mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 22:00:25 +08:00
remove debug detect at scale method
This commit is contained in:
parent
72e2b8b370
commit
8acfbde68e
@ -248,7 +248,6 @@ Implementation of soft (stageless) cascaded detector. ::
|
||||
virtual ~SCascade();
|
||||
virtual bool load(const FileNode& fn);
|
||||
virtual void detect(InputArray image, InputArray rois, OutputArray objects, Stream& stream = Stream::Null()) const;
|
||||
virtual void detect(InputArray image, InputArray rois, OutputArray objects, const int level, Stream& stream = Stream::Null()) const;
|
||||
void genRoi(InputArray roi, OutputArray mask, Stream& stream = Stream::Null()) const;
|
||||
};
|
||||
|
||||
@ -292,7 +291,6 @@ SCascade::detect
|
||||
Apply cascade to an input frame and return the vector of Decection objcts.
|
||||
|
||||
.. ocv:function:: void detect(InputArray image, InputArray rois, OutputArray objects, Stream& stream = Stream::Null()) const
|
||||
.. ocv:function:: void detect(InputArray image, InputArray rois, OutputArray objects, const int level, Stream& stream = Stream::Null()) const
|
||||
|
||||
:param image: a frame on which detector will be applied.
|
||||
|
||||
@ -302,8 +300,6 @@ Apply cascade to an input frame and return the vector of Decection objcts.
|
||||
|
||||
:param stream: a high-level CUDA stream abstraction used for asynchronous execution.
|
||||
|
||||
:param level: used for execution cascade on specific scales pyramid level.
|
||||
|
||||
|
||||
SCascade::genRoi
|
||||
--------------------------
|
||||
|
@ -1577,9 +1577,7 @@ public:
|
||||
// Param objects is an output array of Detections represented as GpuMat of detections (SCascade::Detection)
|
||||
// The first element of the matrix is actually a count of detections.
|
||||
// Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution
|
||||
// Param level used for execution cascade on specific scales pyramid level.
|
||||
virtual void detect(InputArray image, InputArray rois, OutputArray objects, Stream& stream = Stream::Null()) const;
|
||||
virtual void detect(InputArray image, InputArray rois, OutputArray objects, const int level, Stream& stream = Stream::Null()) const;
|
||||
|
||||
// Convert ROI matrix into the suitable for detect method.
|
||||
// Param roi is an input matrix of the same size as the image.
|
||||
|
@ -45,15 +45,6 @@
|
||||
#include <stdio.h>
|
||||
#include <float.h>
|
||||
|
||||
// #define LOG_CUDA_CASCADE
|
||||
|
||||
#if defined LOG_CUDA_CASCADE
|
||||
# define dprintf(format, ...) \
|
||||
do { printf(format, __VA_ARGS__); } while (0)
|
||||
#else
|
||||
# define dprintf(format, ...)
|
||||
#endif
|
||||
|
||||
namespace cv { namespace gpu { namespace device {
|
||||
namespace icf {
|
||||
|
||||
@ -254,12 +245,12 @@ __global__ void soft_cascade(const CascadeInvoker<Policy> invoker, Detection* ob
|
||||
|
||||
template<typename Policy>
|
||||
void CascadeInvoker<Policy>::operator()(const PtrStepSzb& roi, const PtrStepSzi& hogluv,
|
||||
PtrStepSz<uchar4> objects, PtrStepSzi counter, const int downscales, const int scale, const cudaStream_t& stream) const
|
||||
PtrStepSz<uchar4> objects, PtrStepSzi counter, const int downscales, const cudaStream_t& stream) const
|
||||
{
|
||||
int fw = roi.rows;
|
||||
int fh = roi.cols;
|
||||
|
||||
dim3 grid(fw, fh / Policy::STA_Y, (scale == -1) ? downscales : 1);
|
||||
dim3 grid(fw, fh / Policy::STA_Y, downscales);
|
||||
|
||||
uint* ctr = (uint*)(counter.ptr(0));
|
||||
Detection* det = (Detection*)objects.ptr();
|
||||
@ -268,26 +259,16 @@ void CascadeInvoker<Policy>::operator()(const PtrStepSzb& roi, const PtrStepSzi&
|
||||
cudaChannelFormatDesc desc = cudaCreateChannelDesc<int>();
|
||||
cudaSafeCall( cudaBindTexture2D(0, thogluv, hogluv.data, desc, hogluv.cols, hogluv.rows, hogluv.step));
|
||||
|
||||
cudaChannelFormatDesc desc_roi = cudaCreateChannelDesc<float2>();
|
||||
cudaSafeCall( cudaBindTexture2D(0, troi, roi.data, desc_roi, roi.cols / 8, roi.rows, roi.step));
|
||||
cudaChannelFormatDesc desc_roi = cudaCreateChannelDesc<typename Policy::roi_type>();
|
||||
cudaSafeCall( cudaBindTexture2D(0, troi, roi.data, desc_roi, roi.cols / Policy::STA_Y, roi.rows, roi.step));
|
||||
|
||||
const CascadeInvoker<Policy> inv = *this;
|
||||
|
||||
if (scale == -1)
|
||||
{
|
||||
soft_cascade<Policy, false><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, 0);
|
||||
cudaSafeCall( cudaGetLastError());
|
||||
soft_cascade<Policy, false><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, 0);
|
||||
cudaSafeCall( cudaGetLastError());
|
||||
|
||||
grid = dim3(fw, fh / Policy::STA_Y, scales - downscales);
|
||||
soft_cascade<Policy, true><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, downscales);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (scale >= downscales)
|
||||
soft_cascade<Policy, true><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, scale);
|
||||
else
|
||||
soft_cascade<Policy, false><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, scale);
|
||||
}
|
||||
grid = dim3(fw, fh / Policy::STA_Y, scales - downscales);
|
||||
soft_cascade<Policy, true><<<grid, Policy::block(), 0, stream>>>(inv, det, max_det, ctr, downscales);
|
||||
|
||||
if (!stream)
|
||||
{
|
||||
@ -297,7 +278,7 @@ void CascadeInvoker<Policy>::operator()(const PtrStepSzb& roi, const PtrStepSzi&
|
||||
}
|
||||
|
||||
template void CascadeInvoker<GK107PolicyX4>::operator()(const PtrStepSzb& roi, const PtrStepSzi& hogluv,
|
||||
PtrStepSz<uchar4> objects, PtrStepSzi counter, const int downscales, const int scale, const cudaStream_t& stream) const;
|
||||
PtrStepSz<uchar4> objects, PtrStepSzi counter, const int downscales, const cudaStream_t& stream) const;
|
||||
|
||||
}
|
||||
}}}
|
@ -118,9 +118,10 @@ struct __align__(16) Detection
|
||||
struct GK107PolicyX4
|
||||
{
|
||||
enum {WARP = 32, STA_X = WARP, STA_Y = 8, SHRINKAGE = 4};
|
||||
typedef float2 roi_type;
|
||||
static const dim3 block()
|
||||
{
|
||||
return dim3(GK107PolicyX4::STA_X, GK107PolicyX4::STA_Y);
|
||||
return dim3(STA_X, STA_Y);
|
||||
}
|
||||
};
|
||||
|
||||
@ -146,7 +147,7 @@ struct CascadeInvoker
|
||||
int scales;
|
||||
|
||||
void operator()(const PtrStepSzb& roi, const PtrStepSzi& hogluv, PtrStepSz<uchar4> objects,
|
||||
PtrStepSzi counter, const int downscales, const int csale = -1, const cudaStream_t& stream = 0) const;
|
||||
PtrStepSzi counter, const int downscales, const cudaStream_t& stream = 0) const;
|
||||
|
||||
template<bool isUp>
|
||||
__device void detect(Detection* objects, const uint ndetections, uint* ctr, const int downscales) const;
|
||||
|
@ -311,13 +311,13 @@ struct cv::gpu::SCascade::Fields
|
||||
leaves.upload(hleaves);
|
||||
}
|
||||
|
||||
void detect(int scale, const cv::gpu::GpuMat& roi, const cv::gpu::GpuMat& count, cv::gpu::GpuMat& objects, const cudaStream_t& stream) const
|
||||
void detect(const cv::gpu::GpuMat& roi, const cv::gpu::GpuMat& count, cv::gpu::GpuMat& objects, const cudaStream_t& stream) const
|
||||
{
|
||||
cudaMemset(count.data, 0, sizeof(Detection));
|
||||
cudaSafeCall( cudaGetLastError());
|
||||
device::icf::CascadeInvoker<device::icf::GK107PolicyX4> invoker
|
||||
= device::icf::CascadeInvoker<device::icf::GK107PolicyX4>(levels, octaves, stages, nodes, leaves);
|
||||
invoker(roi, hogluv, objects, count, downscales, scale, stream);
|
||||
invoker(roi, hogluv, objects, count, downscales, stream);
|
||||
}
|
||||
|
||||
void preprocess(const cv::gpu::GpuMat& colored, Stream& s)
|
||||
@ -521,36 +521,7 @@ void cv::gpu::SCascade::detect(InputArray image, InputArray _rois, OutputArray _
|
||||
objects = GpuMat(objects, cv::Rect( sizeof(Detection), 0, objects.cols - sizeof(Detection), 1));
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
|
||||
flds.detect(-1, rois, tmp, objects, stream);
|
||||
}
|
||||
|
||||
void cv::gpu::SCascade::detect(InputArray image, InputArray _rois, OutputArray _objects, const int level, Stream& s) const
|
||||
{
|
||||
CV_Assert(fields);
|
||||
|
||||
const GpuMat colored = image.getGpuMat();
|
||||
// only color images are supperted
|
||||
CV_Assert(colored.type() == CV_8UC3 || colored.type() == CV_32SC1);
|
||||
|
||||
Fields& flds = *fields;
|
||||
if (colored.type() == CV_8UC3)
|
||||
{
|
||||
// only this window size allowed
|
||||
// CV_Assert(colored.cols == Fields::FRAME_WIDTH && colored.rows == Fields::FRAME_HEIGHT);
|
||||
flds.preprocess(colored, s);
|
||||
}
|
||||
else
|
||||
{
|
||||
colored.copyTo(flds.hogluv);
|
||||
}
|
||||
|
||||
GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();
|
||||
|
||||
GpuMat tmp = GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1));
|
||||
objects = GpuMat(objects, cv::Rect( sizeof(Detection), 0, objects.cols - sizeof(Detection), 1));
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
|
||||
flds.detect(level, rois, tmp, objects, stream);
|
||||
flds.detect(rois, tmp, objects, stream);
|
||||
}
|
||||
|
||||
void cv::gpu::SCascade::genRoi(InputArray _roi, OutputArray _mask, Stream& stream) const
|
||||
|
@ -195,55 +195,55 @@ GPU_TEST_P(SCascadeTestRoi, detect,
|
||||
|
||||
}
|
||||
|
||||
typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SCascadeTestLevel;
|
||||
GPU_TEST_P(SCascadeTestLevel, detect,
|
||||
testing::Combine(
|
||||
ALL_DEVICES,
|
||||
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
||||
testing::Range(0, 47)
|
||||
))
|
||||
{
|
||||
cv::gpu::setDevice(GET_PARAM(0).deviceID());
|
||||
// typedef ::testing::TestWithParam<std::tr1::tuple<cv::gpu::DeviceInfo, std::string, std::string, int> > SCascadeTestLevel;
|
||||
// GPU_TEST_P(SCascadeTestLevel, detect,
|
||||
// testing::Combine(
|
||||
// ALL_DEVICES,
|
||||
// testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")),
|
||||
// testing::Values(std::string("../cv/cascadeandhog/bahnhof/image_00000000_0.png")),
|
||||
// testing::Range(0, 47)
|
||||
// ))
|
||||
// {
|
||||
// cv::gpu::setDevice(GET_PARAM(0).deviceID());
|
||||
|
||||
cv::gpu::SCascade cascade;
|
||||
// cv::gpu::SCascade cascade;
|
||||
|
||||
cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
// cv::FileStorage fs(perf::TestBase::getDataPath(GET_PARAM(1)), cv::FileStorage::READ);
|
||||
// ASSERT_TRUE(fs.isOpened());
|
||||
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
// ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2));
|
||||
ASSERT_FALSE(coloredCpu.empty());
|
||||
// cv::Mat coloredCpu = cv::imread(cvtest::TS::ptr()->get_data_path() + GET_PARAM(2));
|
||||
// ASSERT_FALSE(coloredCpu.empty());
|
||||
|
||||
typedef cv::gpu::SCascade::Detection Detection;
|
||||
GpuMat colored(coloredCpu), objectBoxes(1, 100 * sizeof(Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
|
||||
rois.setTo(1);
|
||||
// typedef cv::gpu::SCascade::Detection Detection;
|
||||
// GpuMat colored(coloredCpu), objectBoxes(1, 100 * sizeof(Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
|
||||
// rois.setTo(1);
|
||||
|
||||
cv::gpu::GpuMat trois;
|
||||
cascade.genRoi(rois, trois);
|
||||
objectBoxes.setTo(0);
|
||||
int level = GET_PARAM(3);
|
||||
cascade.detect(colored, trois, objectBoxes, level);
|
||||
// cv::gpu::GpuMat trois;
|
||||
// cascade.genRoi(rois, trois);
|
||||
// objectBoxes.setTo(0);
|
||||
// int level = GET_PARAM(3);
|
||||
// cascade.detect(colored, trois, objectBoxes, level);
|
||||
|
||||
cv::Mat dt(objectBoxes);
|
||||
// cv::Mat dt(objectBoxes);
|
||||
|
||||
Detection* dts = ((Detection*)dt.data) + 1;
|
||||
int* count = dt.ptr<int>(0);
|
||||
// Detection* dts = ((Detection*)dt.data) + 1;
|
||||
// int* count = dt.ptr<int>(0);
|
||||
|
||||
cv::Mat result(coloredCpu);
|
||||
// cv::Mat result(coloredCpu);
|
||||
|
||||
printTotal(std::cout, *count);
|
||||
for (int i = 0; i < *count; ++i)
|
||||
{
|
||||
Detection d = dts[i];
|
||||
print(std::cout, d);
|
||||
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
|
||||
}
|
||||
// printTotal(std::cout, *count);
|
||||
// for (int i = 0; i < *count; ++i)
|
||||
// {
|
||||
// Detection d = dts[i];
|
||||
// print(std::cout, d);
|
||||
// cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1);
|
||||
// }
|
||||
|
||||
writeResult(result, level);
|
||||
SHOW(result);
|
||||
}
|
||||
// writeResult(result, level);
|
||||
// SHOW(result);
|
||||
// }
|
||||
|
||||
TEST(SCascadeTest, readCascade)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user