PSNR(in(roi), src(roi));
|
||||
EXPECT_LE(25, psnr) << "iteration=" << i;
|
||||
|
@ -163,7 +163,7 @@ void CV_ImageWarpBaseTest::generate_test_data()
|
||||
for (y = 0; y < ssize.height; y += cell_size)
|
||||
for (x = 0; x < ssize.width; x += cell_size)
|
||||
rectangle(src, Point(x, y), Point(x + std::min<int>(cell_size, ssize.width - x), y +
|
||||
std::min<int>(cell_size, ssize.height - y)), Scalar::all((x + y) % 2 ? 255: 0), CV_FILLED);
|
||||
std::min<int>(cell_size, ssize.height - y)), Scalar::all((x + y) % 2 ? 255: 0), cv::FILLED);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -175,7 +175,7 @@ void CV_ImageWarpBaseTest::generate_test_data()
|
||||
}
|
||||
|
||||
// generating an interpolation type
|
||||
interpolation = rng.uniform(0, CV_INTER_LANCZOS4 + 1);
|
||||
interpolation = rng.uniform(0, cv::INTER_LANCZOS4 + 1);
|
||||
|
||||
// generating the dst matrix structure
|
||||
double scale_x, scale_y;
|
||||
@ -288,10 +288,10 @@ void CV_ImageWarpBaseTest::validate_results() const
|
||||
|
||||
#ifdef SHOW_IMAGE
|
||||
const std::string w1("OpenCV impl (run func)"), w2("Reference func"), w3("Src image"), w4("Diff");
|
||||
namedWindow(w1, CV_WINDOW_KEEPRATIO);
|
||||
namedWindow(w2, CV_WINDOW_KEEPRATIO);
|
||||
namedWindow(w3, CV_WINDOW_KEEPRATIO);
|
||||
namedWindow(w4, CV_WINDOW_KEEPRATIO);
|
||||
namedWindow(w1, cv::WINDOW_KEEPRATIO);
|
||||
namedWindow(w2, cv::WINDOW_KEEPRATIO);
|
||||
namedWindow(w3, cv::WINDOW_KEEPRATIO);
|
||||
namedWindow(w4, cv::WINDOW_KEEPRATIO);
|
||||
|
||||
Mat diff;
|
||||
absdiff(reference_dst, _dst, diff);
|
||||
@ -442,7 +442,7 @@ void CV_Resize_Test::generate_test_data()
|
||||
for (y = 0; y < ssize.height; y += cell_size)
|
||||
for (x = 0; x < ssize.width; x += cell_size)
|
||||
rectangle(src, Point(x, y), Point(x + std::min<int>(cell_size, ssize.width - x), y +
|
||||
std::min<int>(cell_size, ssize.height - y)), Scalar::all((x + y) % 2 ? 255: 0), CV_FILLED);
|
||||
std::min<int>(cell_size, ssize.height - y)), Scalar::all((x + y) % 2 ? 255: 0), cv::FILLED);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -1082,7 +1082,7 @@ void CV_WarpAffine_Test::generate_test_data()
|
||||
|
||||
// warp_matrix is inverse
|
||||
if (rng.uniform(0., 1.) > 0)
|
||||
interpolation |= CV_WARP_INVERSE_MAP;
|
||||
interpolation |= cv::WARP_INVERSE_MAP;
|
||||
}
|
||||
|
||||
void CV_WarpAffine_Test::run_func()
|
||||
@ -1123,7 +1123,7 @@ void CV_WarpAffine_Test::warpAffine(const Mat& _src, Mat& _dst)
|
||||
else
|
||||
mapy = Mat();
|
||||
|
||||
if (!(interpolation & CV_WARP_INVERSE_MAP))
|
||||
if (!(interpolation & cv::WARP_INVERSE_MAP))
|
||||
invertAffineTransform(tM.clone(), tM);
|
||||
|
||||
const int AB_BITS = MAX(10, (int)INTER_BITS);
|
||||
@ -1239,7 +1239,7 @@ void CV_WarpPerspective_Test::warpPerspective(const Mat& _src, Mat& _dst)
|
||||
M = tmp;
|
||||
}
|
||||
|
||||
if (!(interpolation & CV_WARP_INVERSE_MAP))
|
||||
if (!(interpolation & cv::WARP_INVERSE_MAP))
|
||||
{
|
||||
Mat tmp;
|
||||
invert(M, tmp);
|
||||
|
@ -43,373 +43,6 @@
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
#define OCL_TUNING_MODE 0
|
||||
#if OCL_TUNING_MODE
|
||||
#define OCL_TUNING_MODE_ONLY(code) code
|
||||
#else
|
||||
#define OCL_TUNING_MODE_ONLY(code)
|
||||
#endif
|
||||
|
||||
// image moments
|
||||
class CV_MomentsTest : public cvtest::ArrayTest
|
||||
{
|
||||
public:
|
||||
CV_MomentsTest(bool try_umat);
|
||||
|
||||
protected:
|
||||
|
||||
enum { MOMENT_COUNT = 25 };
|
||||
int prepare_test_case( int test_case_idx );
|
||||
void prepare_to_validation( int /*test_case_idx*/ );
|
||||
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
|
||||
double get_success_error_level( int test_case_idx, int i, int j );
|
||||
void run_func();
|
||||
bool is_binary;
|
||||
bool try_umat_;
|
||||
};
|
||||
|
||||
|
||||
CV_MomentsTest::CV_MomentsTest(bool try_umat) :
|
||||
try_umat_(try_umat)
|
||||
{
|
||||
test_array[INPUT].push_back(NULL);
|
||||
test_array[OUTPUT].push_back(NULL);
|
||||
test_array[REF_OUTPUT].push_back(NULL);
|
||||
is_binary = false;
|
||||
OCL_TUNING_MODE_ONLY(test_case_count = 10);
|
||||
//element_wise_relative_error = false;
|
||||
}
|
||||
|
||||
|
||||
void CV_MomentsTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
|
||||
{
|
||||
cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
|
||||
int depth = CV_MAT_DEPTH(type);
|
||||
|
||||
if( depth == CV_16U )
|
||||
{
|
||||
low = Scalar::all(0);
|
||||
high = Scalar::all(1000);
|
||||
}
|
||||
else if( depth == CV_16S )
|
||||
{
|
||||
low = Scalar::all(-1000);
|
||||
high = Scalar::all(1000);
|
||||
}
|
||||
else if( depth == CV_32F )
|
||||
{
|
||||
low = Scalar::all(-1);
|
||||
high = Scalar::all(1);
|
||||
}
|
||||
}
|
||||
|
||||
void CV_MomentsTest::get_test_array_types_and_sizes( int test_case_idx,
|
||||
vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
int depth = cvtest::randInt(rng) % 4;
|
||||
depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : depth == 2 ? CV_16S : CV_32F;
|
||||
|
||||
is_binary = cvtest::randInt(rng) % 2 != 0;
|
||||
|
||||
OCL_TUNING_MODE_ONLY(
|
||||
depth = CV_8U;
|
||||
is_binary = false;
|
||||
sizes[INPUT][0] = Size(1024,768)
|
||||
);
|
||||
|
||||
types[INPUT][0] = CV_MAKETYPE(depth, 1);
|
||||
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1;
|
||||
sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(MOMENT_COUNT,1);
|
||||
if(CV_MAT_DEPTH(types[INPUT][0])>=CV_32S)
|
||||
sizes[INPUT][0].width = MAX(sizes[INPUT][0].width, 3);
|
||||
|
||||
cvmat_allowed = true;
|
||||
}
|
||||
|
||||
|
||||
double CV_MomentsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||||
{
|
||||
int depth = test_mat[INPUT][0].depth();
|
||||
return depth != CV_32F ? FLT_EPSILON*10 : FLT_EPSILON*100;
|
||||
}
|
||||
|
||||
int CV_MomentsTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
|
||||
return code;
|
||||
}
|
||||
|
||||
|
||||
void CV_MomentsTest::run_func()
|
||||
{
|
||||
CvMoments* m = (CvMoments*)test_mat[OUTPUT][0].ptr<double>();
|
||||
double* others = (double*)(m + 1);
|
||||
if (try_umat_)
|
||||
{
|
||||
UMat u;
|
||||
test_mat[INPUT][0].clone().copyTo(u);
|
||||
OCL_TUNING_MODE_ONLY(
|
||||
static double ttime = 0;
|
||||
static int ncalls = 0;
|
||||
moments(u, is_binary != 0);
|
||||
double t = (double)getTickCount());
|
||||
Moments new_m = moments(u, is_binary != 0);
|
||||
OCL_TUNING_MODE_ONLY(
|
||||
ttime += (double)getTickCount() - t;
|
||||
ncalls++;
|
||||
printf("%g\n", ttime/ncalls/u.total()));
|
||||
*m = cvMoments(new_m);
|
||||
}
|
||||
else
|
||||
cvMoments( test_array[INPUT][0], m, is_binary );
|
||||
|
||||
others[0] = cvGetNormalizedCentralMoment( m, 2, 0 );
|
||||
others[1] = cvGetNormalizedCentralMoment( m, 1, 1 );
|
||||
others[2] = cvGetNormalizedCentralMoment( m, 0, 2 );
|
||||
others[3] = cvGetNormalizedCentralMoment( m, 3, 0 );
|
||||
others[4] = cvGetNormalizedCentralMoment( m, 2, 1 );
|
||||
others[5] = cvGetNormalizedCentralMoment( m, 1, 2 );
|
||||
others[6] = cvGetNormalizedCentralMoment( m, 0, 3 );
|
||||
}
|
||||
|
||||
|
||||
void CV_MomentsTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
{
|
||||
Mat& src = test_mat[INPUT][0];
|
||||
CvMoments m = cvMoments();
|
||||
double* mdata = test_mat[REF_OUTPUT][0].ptr<double>();
|
||||
int depth = src.depth();
|
||||
int cn = src.channels();
|
||||
int i, y, x, cols = src.cols;
|
||||
double xc = 0., yc = 0.;
|
||||
|
||||
int coi = 0;
|
||||
for( y = 0; y < src.rows; y++ )
|
||||
{
|
||||
double s0 = 0, s1 = 0, s2 = 0, s3 = 0;
|
||||
uchar* ptr = src.ptr(y);
|
||||
for( x = 0; x < cols; x++ )
|
||||
{
|
||||
double val;
|
||||
if( depth == CV_8U )
|
||||
val = ptr[x*cn + coi];
|
||||
else if( depth == CV_16U )
|
||||
val = ((ushort*)ptr)[x*cn + coi];
|
||||
else if( depth == CV_16S )
|
||||
val = ((short*)ptr)[x*cn + coi];
|
||||
else
|
||||
val = ((float*)ptr)[x*cn + coi];
|
||||
|
||||
if( is_binary )
|
||||
val = val != 0;
|
||||
|
||||
s0 += val;
|
||||
s1 += val*x;
|
||||
s2 += val*x*x;
|
||||
s3 += ((val*x)*x)*x;
|
||||
}
|
||||
|
||||
m.m00 += s0;
|
||||
m.m01 += s0*y;
|
||||
m.m02 += (s0*y)*y;
|
||||
m.m03 += ((s0*y)*y)*y;
|
||||
|
||||
m.m10 += s1;
|
||||
m.m11 += s1*y;
|
||||
m.m12 += (s1*y)*y;
|
||||
|
||||
m.m20 += s2;
|
||||
m.m21 += s2*y;
|
||||
|
||||
m.m30 += s3;
|
||||
}
|
||||
|
||||
if( m.m00 != 0 )
|
||||
{
|
||||
xc = m.m10/m.m00, yc = m.m01/m.m00;
|
||||
m.inv_sqrt_m00 = 1./sqrt(fabs(m.m00));
|
||||
}
|
||||
|
||||
for( y = 0; y < src.rows; y++ )
|
||||
{
|
||||
double s0 = 0, s1 = 0, s2 = 0, s3 = 0, y1 = y - yc;
|
||||
uchar* ptr = src.ptr(y);
|
||||
for( x = 0; x < cols; x++ )
|
||||
{
|
||||
double val, x1 = x - xc;
|
||||
if( depth == CV_8U )
|
||||
val = ptr[x*cn + coi];
|
||||
else if( depth == CV_16U )
|
||||
val = ((ushort*)ptr)[x*cn + coi];
|
||||
else if( depth == CV_16S )
|
||||
val = ((short*)ptr)[x*cn + coi];
|
||||
else
|
||||
val = ((float*)ptr)[x*cn + coi];
|
||||
|
||||
if( is_binary )
|
||||
val = val != 0;
|
||||
|
||||
s0 += val;
|
||||
s1 += val*x1;
|
||||
s2 += val*x1*x1;
|
||||
s3 += ((val*x1)*x1)*x1;
|
||||
}
|
||||
|
||||
m.mu02 += s0*y1*y1;
|
||||
m.mu03 += ((s0*y1)*y1)*y1;
|
||||
|
||||
m.mu11 += s1*y1;
|
||||
m.mu12 += (s1*y1)*y1;
|
||||
|
||||
m.mu20 += s2;
|
||||
m.mu21 += s2*y1;
|
||||
|
||||
m.mu30 += s3;
|
||||
}
|
||||
|
||||
memcpy( mdata, &m, sizeof(m));
|
||||
mdata += sizeof(m)/sizeof(m.m00);
|
||||
|
||||
/* calc normalized moments */
|
||||
{
|
||||
double inv_m00 = m.inv_sqrt_m00*m.inv_sqrt_m00;
|
||||
double s2 = inv_m00*inv_m00; /* 1./(m00 ^ (2/2 + 1)) */
|
||||
double s3 = s2*m.inv_sqrt_m00; /* 1./(m00 ^ (3/2 + 1)) */
|
||||
|
||||
mdata[0] = m.mu20 * s2;
|
||||
mdata[1] = m.mu11 * s2;
|
||||
mdata[2] = m.mu02 * s2;
|
||||
|
||||
mdata[3] = m.mu30 * s3;
|
||||
mdata[4] = m.mu21 * s3;
|
||||
mdata[5] = m.mu12 * s3;
|
||||
mdata[6] = m.mu03 * s3;
|
||||
}
|
||||
|
||||
double* a = test_mat[REF_OUTPUT][0].ptr<double>();
|
||||
double* b = test_mat[OUTPUT][0].ptr<double>();
|
||||
for( i = 0; i < MOMENT_COUNT; i++ )
|
||||
{
|
||||
if( fabs(a[i]) < 1e-3 )
|
||||
a[i] = 0;
|
||||
if( fabs(b[i]) < 1e-3 )
|
||||
b[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Hu invariants
|
||||
class CV_HuMomentsTest : public cvtest::ArrayTest
|
||||
{
|
||||
public:
|
||||
CV_HuMomentsTest();
|
||||
|
||||
protected:
|
||||
|
||||
enum { MOMENT_COUNT = 18, HU_MOMENT_COUNT = 7 };
|
||||
|
||||
int prepare_test_case( int test_case_idx );
|
||||
void prepare_to_validation( int /*test_case_idx*/ );
|
||||
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
|
||||
double get_success_error_level( int test_case_idx, int i, int j );
|
||||
void run_func();
|
||||
};
|
||||
|
||||
|
||||
CV_HuMomentsTest::CV_HuMomentsTest()
|
||||
{
|
||||
test_array[INPUT].push_back(NULL);
|
||||
test_array[OUTPUT].push_back(NULL);
|
||||
test_array[REF_OUTPUT].push_back(NULL);
|
||||
}
|
||||
|
||||
|
||||
void CV_HuMomentsTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
|
||||
{
|
||||
cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
|
||||
low = Scalar::all(-10000);
|
||||
high = Scalar::all(10000);
|
||||
}
|
||||
|
||||
|
||||
void CV_HuMomentsTest::get_test_array_types_and_sizes( int test_case_idx,
|
||||
vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
||||
{
|
||||
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1;
|
||||
sizes[INPUT][0] = cvSize(MOMENT_COUNT,1);
|
||||
sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(HU_MOMENT_COUNT,1);
|
||||
}
|
||||
|
||||
|
||||
double CV_HuMomentsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||||
{
|
||||
return FLT_EPSILON;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int CV_HuMomentsTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
|
||||
if( code > 0 )
|
||||
{
|
||||
// ...
|
||||
}
|
||||
|
||||
return code;
|
||||
}
|
||||
|
||||
|
||||
void CV_HuMomentsTest::run_func()
|
||||
{
|
||||
cvGetHuMoments( test_mat[INPUT][0].ptr<CvMoments>(),
|
||||
test_mat[OUTPUT][0].ptr<CvHuMoments>() );
|
||||
}
|
||||
|
||||
|
||||
void CV_HuMomentsTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
{
|
||||
CvMoments* m = test_mat[INPUT][0].ptr<CvMoments>();
|
||||
CvHuMoments* hu = test_mat[REF_OUTPUT][0].ptr<CvHuMoments>();
|
||||
|
||||
double inv_m00 = m->inv_sqrt_m00*m->inv_sqrt_m00;
|
||||
double s2 = inv_m00*inv_m00; /* 1./(m00 ^ (2/2 + 1)) */
|
||||
double s3 = s2*m->inv_sqrt_m00; /* 1./(m00 ^ (3/2 + 1)) */
|
||||
|
||||
double nu20 = m->mu20 * s2;
|
||||
double nu11 = m->mu11 * s2;
|
||||
double nu02 = m->mu02 * s2;
|
||||
|
||||
double nu30 = m->mu30 * s3;
|
||||
double nu21 = m->mu21 * s3;
|
||||
double nu12 = m->mu12 * s3;
|
||||
double nu03 = m->mu03 * s3;
|
||||
|
||||
#undef sqr
|
||||
#define sqr(a) ((a)*(a))
|
||||
|
||||
hu->hu1 = nu20 + nu02;
|
||||
hu->hu2 = sqr(nu20 - nu02) + 4*sqr(nu11);
|
||||
hu->hu3 = sqr(nu30 - 3*nu12) + sqr(3*nu21 - nu03);
|
||||
hu->hu4 = sqr(nu30 + nu12) + sqr(nu21 + nu03);
|
||||
hu->hu5 = (nu30 - 3*nu12)*(nu30 + nu12)*(sqr(nu30 + nu12) - 3*sqr(nu21 + nu03)) +
|
||||
(3*nu21 - nu03)*(nu21 + nu03)*(3*sqr(nu30 + nu12) - sqr(nu21 + nu03));
|
||||
hu->hu6 = (nu20 - nu02)*(sqr(nu30 + nu12) - sqr(nu21 + nu03)) +
|
||||
4*nu11*(nu30 + nu12)*(nu21 + nu03);
|
||||
hu->hu7 = (3*nu21 - nu03)*(nu30 + nu12)*(sqr(nu30 + nu12) - 3*sqr(nu21 + nu03)) +
|
||||
(3*nu12 - nu30)*(nu21 + nu03)*(3*sqr(nu30 + nu12) - sqr(nu21 + nu03));
|
||||
}
|
||||
|
||||
|
||||
TEST(Imgproc_Moments, accuracy) { CV_MomentsTest test(false); test.safe_run(); }
|
||||
OCL_TEST(Imgproc_Moments, accuracy) { CV_MomentsTest test(true); test.safe_run(); }
|
||||
TEST(Imgproc_HuMoments, accuracy) { CV_HuMomentsTest test; test.safe_run(); }
|
||||
|
||||
class CV_SmallContourMomentTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
|
@ -66,8 +66,8 @@ void CV_PhaseCorrelatorTest::run( int )
|
||||
double expectedShiftY = -20.0;
|
||||
|
||||
// draw 10x10 rectangles @ (100, 100) and (90, 80) should see ~(-10, -20) shift here...
|
||||
cv::rectangle(r1, Point(100, 100), Point(110, 110), Scalar(0, 0, 0), CV_FILLED);
|
||||
cv::rectangle(r2, Point(90, 80), Point(100, 90), Scalar(0, 0, 0), CV_FILLED);
|
||||
cv::rectangle(r1, Point(100, 100), Point(110, 110), Scalar(0, 0, 0), cv::FILLED);
|
||||
cv::rectangle(r2, Point(90, 80), Point(100, 90), Scalar(0, 0, 0), cv::FILLED);
|
||||
|
||||
Mat hann;
|
||||
createHanningWindow(hann, r1.size(), CV_64F);
|
||||
|
@ -125,7 +125,7 @@ void CV_TemplMatchTest::get_test_array_types_and_sizes( int test_case_idx,
|
||||
double CV_TemplMatchTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||||
{
|
||||
if( test_mat[INPUT][1].depth() == CV_8U ||
|
||||
(method >= CV_TM_CCOEFF && test_mat[INPUT][1].cols*test_mat[INPUT][1].rows <= 2) )
|
||||
(method >= cv::TM_CCOEFF && test_mat[INPUT][1].cols*test_mat[INPUT][1].rows <= 2) )
|
||||
return 1e-2;
|
||||
else
|
||||
return 1e-3;
|
||||
@ -157,7 +157,7 @@ static void cvTsMatchTemplate( const CvMat* img, const CvMat* templ, CvMat* resu
|
||||
|
||||
if( b_sdv.val[0]*b_sdv.val[0] + b_sdv.val[1]*b_sdv.val[1] +
|
||||
b_sdv.val[2]*b_sdv.val[2] + b_sdv.val[3]*b_sdv.val[3] < DBL_EPSILON &&
|
||||
method == CV_TM_CCOEFF_NORMED )
|
||||
method == cv::TM_CCOEFF_NORMED )
|
||||
{
|
||||
cvSet( result, cvScalarAll(1.) );
|
||||
return;
|
||||
@ -166,7 +166,7 @@ static void cvTsMatchTemplate( const CvMat* img, const CvMat* templ, CvMat* resu
|
||||
if( method & 1 )
|
||||
{
|
||||
b_denom = 0;
|
||||
if( method != CV_TM_CCOEFF_NORMED )
|
||||
if( method != cv::TM_CCOEFF_NORMED )
|
||||
{
|
||||
b_denom = b_sum2;
|
||||
}
|
||||
@ -180,7 +180,7 @@ static void cvTsMatchTemplate( const CvMat* img, const CvMat* templ, CvMat* resu
|
||||
b_denom = 1.;
|
||||
}
|
||||
|
||||
CV_Assert( CV_TM_SQDIFF <= method && method <= CV_TM_CCOEFF_NORMED );
|
||||
CV_Assert( cv::TM_SQDIFF <= method && method <= cv::TM_CCOEFF_NORMED );
|
||||
|
||||
for( i = 0; i < result->rows; i++ )
|
||||
{
|
||||
@ -195,7 +195,7 @@ static void cvTsMatchTemplate( const CvMat* img, const CvMat* templ, CvMat* resu
|
||||
const uchar* a = img->data.ptr + i*img->step + j*cn;
|
||||
const uchar* b = templ->data.ptr;
|
||||
|
||||
if( cn == 1 || method < CV_TM_CCOEFF )
|
||||
if( cn == 1 || method < cv::TM_CCOEFF )
|
||||
{
|
||||
for( k = 0; k < height; k++, a += a_step, b += b_step )
|
||||
for( l = 0; l < width_n; l++ )
|
||||
@ -227,7 +227,7 @@ static void cvTsMatchTemplate( const CvMat* img, const CvMat* templ, CvMat* resu
|
||||
const float* a = (const float*)(img->data.ptr + i*img->step) + j*cn;
|
||||
const float* b = (const float*)templ->data.ptr;
|
||||
|
||||
if( cn == 1 || method < CV_TM_CCOEFF )
|
||||
if( cn == 1 || method < cv::TM_CCOEFF )
|
||||
{
|
||||
for( k = 0; k < height; k++, a += a_step, b += b_step )
|
||||
for( l = 0; l < width_n; l++ )
|
||||
@ -257,12 +257,12 @@ static void cvTsMatchTemplate( const CvMat* img, const CvMat* templ, CvMat* resu
|
||||
|
||||
switch( method )
|
||||
{
|
||||
case CV_TM_CCORR:
|
||||
case CV_TM_CCORR_NORMED:
|
||||
case cv::TM_CCORR:
|
||||
case cv::TM_CCORR_NORMED:
|
||||
value = ccorr.val[0];
|
||||
break;
|
||||
case CV_TM_SQDIFF:
|
||||
case CV_TM_SQDIFF_NORMED:
|
||||
case cv::TM_SQDIFF:
|
||||
case cv::TM_SQDIFF_NORMED:
|
||||
value = (a_sum2.val[0] + b_sum2 - 2*ccorr.val[0]);
|
||||
break;
|
||||
default:
|
||||
@ -276,7 +276,7 @@ static void cvTsMatchTemplate( const CvMat* img, const CvMat* templ, CvMat* resu
|
||||
double denom;
|
||||
|
||||
// calc denominator
|
||||
if( method != CV_TM_CCOEFF_NORMED )
|
||||
if( method != cv::TM_CCOEFF_NORMED )
|
||||
{
|
||||
denom = a_sum2.val[0] + a_sum2.val[1] + a_sum2.val[2];
|
||||
}
|
||||
@ -292,7 +292,7 @@ static void cvTsMatchTemplate( const CvMat* img, const CvMat* templ, CvMat* resu
|
||||
else if( fabs(value) < denom*1.125 )
|
||||
value = value > 0 ? 1 : -1;
|
||||
else
|
||||
value = method != CV_TM_SQDIFF_NORMED ? 0 : 1;
|
||||
value = method != cv::TM_SQDIFF_NORMED ? 0 : 1;
|
||||
}
|
||||
|
||||
((float*)(result->data.ptr + result->step*i))[j] = (float)value;
|
||||
@ -318,7 +318,7 @@ void CV_TemplMatchTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
cvReleaseFileStorage( &fs );
|
||||
}*/
|
||||
|
||||
if( method >= CV_TM_CCOEFF )
|
||||
if( method >= cv::TM_CCOEFF )
|
||||
{
|
||||
// avoid numerical stability problems in singular cases (when the results are near to 0)
|
||||
const double delta = 10.;
|
||||
@ -415,7 +415,7 @@ TEST(Imgproc_MatchTemplate, bug_9597) {
|
||||
cv::Mat cvimg(cv::Size(61, 82), CV_8UC1, (void*)img, cv::Mat::AUTO_STEP);
|
||||
cv::Mat cvtmpl(cv::Size(17, 17), CV_8UC1, (void*)tmpl, cv::Mat::AUTO_STEP);
|
||||
cv::Mat result;
|
||||
cv::matchTemplate(cvimg, cvtmpl, result, CV_TM_SQDIFF);
|
||||
cv::matchTemplate(cvimg, cvtmpl, result, cv::TM_SQDIFF);
|
||||
double minValue;
|
||||
cv::minMaxLoc(result, &minValue, NULL, NULL, NULL);
|
||||
ASSERT_GE(minValue, 0);
|
||||
|
@ -6,9 +6,9 @@
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
CV_ENUM(MatchTemplType, CV_TM_CCORR, CV_TM_CCORR_NORMED,
|
||||
CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED,
|
||||
CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED)
|
||||
CV_ENUM(MatchTemplType, cv::TM_CCORR, cv::TM_CCORR_NORMED,
|
||||
cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED,
|
||||
cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)
|
||||
|
||||
class Imgproc_MatchTemplateWithMask : public TestWithParam<std::tuple<MatType,MatType>>
|
||||
{
|
||||
@ -76,7 +76,7 @@ void Imgproc_MatchTemplateWithMask::SetUp()
|
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplSQDIFF)
|
||||
{
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_SQDIFF, mask_testtype_);
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, cv::TM_SQDIFF, mask_testtype_);
|
||||
// Naive implementation for one point
|
||||
Mat temp = img_roi_masked_ - templ_masked_;
|
||||
Scalar temp_s = sum(temp.mul(temp));
|
||||
@ -87,7 +87,7 @@ TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplSQDIFF)
|
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplSQDIFF_NORMED)
|
||||
{
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_SQDIFF_NORMED, mask_testtype_);
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, cv::TM_SQDIFF_NORMED, mask_testtype_);
|
||||
// Naive implementation for one point
|
||||
Mat temp = img_roi_masked_ - templ_masked_;
|
||||
Scalar temp_s = sum(temp.mul(temp));
|
||||
@ -106,7 +106,7 @@ TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplSQDIFF_NORMED)
|
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCORR)
|
||||
{
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCORR, mask_testtype_);
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, cv::TM_CCORR, mask_testtype_);
|
||||
// Naive implementation for one point
|
||||
Scalar temp_s = sum(templ_masked_.mul(img_roi_masked_));
|
||||
double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
|
||||
@ -116,7 +116,7 @@ TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCORR)
|
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCORR_NORMED)
|
||||
{
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCORR_NORMED, mask_testtype_);
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, cv::TM_CCORR_NORMED, mask_testtype_);
|
||||
// Naive implementation for one point
|
||||
Scalar temp_s = sum(templ_masked_.mul(img_roi_masked_));
|
||||
double val = temp_s[0] + temp_s[1] + temp_s[2] + temp_s[3];
|
||||
@ -134,7 +134,7 @@ TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCORR_NORMED)
|
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCOEFF)
|
||||
{
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCOEFF, mask_testtype_);
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, cv::TM_CCOEFF, mask_testtype_);
|
||||
// Naive implementation for one point
|
||||
Scalar temp_s = sum(mask_);
|
||||
for (int i = 0; i < 4; i++)
|
||||
@ -157,7 +157,7 @@ TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCOEFF)
|
||||
|
||||
TEST_P(Imgproc_MatchTemplateWithMask, CompareNaiveImplCCOEFF_NORMED)
|
||||
{
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, CV_TM_CCOEFF_NORMED, mask_testtype_);
|
||||
matchTemplate(img_testtype_, templ_testtype_, result_, cv::TM_CCOEFF_NORMED, mask_testtype_);
|
||||
// Naive implementation for one point
|
||||
Scalar temp_s = sum(mask_);
|
||||
for (int i = 0; i < 4; i++)
|
||||
@ -265,14 +265,14 @@ INSTANTIATE_TEST_CASE_P(SingleChannelMask, Imgproc_MatchTemplateWithMask2,
|
||||
Combine(
|
||||
Values(CV_32FC1, CV_32FC3, CV_8UC1, CV_8UC3),
|
||||
Values(CV_32FC1, CV_8UC1),
|
||||
Values(CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCORR, CV_TM_CCORR_NORMED,
|
||||
CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED)));
|
||||
Values(cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED,
|
||||
cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(MultiChannelMask, Imgproc_MatchTemplateWithMask2,
|
||||
Combine(
|
||||
Values(CV_32FC3, CV_8UC3),
|
||||
Values(CV_32FC3, CV_8UC3),
|
||||
Values(CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCORR, CV_TM_CCORR_NORMED,
|
||||
CV_TM_CCOEFF, CV_TM_CCOEFF_NORMED)));
|
||||
Values(cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED,
|
||||
cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED)));
|
||||
|
||||
}} // namespace
|
||||
|
@ -43,451 +43,6 @@
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
class CV_ThreshTest : public cvtest::ArrayTest
|
||||
{
|
||||
public:
|
||||
CV_ThreshTest(int test_type = 0);
|
||||
|
||||
protected:
|
||||
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
double get_success_error_level( int test_case_idx, int i, int j );
|
||||
void run_func();
|
||||
void prepare_to_validation( int );
|
||||
|
||||
int thresh_type;
|
||||
double thresh_val;
|
||||
double max_val;
|
||||
int extra_type;
|
||||
};
|
||||
|
||||
|
||||
CV_ThreshTest::CV_ThreshTest(int test_type)
|
||||
{
|
||||
CV_Assert( (test_type & CV_THRESH_MASK) == 0 );
|
||||
test_array[INPUT].push_back(NULL);
|
||||
test_array[OUTPUT].push_back(NULL);
|
||||
test_array[REF_OUTPUT].push_back(NULL);
|
||||
optional_mask = false;
|
||||
element_wise_relative_error = true;
|
||||
extra_type = test_type;
|
||||
// Reduce number of test with automated thresholding
|
||||
if (extra_type != 0)
|
||||
test_case_count = 250;
|
||||
}
|
||||
|
||||
|
||||
void CV_ThreshTest::get_test_array_types_and_sizes( int test_case_idx,
|
||||
vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
int depth = cvtest::randInt(rng) % 5, cn = cvtest::randInt(rng) % 4 + 1;
|
||||
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
depth = depth == 0 ? CV_8U : depth == 1 ? CV_16S : depth == 2 ? CV_16U : depth == 3 ? CV_32F : CV_64F;
|
||||
|
||||
if ( extra_type == CV_THRESH_OTSU )
|
||||
{
|
||||
depth = cvtest::randInt(rng) % 2 == 0 ? CV_8U : CV_16U;
|
||||
cn = 1;
|
||||
}
|
||||
|
||||
types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth,cn);
|
||||
thresh_type = cvtest::randInt(rng) % 5;
|
||||
|
||||
if( depth == CV_8U )
|
||||
{
|
||||
thresh_val = (cvtest::randReal(rng)*350. - 50.);
|
||||
max_val = (cvtest::randReal(rng)*350. - 50.);
|
||||
if( cvtest::randInt(rng)%4 == 0 )
|
||||
max_val = 255.f;
|
||||
}
|
||||
else if( depth == CV_16S )
|
||||
{
|
||||
double min_val = SHRT_MIN-100.f;
|
||||
max_val = SHRT_MAX+100.f;
|
||||
thresh_val = (cvtest::randReal(rng)*(max_val - min_val) + min_val);
|
||||
max_val = (cvtest::randReal(rng)*(max_val - min_val) + min_val);
|
||||
if( cvtest::randInt(rng)%4 == 0 )
|
||||
max_val = (double)SHRT_MAX;
|
||||
}
|
||||
else if( depth == CV_16U )
|
||||
{
|
||||
double min_val = -100.f;
|
||||
max_val = USHRT_MAX+100.f;
|
||||
thresh_val = (cvtest::randReal(rng)*(max_val - min_val) + min_val);
|
||||
max_val = (cvtest::randReal(rng)*(max_val - min_val) + min_val);
|
||||
if( cvtest::randInt(rng)%4 == 0 )
|
||||
max_val = (double)USHRT_MAX;
|
||||
}
|
||||
else
|
||||
{
|
||||
thresh_val = (cvtest::randReal(rng)*1000. - 500.);
|
||||
max_val = (cvtest::randReal(rng)*1000. - 500.);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double CV_ThreshTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||||
{
|
||||
return FLT_EPSILON*10;
|
||||
}
|
||||
|
||||
|
||||
void CV_ThreshTest::run_func()
|
||||
{
|
||||
cvThreshold( test_array[INPUT][0], test_array[OUTPUT][0],
|
||||
thresh_val, max_val, thresh_type | extra_type);
|
||||
}
|
||||
|
||||
|
||||
static double compute_otsu_thresh(const Mat& _src)
|
||||
{
|
||||
int depth = _src.depth();
|
||||
int width = _src.cols, height = _src.rows;
|
||||
const int N = 65536;
|
||||
std::vector<int> h(N, 0);
|
||||
int i, j;
|
||||
double mu = 0, scale = 1./(width*height);
|
||||
for(i = 0; i < height; ++i)
|
||||
{
|
||||
for(j = 0; j < width; ++j)
|
||||
{
|
||||
const int val = depth == CV_16UC1 ? (int)_src.at<ushort>(i, j) : (int)_src.at<uchar>(i,j);
|
||||
h[val]++;
|
||||
}
|
||||
}
|
||||
for( i = 0; i < N; i++ )
|
||||
{
|
||||
mu += i*(double)h[i];
|
||||
}
|
||||
|
||||
mu *= scale;
|
||||
double mu1 = 0, q1 = 0;
|
||||
double max_sigma = 0, max_val = 0;
|
||||
|
||||
for( i = 0; i < N; i++ )
|
||||
{
|
||||
double p_i, q2, mu2, sigma;
|
||||
|
||||
p_i = h[i]*scale;
|
||||
mu1 *= q1;
|
||||
q1 += p_i;
|
||||
q2 = 1. - q1;
|
||||
|
||||
if( std::min(q1,q2) < FLT_EPSILON || std::max(q1,q2) > 1. - FLT_EPSILON )
|
||||
continue;
|
||||
|
||||
mu1 = (mu1 + i*p_i)/q1;
|
||||
mu2 = (mu - q1*mu1)/q2;
|
||||
sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2);
|
||||
if( sigma > max_sigma )
|
||||
{
|
||||
max_sigma = sigma;
|
||||
max_val = i;
|
||||
}
|
||||
}
|
||||
|
||||
return max_val;
|
||||
}
|
||||
|
||||
static void test_threshold( const Mat& _src, Mat& _dst,
|
||||
double thresh, double maxval, int thresh_type, int extra_type )
|
||||
{
|
||||
int i, j;
|
||||
int depth = _src.depth(), cn = _src.channels();
|
||||
int width_n = _src.cols*cn, height = _src.rows;
|
||||
int ithresh = cvFloor(thresh);
|
||||
int imaxval, ithresh2;
|
||||
if (extra_type == CV_THRESH_OTSU)
|
||||
{
|
||||
thresh = compute_otsu_thresh(_src);
|
||||
ithresh = cvFloor(thresh);
|
||||
}
|
||||
|
||||
if( depth == CV_8U )
|
||||
{
|
||||
ithresh2 = saturate_cast<uchar>(ithresh);
|
||||
imaxval = saturate_cast<uchar>(maxval);
|
||||
}
|
||||
else if( depth == CV_16S )
|
||||
{
|
||||
ithresh2 = saturate_cast<short>(ithresh);
|
||||
imaxval = saturate_cast<short>(maxval);
|
||||
}
|
||||
else if( depth == CV_16U )
|
||||
{
|
||||
ithresh2 = saturate_cast<ushort>(ithresh);
|
||||
imaxval = saturate_cast<ushort>(maxval);
|
||||
}
|
||||
else
|
||||
{
|
||||
ithresh2 = cvRound(ithresh);
|
||||
imaxval = cvRound(maxval);
|
||||
}
|
||||
|
||||
CV_Assert( depth == CV_8U || depth == CV_16S || depth == CV_16U || depth == CV_32F || depth == CV_64F );
|
||||
|
||||
switch( thresh_type )
|
||||
{
|
||||
case CV_THRESH_BINARY:
|
||||
for( i = 0; i < height; i++ )
|
||||
{
|
||||
if( depth == CV_8U )
|
||||
{
|
||||
const uchar* src = _src.ptr<uchar>(i);
|
||||
uchar* dst = _dst.ptr<uchar>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
dst[j] = (uchar)(src[j] > ithresh ? imaxval : 0);
|
||||
}
|
||||
else if( depth == CV_16S )
|
||||
{
|
||||
const short* src = _src.ptr<short>(i);
|
||||
short* dst = _dst.ptr<short>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
dst[j] = (short)(src[j] > ithresh ? imaxval : 0);
|
||||
}
|
||||
else if( depth == CV_16U )
|
||||
{
|
||||
const ushort* src = _src.ptr<ushort>(i);
|
||||
ushort* dst = _dst.ptr<ushort>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
dst[j] = (ushort)(src[j] > ithresh ? imaxval : 0);
|
||||
}
|
||||
else if( depth == CV_32F )
|
||||
{
|
||||
const float* src = _src.ptr<float>(i);
|
||||
float* dst = _dst.ptr<float>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
dst[j] = (float)(src[j] > thresh ? maxval : 0.f);
|
||||
}
|
||||
else
|
||||
{
|
||||
const double* src = _src.ptr<double>(i);
|
||||
double* dst = _dst.ptr<double>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
dst[j] = src[j] > thresh ? maxval : 0.0;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CV_THRESH_BINARY_INV:
|
||||
for( i = 0; i < height; i++ )
|
||||
{
|
||||
if( depth == CV_8U )
|
||||
{
|
||||
const uchar* src = _src.ptr<uchar>(i);
|
||||
uchar* dst = _dst.ptr<uchar>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
dst[j] = (uchar)(src[j] > ithresh ? 0 : imaxval);
|
||||
}
|
||||
else if( depth == CV_16S )
|
||||
{
|
||||
const short* src = _src.ptr<short>(i);
|
||||
short* dst = _dst.ptr<short>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
dst[j] = (short)(src[j] > ithresh ? 0 : imaxval);
|
||||
}
|
||||
else if( depth == CV_16U )
|
||||
{
|
||||
const ushort* src = _src.ptr<ushort>(i);
|
||||
ushort* dst = _dst.ptr<ushort>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
dst[j] = (ushort)(src[j] > ithresh ? 0 : imaxval);
|
||||
}
|
||||
else if( depth == CV_32F )
|
||||
{
|
||||
const float* src = _src.ptr<float>(i);
|
||||
float* dst = _dst.ptr<float>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
dst[j] = (float)(src[j] > thresh ? 0.f : maxval);
|
||||
}
|
||||
else
|
||||
{
|
||||
const double* src = _src.ptr<double>(i);
|
||||
double* dst = _dst.ptr<double>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
dst[j] = src[j] > thresh ? 0.0 : maxval;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CV_THRESH_TRUNC:
|
||||
for( i = 0; i < height; i++ )
|
||||
{
|
||||
if( depth == CV_8U )
|
||||
{
|
||||
const uchar* src = _src.ptr<uchar>(i);
|
||||
uchar* dst = _dst.ptr<uchar>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
int s = src[j];
|
||||
dst[j] = (uchar)(s > ithresh ? ithresh2 : s);
|
||||
}
|
||||
}
|
||||
else if( depth == CV_16S )
|
||||
{
|
||||
const short* src = _src.ptr<short>(i);
|
||||
short* dst = _dst.ptr<short>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
int s = src[j];
|
||||
dst[j] = (short)(s > ithresh ? ithresh2 : s);
|
||||
}
|
||||
}
|
||||
else if( depth == CV_16U )
|
||||
{
|
||||
const ushort* src = _src.ptr<ushort>(i);
|
||||
ushort* dst = _dst.ptr<ushort>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
int s = src[j];
|
||||
dst[j] = (ushort)(s > ithresh ? ithresh2 : s);
|
||||
}
|
||||
}
|
||||
else if( depth == CV_32F )
|
||||
{
|
||||
const float* src = _src.ptr<float>(i);
|
||||
float* dst = _dst.ptr<float>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
float s = src[j];
|
||||
dst[j] = (float)(s > thresh ? thresh : s);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
const double* src = _src.ptr<double>(i);
|
||||
double* dst = _dst.ptr<double>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
double s = src[j];
|
||||
dst[j] = s > thresh ? thresh : s;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CV_THRESH_TOZERO:
|
||||
for( i = 0; i < height; i++ )
|
||||
{
|
||||
if( depth == CV_8U )
|
||||
{
|
||||
const uchar* src = _src.ptr<uchar>(i);
|
||||
uchar* dst = _dst.ptr<uchar>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
int s = src[j];
|
||||
dst[j] = (uchar)(s > ithresh ? s : 0);
|
||||
}
|
||||
}
|
||||
else if( depth == CV_16S )
|
||||
{
|
||||
const short* src = _src.ptr<short>(i);
|
||||
short* dst = _dst.ptr<short>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
int s = src[j];
|
||||
dst[j] = (short)(s > ithresh ? s : 0);
|
||||
}
|
||||
}
|
||||
else if( depth == CV_16U )
|
||||
{
|
||||
const ushort* src = _src.ptr<ushort>(i);
|
||||
ushort* dst = _dst.ptr<ushort>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
int s = src[j];
|
||||
dst[j] = (ushort)(s > ithresh ? s : 0);
|
||||
}
|
||||
}
|
||||
else if( depth == CV_32F )
|
||||
{
|
||||
const float* src = _src.ptr<float>(i);
|
||||
float* dst = _dst.ptr<float>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
float s = src[j];
|
||||
dst[j] = s > thresh ? s : 0.f;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
const double* src = _src.ptr<double>(i);
|
||||
double* dst = _dst.ptr<double>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
double s = src[j];
|
||||
dst[j] = s > thresh ? s : 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CV_THRESH_TOZERO_INV:
|
||||
for( i = 0; i < height; i++ )
|
||||
{
|
||||
if( depth == CV_8U )
|
||||
{
|
||||
const uchar* src = _src.ptr<uchar>(i);
|
||||
uchar* dst = _dst.ptr<uchar>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
int s = src[j];
|
||||
dst[j] = (uchar)(s > ithresh ? 0 : s);
|
||||
}
|
||||
}
|
||||
else if( depth == CV_16S )
|
||||
{
|
||||
const short* src = _src.ptr<short>(i);
|
||||
short* dst = _dst.ptr<short>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
int s = src[j];
|
||||
dst[j] = (short)(s > ithresh ? 0 : s);
|
||||
}
|
||||
}
|
||||
else if( depth == CV_16U )
|
||||
{
|
||||
const ushort* src = _src.ptr<ushort>(i);
|
||||
ushort* dst = _dst.ptr<ushort>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
int s = src[j];
|
||||
dst[j] = (ushort)(s > ithresh ? 0 : s);
|
||||
}
|
||||
}
|
||||
else if (depth == CV_32F)
|
||||
{
|
||||
const float* src = _src.ptr<float>(i);
|
||||
float* dst = _dst.ptr<float>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
float s = src[j];
|
||||
dst[j] = s > thresh ? 0.f : s;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
const double* src = _src.ptr<double>(i);
|
||||
double* dst = _dst.ptr<double>(i);
|
||||
for( j = 0; j < width_n; j++ )
|
||||
{
|
||||
double s = src[j];
|
||||
dst[j] = s > thresh ? 0.0 : s;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_Assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void CV_ThreshTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
{
|
||||
test_threshold( test_mat[INPUT][0], test_mat[REF_OUTPUT][0],
|
||||
thresh_val, max_val, thresh_type, extra_type );
|
||||
}
|
||||
|
||||
TEST(Imgproc_Threshold, accuracy) { CV_ThreshTest test; test.safe_run(); }
|
||||
TEST(Imgproc_Threshold, accuracyOtsu) { CV_ThreshTest test(CV_THRESH_OTSU); test.safe_run(); }
|
||||
|
||||
BIGDATA_TEST(Imgproc_Threshold, huge)
|
||||
{
|
||||
Mat m(65000, 40000, CV_8U);
|
||||
|
@ -41,90 +41,3 @@
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#if 0
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
class CV_WatershedTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_WatershedTest();
|
||||
~CV_WatershedTest();
|
||||
protected:
|
||||
void run(int);
|
||||
};
|
||||
|
||||
CV_WatershedTest::CV_WatershedTest() {}
|
||||
CV_WatershedTest::~CV_WatershedTest() {}
|
||||
|
||||
void CV_WatershedTest::run( int /* start_from */)
|
||||
{
|
||||
string exp_path = string(ts->get_data_path()) + "watershed/wshed_exp.png";
|
||||
Mat exp = imread(exp_path, 0);
|
||||
Mat orig = imread(string(ts->get_data_path()) + "inpaint/orig.png");
|
||||
FileStorage fs(string(ts->get_data_path()) + "watershed/comp.xml", FileStorage::READ);
|
||||
|
||||
if (orig.empty() || !fs.isOpened())
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
CvSeq* cnts = (CvSeq*)fs["contours"].readObj();
|
||||
|
||||
Mat markers(orig.size(), CV_32SC1);
|
||||
markers = Scalar(0);
|
||||
IplImage iplmrks = cvIplImage(markers);
|
||||
|
||||
vector<unsigned char> colors(1);
|
||||
for(int i = 0; cnts != 0; cnts = cnts->h_next, ++i )
|
||||
{
|
||||
cvDrawContours( &iplmrks, cnts, cvScalar(Scalar::all(i + 1)), cvScalar(Scalar::all(i + 1)), -1, CV_FILLED);
|
||||
Point* p = (Point*)cvGetSeqElem(cnts, 0);
|
||||
|
||||
//expected image was added with 1 in order to save to png
|
||||
//so now we subtract 1 to get real color
|
||||
if(!exp.empty())
|
||||
colors.push_back(exp.ptr(p->y)[p->x] - 1);
|
||||
}
|
||||
fs.release();
|
||||
const int compNum = (int)(colors.size() - 1);
|
||||
|
||||
watershed(orig, markers);
|
||||
|
||||
for(int j = 0; j < markers.rows; ++j)
|
||||
{
|
||||
int* line = markers.ptr<int>(j);
|
||||
for(int i = 0; i < markers.cols; ++i)
|
||||
{
|
||||
int& pixel = line[i];
|
||||
|
||||
if (pixel == -1) // border
|
||||
continue;
|
||||
|
||||
if (pixel <= 0 || pixel > compNum)
|
||||
continue; // bad result, doing nothing and going to get error latter;
|
||||
|
||||
// repaint in saved color to compare with expected;
|
||||
if(!exp.empty())
|
||||
pixel = colors[pixel];
|
||||
}
|
||||
}
|
||||
|
||||
Mat markers8U;
|
||||
markers.convertTo(markers8U, CV_8U, 1, 1);
|
||||
|
||||
if( exp.empty() || orig.size() != exp.size() )
|
||||
{
|
||||
imwrite(exp_path, markers8U);
|
||||
exp = markers8U;
|
||||
}
|
||||
|
||||
ASSERT_EQ(0, cvtest::norm(markers8U, exp, NORM_INF));
|
||||
}
|
||||
|
||||
TEST(Imgproc_Watershed, regression) { CV_WatershedTest test; test.safe_run(); }
|
||||
|
||||
}} // namespace
|
||||
|
||||
#endif
|
||||
|
@ -735,17 +735,13 @@ icvNSInpaintFMM(const CvMat *f, CvMat *t, CvMat *out, int range, CvPriorityQueue
|
||||
}\
|
||||
}
|
||||
|
||||
namespace cv {
|
||||
template<> struct DefaultDeleter<IplConvKernel>{ void operator ()(IplConvKernel* obj) const { cvReleaseStructuringElement(&obj); } };
|
||||
}
|
||||
|
||||
static void
|
||||
icvInpaint( const CvArr* _input_img, const CvArr* _inpaint_mask, CvArr* _output_img,
|
||||
double inpaintRange, int flags )
|
||||
{
|
||||
cv::Ptr<CvMat> mask, band, f, t, out;
|
||||
cv::Ptr<CvPriorityQueueFloat> Heap, Out;
|
||||
cv::Ptr<IplConvKernel> el_cross, el_range;
|
||||
cv::Mat el_range, el_cross; // structuring elements for dilate
|
||||
|
||||
CvMat input_hdr, mask_hdr, output_hdr;
|
||||
CvMat* input_img, *inpaint_mask, *output_img;
|
||||
@ -780,7 +776,7 @@ icvInpaint( const CvArr* _input_img, const CvArr* _inpaint_mask, CvArr* _output_
|
||||
t.reset(cvCreateMat(erows, ecols, CV_32FC1));
|
||||
band.reset(cvCreateMat(erows, ecols, CV_8UC1));
|
||||
mask.reset(cvCreateMat(erows, ecols, CV_8UC1));
|
||||
el_cross.reset(cvCreateStructuringElementEx(3,3,1,1,CV_SHAPE_CROSS,NULL));
|
||||
el_cross = cv::getStructuringElement(cv::MORPH_CROSS, cv::Size(3, 3), cv::Point(1, 1));
|
||||
|
||||
cvCopy( input_img, output_img );
|
||||
cvSet(mask,cvScalar(KNOWN,0,0,0));
|
||||
@ -788,7 +784,7 @@ icvInpaint( const CvArr* _input_img, const CvArr* _inpaint_mask, CvArr* _output_
|
||||
SET_BORDER1_C1(mask,uchar,0);
|
||||
cvSet(f,cvScalar(KNOWN,0,0,0));
|
||||
cvSet(t,cvScalar(1.0e6f,0,0,0));
|
||||
cvDilate(mask,band,el_cross,1); // image with narrow band
|
||||
cv::dilate(cv::cvarrToMat(mask), cv::cvarrToMat(band), el_cross, cv::Point(1, 1));
|
||||
Heap=cv::makePtr<CvPriorityQueueFloat>();
|
||||
if (!Heap->Init(band))
|
||||
return;
|
||||
@ -803,9 +799,8 @@ icvInpaint( const CvArr* _input_img, const CvArr* _inpaint_mask, CvArr* _output_
|
||||
if( flags == cv::INPAINT_TELEA )
|
||||
{
|
||||
out.reset(cvCreateMat(erows, ecols, CV_8UC1));
|
||||
el_range.reset(cvCreateStructuringElementEx(2*range+1,2*range+1,
|
||||
range,range,CV_SHAPE_RECT,NULL));
|
||||
cvDilate(mask,out,el_range,1);
|
||||
el_range = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2 * range + 1, 2 * range + 1));
|
||||
cv::dilate(cv::cvarrToMat(mask), cv::cvarrToMat(out), el_range);
|
||||
cvSub(out,mask,out,NULL);
|
||||
Out=cv::makePtr<CvPriorityQueueFloat>();
|
||||
if (!Out->Init(out))
|
||||
|
@ -81,7 +81,7 @@ double TestUtils::checkNorm2(InputArray m1, InputArray m2, InputArray mask)
|
||||
double TestUtils::checkSimilarity(InputArray m1, InputArray m2)
|
||||
{
|
||||
Mat diff;
|
||||
matchTemplate(m1.getMat(), m2.getMat(), diff, CV_TM_CCORR_NORMED);
|
||||
matchTemplate(m1.getMat(), m2.getMat(), diff, cv::TM_CCORR_NORMED);
|
||||
return std::abs(diff.at<float>(0, 0) - 1.f);
|
||||
}
|
||||
|
||||
|
@ -3061,7 +3061,7 @@ void threshold( const Mat& _src, Mat& _dst,
|
||||
|
||||
switch( thresh_type )
|
||||
{
|
||||
case CV_THRESH_BINARY:
|
||||
case cv::THRESH_BINARY:
|
||||
for( i = 0; i < height; i++ )
|
||||
{
|
||||
if( depth == CV_8U )
|
||||
@ -3087,7 +3087,7 @@ void threshold( const Mat& _src, Mat& _dst,
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CV_THRESH_BINARY_INV:
|
||||
case cv::THRESH_BINARY_INV:
|
||||
for( i = 0; i < height; i++ )
|
||||
{
|
||||
if( depth == CV_8U )
|
||||
@ -3113,7 +3113,7 @@ void threshold( const Mat& _src, Mat& _dst,
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CV_THRESH_TRUNC:
|
||||
case cv::THRESH_TRUNC:
|
||||
for( i = 0; i < height; i++ )
|
||||
{
|
||||
if( depth == CV_8U )
|
||||
@ -3148,7 +3148,7 @@ void threshold( const Mat& _src, Mat& _dst,
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CV_THRESH_TOZERO:
|
||||
case cv::THRESH_TOZERO:
|
||||
for( i = 0; i < height; i++ )
|
||||
{
|
||||
if( depth == CV_8U )
|
||||
@ -3183,7 +3183,7 @@ void threshold( const Mat& _src, Mat& _dst,
|
||||
}
|
||||
}
|
||||
break;
|
||||
case CV_THRESH_TOZERO_INV:
|
||||
case cv::THRESH_TOZERO_INV:
|
||||
for( i = 0; i < height; i++ )
|
||||
{
|
||||
if( depth == CV_8U )
|
||||
|
@ -1,249 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
class CV_AccumBaseTest : public cvtest::ArrayTest
|
||||
{
|
||||
public:
|
||||
CV_AccumBaseTest();
|
||||
|
||||
protected:
|
||||
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
||||
double get_success_error_level( int test_case_idx, int i, int j );
|
||||
double alpha;
|
||||
};
|
||||
|
||||
|
||||
CV_AccumBaseTest::CV_AccumBaseTest()
|
||||
{
|
||||
test_array[INPUT].push_back(NULL);
|
||||
test_array[INPUT_OUTPUT].push_back(NULL);
|
||||
test_array[REF_INPUT_OUTPUT].push_back(NULL);
|
||||
test_array[MASK].push_back(NULL);
|
||||
optional_mask = true;
|
||||
element_wise_relative_error = false;
|
||||
} // ctor
|
||||
|
||||
|
||||
void CV_AccumBaseTest::get_test_array_types_and_sizes( int test_case_idx,
|
||||
vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
||||
{
|
||||
RNG& rng = ts->get_rng();
|
||||
int depth = cvtest::randInt(rng) % 4, cn = cvtest::randInt(rng) & 1 ? 3 : 1;
|
||||
int accdepth = (int)(cvtest::randInt(rng) % 2 + 1);
|
||||
int i, input_count = (int)test_array[INPUT].size();
|
||||
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||||
depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : depth == 2 ? CV_32F : CV_64F;
|
||||
accdepth = accdepth == 1 ? CV_32F : CV_64F;
|
||||
accdepth = MAX(accdepth, depth);
|
||||
|
||||
for( i = 0; i < input_count; i++ )
|
||||
types[INPUT][i] = CV_MAKETYPE(depth,cn);
|
||||
|
||||
types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(accdepth,cn);
|
||||
|
||||
alpha = cvtest::randReal(rng);
|
||||
}
|
||||
|
||||
|
||||
double CV_AccumBaseTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||||
{
|
||||
return test_mat[INPUT_OUTPUT][0].depth() < CV_64F ||
|
||||
test_mat[INPUT][0].depth() == CV_32F ? FLT_EPSILON*100 : DBL_EPSILON*1000;
|
||||
}
|
||||
|
||||
|
||||
/// acc
|
||||
class CV_AccTest : public CV_AccumBaseTest
|
||||
{
|
||||
public:
|
||||
CV_AccTest() { }
|
||||
protected:
|
||||
void run_func();
|
||||
void prepare_to_validation( int );
|
||||
};
|
||||
|
||||
|
||||
void CV_AccTest::run_func(void)
|
||||
{
|
||||
cvAcc( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], test_array[MASK][0] );
|
||||
}
|
||||
|
||||
|
||||
void CV_AccTest::prepare_to_validation( int )
|
||||
{
|
||||
const Mat& src = test_mat[INPUT][0];
|
||||
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
|
||||
const Mat& mask = test_array[MASK][0] ? test_mat[MASK][0] : Mat();
|
||||
Mat temp;
|
||||
cvtest::add( src, 1, dst, 1, cvScalarAll(0.), temp, dst.type() );
|
||||
cvtest::copy( temp, dst, mask );
|
||||
}
|
||||
|
||||
|
||||
/// square acc
|
||||
class CV_SquareAccTest : public CV_AccumBaseTest
|
||||
{
|
||||
public:
|
||||
CV_SquareAccTest();
|
||||
protected:
|
||||
void run_func();
|
||||
void prepare_to_validation( int );
|
||||
};
|
||||
|
||||
|
||||
CV_SquareAccTest::CV_SquareAccTest()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
void CV_SquareAccTest::run_func()
|
||||
{
|
||||
cvSquareAcc( test_array[INPUT][0], test_array[INPUT_OUTPUT][0], test_array[MASK][0] );
|
||||
}
|
||||
|
||||
|
||||
void CV_SquareAccTest::prepare_to_validation( int )
|
||||
{
|
||||
const Mat& src = test_mat[INPUT][0];
|
||||
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
|
||||
const Mat& mask = test_array[MASK][0] ? test_mat[MASK][0] : Mat();
|
||||
Mat temp;
|
||||
|
||||
cvtest::convert( src, temp, dst.type() );
|
||||
cvtest::multiply( temp, temp, temp, 1 );
|
||||
cvtest::add( temp, 1, dst, 1, cvScalarAll(0.), temp, dst.depth() );
|
||||
cvtest::copy( temp, dst, mask );
|
||||
}
|
||||
|
||||
|
||||
/// multiply acc
|
||||
class CV_MultiplyAccTest : public CV_AccumBaseTest
|
||||
{
|
||||
public:
|
||||
CV_MultiplyAccTest();
|
||||
protected:
|
||||
void run_func();
|
||||
void prepare_to_validation( int );
|
||||
};
|
||||
|
||||
|
||||
CV_MultiplyAccTest::CV_MultiplyAccTest()
|
||||
{
|
||||
test_array[INPUT].push_back(NULL);
|
||||
}
|
||||
|
||||
|
||||
void CV_MultiplyAccTest::run_func()
|
||||
{
|
||||
cvMultiplyAcc( test_array[INPUT][0], test_array[INPUT][1],
|
||||
test_array[INPUT_OUTPUT][0], test_array[MASK][0] );
|
||||
}
|
||||
|
||||
|
||||
void CV_MultiplyAccTest::prepare_to_validation( int )
|
||||
{
|
||||
const Mat& src1 = test_mat[INPUT][0];
|
||||
const Mat& src2 = test_mat[INPUT][1];
|
||||
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
|
||||
const Mat& mask = test_array[MASK][0] ? test_mat[MASK][0] : Mat();
|
||||
Mat temp1, temp2;
|
||||
|
||||
cvtest::convert( src1, temp1, dst.type() );
|
||||
cvtest::convert( src2, temp2, dst.type() );
|
||||
|
||||
cvtest::multiply( temp1, temp2, temp1, 1 );
|
||||
cvtest::add( temp1, 1, dst, 1, cvScalarAll(0.), temp1, dst.depth() );
|
||||
cvtest::copy( temp1, dst, mask );
|
||||
}
|
||||
|
||||
|
||||
/// running average
|
||||
class CV_RunningAvgTest : public CV_AccumBaseTest
|
||||
{
|
||||
public:
|
||||
CV_RunningAvgTest();
|
||||
protected:
|
||||
void run_func();
|
||||
void prepare_to_validation( int );
|
||||
};
|
||||
|
||||
|
||||
CV_RunningAvgTest::CV_RunningAvgTest()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
void CV_RunningAvgTest::run_func()
|
||||
{
|
||||
cvRunningAvg( test_array[INPUT][0], test_array[INPUT_OUTPUT][0],
|
||||
alpha, test_array[MASK][0] );
|
||||
}
|
||||
|
||||
|
||||
void CV_RunningAvgTest::prepare_to_validation( int )
|
||||
{
|
||||
const Mat& src = test_mat[INPUT][0];
|
||||
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
|
||||
Mat temp;
|
||||
const Mat& mask = test_array[MASK][0] ? test_mat[MASK][0] : Mat();
|
||||
double a[1], b[1];
|
||||
int accdepth = test_mat[INPUT_OUTPUT][0].depth();
|
||||
CvMat A = cvMat(1,1,accdepth,a), B = cvMat(1,1,accdepth,b);
|
||||
cvSetReal1D( &A, 0, alpha);
|
||||
cvSetReal1D( &B, 0, 1 - cvGetReal1D(&A, 0));
|
||||
|
||||
cvtest::convert( src, temp, dst.type() );
|
||||
cvtest::add( src, cvGetReal1D(&A, 0), dst, cvGetReal1D(&B, 0), cvScalarAll(0.), temp, temp.depth() );
|
||||
cvtest::copy( temp, dst, mask );
|
||||
}
|
||||
|
||||
|
||||
TEST(Video_Acc, accuracy) { CV_AccTest test; test.safe_run(); }
|
||||
TEST(Video_AccSquared, accuracy) { CV_SquareAccTest test; test.safe_run(); }
|
||||
TEST(Video_AccProduct, accuracy) { CV_MultiplyAccTest test; test.safe_run(); }
|
||||
TEST(Video_RunningAvg, accuracy) { CV_RunningAvgTest test; test.safe_run(); }
|
||||
|
||||
}} // namespace
|
@ -274,7 +274,7 @@ int CV_CamShiftTest::validate_test_results( int /*test_case_idx*/ )
|
||||
cvIsNaN(box.center.y) || cvIsInf(box.center.y) ||
|
||||
cvIsNaN(box.angle) || cvIsInf(box.angle) || box.angle < -180 || box.angle > 180 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Invalid CvBox2D or CvConnectedComp was returned by cvCamShift\n" );
|
||||
ts->printf( cvtest::TS::LOG, "Invalid RotatedRect was returned by CamShift\n" );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
goto _exit_;
|
||||
}
|
||||
@ -317,19 +317,6 @@ _exit_:
|
||||
|
||||
if( code < 0 )
|
||||
{
|
||||
#if 0 //defined _DEBUG && defined _WIN32
|
||||
IplImage* dst = cvCreateImage( img_size, 8, 3 );
|
||||
cvNamedWindow( "test", 1 );
|
||||
cvCmpS( img, 0, img, CV_CMP_GT );
|
||||
cvCvtColor( img, dst, CV_GRAY2BGR );
|
||||
cvRectangle( dst, cvPoint(init_rect.x, init_rect.y),
|
||||
cvPoint(init_rect.x + init_rect.width, init_rect.y + init_rect.height),
|
||||
CV_RGB(255,0,0), 3, 8, 0 );
|
||||
cvEllipseBox( dst, box, CV_RGB(0,255,0), 3, 8, 0 );
|
||||
cvShowImage( "test", dst );
|
||||
cvReleaseImage( &dst );
|
||||
cvWaitKey();
|
||||
#endif
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
return code;
|
||||
@ -428,7 +415,7 @@ int CV_MeanShiftTest::validate_test_results( int /*test_case_idx*/ )
|
||||
rect.y + rect.height > box0.center.y + delta )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG,
|
||||
"Incorrect CvConnectedComp ((%d,%d,%d,%d) is not within (%.1f,%.1f,%.1f,%.1f))\n",
|
||||
"Incorrect ConnectedComp ((%d,%d,%d,%d) is not within (%.1f,%.1f,%.1f,%.1f))\n",
|
||||
rect.x, rect.y, rect.x + rect.width, rect.y + rect.height,
|
||||
box0.center.x - delta, box0.center.y - delta, box0.center.x + delta, box0.center.y + delta );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
@ -438,21 +425,6 @@ _exit_:
|
||||
|
||||
if( code < 0 )
|
||||
{
|
||||
#if 0// defined _DEBUG && defined _WIN32
|
||||
IplImage* dst = cvCreateImage( img_size, 8, 3 );
|
||||
cvNamedWindow( "test", 1 );
|
||||
cvCmpS( img, 0, img, CV_CMP_GT );
|
||||
cvCvtColor( img, dst, CV_GRAY2BGR );
|
||||
cvRectangle( dst, cvPoint(init_rect.x, init_rect.y),
|
||||
cvPoint(init_rect.x + init_rect.width, init_rect.y + init_rect.height),
|
||||
CV_RGB(255,0,0), 3, 8, 0 );
|
||||
cvRectangle( dst, cvPoint(comp.rect.x, comp.rect.y),
|
||||
cvPoint(comp.rect.x + comp.rect.width, comp.rect.y + comp.rect.height),
|
||||
CV_RGB(0,255,0), 3, 8, 0 );
|
||||
cvShowImage( "test", dst );
|
||||
cvReleaseImage( &dst );
|
||||
cvWaitKey();
|
||||
#endif
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
return code;
|
||||
|
@ -750,7 +750,7 @@ fromConnection:(AVCaptureConnection *)connection{
|
||||
bgr_image->imageData = bgr_imagedata;
|
||||
bgr_image->imageSize = (int)currSize;
|
||||
|
||||
cvCvtColor(image, bgr_image, CV_BGRA2BGR);
|
||||
cv::cvtColor(cv::cvarrToMat(image), cv::cvarrToMat(bgr_image), cv::COLOR_BGRA2BGR);
|
||||
|
||||
// image taken from the buffer is incorrected rotated. I'm using cvTranspose + cvFlip.
|
||||
// There should be an option in iOS API to rotate the buffer output orientation.
|
||||
@ -1000,11 +1000,11 @@ IplImage* CvCaptureFile::retrieveFramePixelBuffer() {
|
||||
deviceChannels = 4;
|
||||
|
||||
if (mMode == CV_CAP_MODE_BGR) {
|
||||
cvtCode = CV_BGRA2BGR;
|
||||
cvtCode = cv::COLOR_BGRA2BGR;
|
||||
} else if (mMode == CV_CAP_MODE_RGB) {
|
||||
cvtCode = CV_BGRA2RGB;
|
||||
cvtCode = cv::COLOR_BGRA2RGB;
|
||||
} else if (mMode == CV_CAP_MODE_GRAY) {
|
||||
cvtCode = CV_BGRA2GRAY;
|
||||
cvtCode = cv::COLOR_BGRA2GRAY;
|
||||
} else {
|
||||
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
|
||||
CVBufferRelease(mGrabbedPixels);
|
||||
@ -1016,11 +1016,11 @@ IplImage* CvCaptureFile::retrieveFramePixelBuffer() {
|
||||
deviceChannels = 3;
|
||||
|
||||
if (mMode == CV_CAP_MODE_BGR) {
|
||||
cvtCode = CV_RGB2BGR;
|
||||
cvtCode = cv::COLOR_RGB2BGR;
|
||||
} else if (mMode == CV_CAP_MODE_RGB) {
|
||||
cvtCode = 0;
|
||||
} else if (mMode == CV_CAP_MODE_GRAY) {
|
||||
cvtCode = CV_RGB2GRAY;
|
||||
cvtCode = cv::COLOR_RGB2GRAY;
|
||||
} else {
|
||||
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
|
||||
CVBufferRelease(mGrabbedPixels);
|
||||
@ -1032,11 +1032,11 @@ IplImage* CvCaptureFile::retrieveFramePixelBuffer() {
|
||||
deviceChannels = 2;
|
||||
|
||||
if (mMode == CV_CAP_MODE_BGR) {
|
||||
cvtCode = CV_YUV2BGR_UYVY;
|
||||
cvtCode = cv::COLOR_YUV2BGR_UYVY;
|
||||
} else if (mMode == CV_CAP_MODE_RGB) {
|
||||
cvtCode = CV_YUV2RGB_UYVY;
|
||||
cvtCode = cv::COLOR_YUV2RGB_UYVY;
|
||||
} else if (mMode == CV_CAP_MODE_GRAY) {
|
||||
cvtCode = CV_YUV2GRAY_UYVY;
|
||||
cvtCode = cv::COLOR_YUV2GRAY_UYVY;
|
||||
} else if (mMode == CV_CAP_MODE_YUYV) {
|
||||
cvtCode = -1; // Copy
|
||||
} else {
|
||||
@ -1052,11 +1052,11 @@ IplImage* CvCaptureFile::retrieveFramePixelBuffer() {
|
||||
deviceChannels = 1;
|
||||
|
||||
if (mMode == CV_CAP_MODE_BGR) {
|
||||
cvtCode = CV_YUV2BGR_YV12;
|
||||
cvtCode = cv::COLOR_YUV2BGR_YV12;
|
||||
} else if (mMode == CV_CAP_MODE_RGB) {
|
||||
cvtCode = CV_YUV2RGB_YV12;
|
||||
cvtCode = cv::COLOR_YUV2RGB_YV12;
|
||||
} else if (mMode == CV_CAP_MODE_GRAY) {
|
||||
cvtCode = CV_YUV2GRAY_420;
|
||||
cvtCode = cv::COLOR_YUV2GRAY_420;
|
||||
} else {
|
||||
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
|
||||
CVBufferRelease(mGrabbedPixels);
|
||||
@ -1088,7 +1088,7 @@ IplImage* CvCaptureFile::retrieveFramePixelBuffer() {
|
||||
if (cvtCode == -1) {
|
||||
cv::cvarrToMat(mDeviceImage).copyTo(cv::cvarrToMat(mOutImage));
|
||||
} else {
|
||||
cvCvtColor(mDeviceImage, mOutImage, cvtCode);
|
||||
cv::cvtColor(cv::cvarrToMat(mDeviceImage), cv::cvarrToMat(mOutImage), cvtCode);
|
||||
}
|
||||
|
||||
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
|
||||
@ -1373,10 +1373,10 @@ bool CvVideoWriter_AVFoundation::writeFrame(const IplImage* iplimage) {
|
||||
|
||||
if (movieColor) {
|
||||
//assert(iplimage->nChannels == 3);
|
||||
cvCvtColor(iplimage, argbimage, CV_BGR2BGRA);
|
||||
cv::cvtColor(cv::cvarrToMat(iplimage), cv::cvarrToMat(argbimage), cv::COLOR_BGR2BGRA);
|
||||
}else{
|
||||
//assert(iplimage->nChannels == 1);
|
||||
cvCvtColor(iplimage, argbimage, CV_GRAY2BGRA);
|
||||
cv::cvtColor(cv::cvarrToMat(iplimage), cv::cvarrToMat(argbimage), cv::COLOR_GRAY2BGRA);
|
||||
}
|
||||
//IplImage -> CGImage conversion
|
||||
CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
|
||||
|
@ -687,7 +687,7 @@ didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer
|
||||
mDeviceImage->imageData = reinterpret_cast<char *>(baseaddress);
|
||||
mDeviceImage->imageSize = int(rowBytes*height);
|
||||
|
||||
cvCvtColor(mDeviceImage, mOutImage, CV_BGRA2BGR);
|
||||
cvtColor(cv::cvarrToMat(mDeviceImage), cv::cvarrToMat(mOutImage), cv::COLOR_BGRA2BGR);
|
||||
} else if ( pixelFormat == kCVPixelFormatType_422YpCbCr8 ) {
|
||||
if ( currSize != width*3*height ) {
|
||||
currSize = width*3*height;
|
||||
@ -706,7 +706,7 @@ didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer
|
||||
mDeviceImage->imageData = reinterpret_cast<char *>(baseaddress);
|
||||
mDeviceImage->imageSize = int(rowBytes*height);
|
||||
|
||||
cvCvtColor(mDeviceImage, mOutImage, CV_YUV2BGR_UYVY);
|
||||
cvtColor(cv::cvarrToMat(mDeviceImage), cv::cvarrToMat(mOutImage), cv::COLOR_YUV2BGR_UYVY);
|
||||
} else {
|
||||
fprintf(stderr, "OpenCV: unknown pixel format 0x%08X\n", pixelFormat);
|
||||
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
|
||||
@ -817,7 +817,7 @@ bool CvCaptureFile::setupReadingAt(CMTime position) {
|
||||
// Capture in a pixel format that can be converted efficiently to the output mode.
|
||||
OSType pixelFormat;
|
||||
if (mMode == CV_CAP_MODE_BGR || mMode == CV_CAP_MODE_RGB) {
|
||||
// For CV_CAP_MODE_BGR, read frames as BGRA (AV Foundation's YUV->RGB conversion is slightly faster than OpenCV's CV_YUV2BGR_YV12)
|
||||
// For CV_CAP_MODE_BGR, read frames as BGRA (AV Foundation's YUV->RGB conversion is slightly faster than OpenCV's cv::COLOR_YUV2BGR_YV12)
|
||||
// kCVPixelFormatType_32ABGR is reportedly faster on OS X, but OpenCV doesn't have a CV_ABGR2BGR conversion.
|
||||
// kCVPixelFormatType_24RGB is significantly slower than kCVPixelFormatType_32BGRA.
|
||||
pixelFormat = kCVPixelFormatType_32BGRA;
|
||||
@ -962,11 +962,11 @@ IplImage* CvCaptureFile::retrieveFramePixelBuffer() {
|
||||
deviceChannels = 4;
|
||||
|
||||
if (mMode == CV_CAP_MODE_BGR) {
|
||||
cvtCode = CV_BGRA2BGR;
|
||||
cvtCode = cv::COLOR_BGRA2BGR;
|
||||
} else if (mMode == CV_CAP_MODE_RGB) {
|
||||
cvtCode = CV_BGRA2RGB;
|
||||
cvtCode = cv::COLOR_BGRA2RGB;
|
||||
} else if (mMode == CV_CAP_MODE_GRAY) {
|
||||
cvtCode = CV_BGRA2GRAY;
|
||||
cvtCode = cv::COLOR_BGRA2GRAY;
|
||||
} else {
|
||||
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
|
||||
CVBufferRelease(mGrabbedPixels);
|
||||
@ -978,11 +978,11 @@ IplImage* CvCaptureFile::retrieveFramePixelBuffer() {
|
||||
deviceChannels = 3;
|
||||
|
||||
if (mMode == CV_CAP_MODE_BGR) {
|
||||
cvtCode = CV_RGB2BGR;
|
||||
cvtCode = cv::COLOR_RGB2BGR;
|
||||
} else if (mMode == CV_CAP_MODE_RGB) {
|
||||
cvtCode = 0;
|
||||
} else if (mMode == CV_CAP_MODE_GRAY) {
|
||||
cvtCode = CV_RGB2GRAY;
|
||||
cvtCode = cv::COLOR_RGB2GRAY;
|
||||
} else {
|
||||
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
|
||||
CVBufferRelease(mGrabbedPixels);
|
||||
@ -994,11 +994,11 @@ IplImage* CvCaptureFile::retrieveFramePixelBuffer() {
|
||||
deviceChannels = 2;
|
||||
|
||||
if (mMode == CV_CAP_MODE_BGR) {
|
||||
cvtCode = CV_YUV2BGR_UYVY;
|
||||
cvtCode = cv::COLOR_YUV2BGR_UYVY;
|
||||
} else if (mMode == CV_CAP_MODE_RGB) {
|
||||
cvtCode = CV_YUV2RGB_UYVY;
|
||||
cvtCode = cv::COLOR_YUV2RGB_UYVY;
|
||||
} else if (mMode == CV_CAP_MODE_GRAY) {
|
||||
cvtCode = CV_YUV2GRAY_UYVY;
|
||||
cvtCode = cv::COLOR_YUV2GRAY_UYVY;
|
||||
} else if (mMode == CV_CAP_MODE_YUYV) {
|
||||
cvtCode = -1; // Copy
|
||||
} else {
|
||||
@ -1010,17 +1010,17 @@ IplImage* CvCaptureFile::retrieveFramePixelBuffer() {
|
||||
}
|
||||
} else if ( pixelFormat == kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange || // 420v
|
||||
pixelFormat == kCVPixelFormatType_420YpCbCr8BiPlanarFullRange ) { // 420f
|
||||
// cvCvtColor(CV_YUV2GRAY_420) is expecting a single buffer with both the Y plane and the CrCb planes.
|
||||
// So, lie about the height of the buffer. cvCvtColor(CV_YUV2GRAY_420) will only read the first 2/3 of it.
|
||||
// cvtColor(cv::COLOR_YUV2GRAY_420) is expecting a single buffer with both the Y plane and the CrCb planes.
|
||||
// So, lie about the height of the buffer. cvtColor(cv::COLOR_YUV2GRAY_420) will only read the first 2/3 of it.
|
||||
height = height * 3 / 2;
|
||||
deviceChannels = 1;
|
||||
|
||||
if (mMode == CV_CAP_MODE_BGR) {
|
||||
cvtCode = CV_YUV2BGR_YV12;
|
||||
cvtCode = cv::COLOR_YUV2BGR_YV12;
|
||||
} else if (mMode == CV_CAP_MODE_RGB) {
|
||||
cvtCode = CV_YUV2RGB_YV12;
|
||||
cvtCode = cv::COLOR_YUV2RGB_YV12;
|
||||
} else if (mMode == CV_CAP_MODE_GRAY) {
|
||||
cvtCode = CV_YUV2GRAY_420;
|
||||
cvtCode = cv::COLOR_YUV2GRAY_420;
|
||||
} else {
|
||||
CVPixelBufferUnlockBaseAddress(mGrabbedPixels, 0);
|
||||
CVBufferRelease(mGrabbedPixels);
|
||||
@ -1053,7 +1053,7 @@ IplImage* CvCaptureFile::retrieveFramePixelBuffer() {
|
||||
// Copy.
|
||||
cv::cvarrToMat(mDeviceImage).copyTo(cv::cvarrToMat(mOutImage));
|
||||
} else {
|
||||
cvCvtColor(mDeviceImage, mOutImage, cvtCode);
|
||||
cvtColor(cv::cvarrToMat(mDeviceImage), cv::cvarrToMat(mOutImage), cvtCode);
|
||||
}
|
||||
|
||||
|
||||
@ -1333,10 +1333,10 @@ bool CvVideoWriter_AVFoundation::writeFrame(const IplImage* iplimage) {
|
||||
|
||||
if (movieColor) {
|
||||
//assert(iplimage->nChannels == 3);
|
||||
cvCvtColor(iplimage, argbimage, CV_BGR2BGRA);
|
||||
cvtColor(cv::cvarrToMat(iplimage), cv::cvarrToMat(argbimage), cv::COLOR_BGR2BGRA);
|
||||
}else{
|
||||
//assert(iplimage->nChannels == 1);
|
||||
cvCvtColor(iplimage, argbimage, CV_GRAY2BGRA);
|
||||
cvtColor(cv::cvarrToMat(iplimage), cv::cvarrToMat(argbimage), cv::COLOR_GRAY2BGRA);
|
||||
}
|
||||
//IplImage -> CGImage conversion
|
||||
CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
|
||||
|
@ -1052,7 +1052,7 @@ IplImage* CvCapture_OpenNI2::retrieveGrayImage()
|
||||
|
||||
cv::Mat rgbImage;
|
||||
getBGRImageFromMetaData(streamFrames[CV_COLOR_STREAM], rgbImage);
|
||||
cv::cvtColor( rgbImage, outputMaps[CV_CAP_OPENNI_GRAY_IMAGE].mat, CV_BGR2GRAY );
|
||||
cv::cvtColor( rgbImage, outputMaps[CV_CAP_OPENNI_GRAY_IMAGE].mat, cv::COLOR_BGR2GRAY );
|
||||
|
||||
return outputMaps[CV_CAP_OPENNI_GRAY_IMAGE].getIplImagePtr();
|
||||
}
|
||||
|
@ -230,7 +230,7 @@
|
||||
Memcheck:Leak
|
||||
...
|
||||
fun:gtk_init
|
||||
fun:cvInitSystem
|
||||
fun:gtk_InitSystem
|
||||
}
|
||||
|
||||
{
|
||||
|
@ -64,7 +64,7 @@ public class Puzzle15Processor {
|
||||
}
|
||||
|
||||
for (int i = 0; i < GRID_AREA; i++) {
|
||||
Size s = Imgproc.getTextSize(Integer.toString(i + 1), 3/* CV_FONT_HERSHEY_COMPLEX */, 1, 2, null);
|
||||
Size s = Imgproc.getTextSize(Integer.toString(i + 1), Imgproc.FONT_HERSHEY_COMPLEX, 1, 2, null);
|
||||
mTextHeights[i] = (int) s.height;
|
||||
mTextWidths[i] = (int) s.width;
|
||||
}
|
||||
@ -100,7 +100,7 @@ public class Puzzle15Processor {
|
||||
cells[idx].copyTo(mCells15[i]);
|
||||
if (mShowTileNumbers) {
|
||||
Imgproc.putText(mCells15[i], Integer.toString(1 + idx), new Point((cols / GRID_SIZE - mTextWidths[idx]) / 2,
|
||||
(rows / GRID_SIZE + mTextHeights[idx]) / 2), 3/* CV_FONT_HERSHEY_COMPLEX */, 1, new Scalar(255, 0, 0, 255), 2);
|
||||
(rows / GRID_SIZE + mTextHeights[idx]) / 2), Imgproc.FONT_HERSHEY_COMPLEX, 1, new Scalar(255, 0, 0, 255), 2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -52,7 +52,7 @@ int main( int argc, const char** argv )
|
||||
return -1;
|
||||
}
|
||||
|
||||
int method = parser.get<int>("cm"); // default 3 (CV_TM_CCORR_NORMED)
|
||||
int method = parser.get<int>("cm"); // default 3 (cv::TM_CCORR_NORMED)
|
||||
matchTemplate(img, tmpl, res, method, mask);
|
||||
|
||||
double minVal, maxVal;
|
||||
|
@ -28,7 +28,7 @@ public class MorphologyDemo1 {
|
||||
private static final int MAX_KERNEL_SIZE = 21;
|
||||
private Mat matImgSrc;
|
||||
private Mat matImgDst = new Mat();
|
||||
private int elementType = Imgproc.CV_SHAPE_RECT;
|
||||
private int elementType = Imgproc.MORPH_RECT;
|
||||
private int kernelSize = 0;
|
||||
private boolean doErosion = true;
|
||||
private JFrame frame;
|
||||
@ -74,11 +74,11 @@ public class MorphologyDemo1 {
|
||||
@SuppressWarnings("unchecked")
|
||||
JComboBox<String> cb = (JComboBox<String>)e.getSource();
|
||||
if (cb.getSelectedIndex() == 0) {
|
||||
elementType = Imgproc.CV_SHAPE_RECT;
|
||||
elementType = Imgproc.MORPH_RECT;
|
||||
} else if (cb.getSelectedIndex() == 1) {
|
||||
elementType = Imgproc.CV_SHAPE_CROSS;
|
||||
elementType = Imgproc.MORPH_CROSS;
|
||||
} else if (cb.getSelectedIndex() == 2) {
|
||||
elementType = Imgproc.CV_SHAPE_ELLIPSE;
|
||||
elementType = Imgproc.MORPH_ELLIPSE;
|
||||
}
|
||||
update();
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user