mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Commit rst tutorial for Cascade Classifiers
This commit is contained in:
parent
dd836f1bdd
commit
8b0092eaf5
@ -377,7 +377,10 @@ extlinks = {'cvt_color': ('http://opencv.willowgarage.com/documentation/cpp/imgp
|
||||
'perspective_transform' : ('http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#perspectiveTransform%s', None ),
|
||||
'flann_based_matcher' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_matchers.html?#FlannBasedMatcher%s', None),
|
||||
'brute_force_matcher' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_matchers.html?#BruteForceMatcher%s', None ),
|
||||
'flann' : ('http://opencv.willowgarage.com/documentation/cpp/flann_fast_approximate_nearest_neighbor_search.html?%s', None )
|
||||
'flann' : ('http://opencv.willowgarage.com/documentation/cpp/flann_fast_approximate_nearest_neighbor_search.html?%s', None ),
|
||||
'cascade_classifier' : ('http://opencv.willowgarage.com/documentation/cpp/objdetect_cascade_classification.html#cascadeclassifier%s', None ),
|
||||
'cascade_classifier_load' : ('http://opencv.willowgarage.com/documentation/cpp/objdetect_cascade_classification.html#cv-cascadeclassifier-load%s', None ),
|
||||
'cascade_classifier_detect_multiscale' : ('http://opencv.willowgarage.com/documentation/cpp/objdetect_cascade_classification.html#cv-cascadeclassifier-detectmultiscale%s', None )
|
||||
}
|
||||
|
||||
|
||||
|
@ -136,7 +136,7 @@ Learn about how to use the feature points detectors, descriptors and matching f
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
In this tutorial, you will use *features2d* to detect interest points.
|
||||
In this tutorial, you will use the FLANN library to make a fast matching.
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
@ -198,4 +198,9 @@ Learn about how to use the feature points detectors, descriptors and matching f
|
||||
../trackingmotion/good_features_to_track/good_features_to_track.rst
|
||||
../trackingmotion/generic_corner_detector/generic_corner_detector
|
||||
../trackingmotion/corner_subpixeles/corner_subpixeles
|
||||
../feature_detection/feature_detection
|
||||
../feature_detection/feature_description
|
||||
../feature_flann_matcher/feature_flann_matcher
|
||||
../feature_homography/feature_homography
|
||||
../detection_of_planar_objects/detection_of_planar_objects
|
||||
|
||||
|
@ -0,0 +1,134 @@
|
||||
.. _cascade_classifier:
|
||||
|
||||
Cascade Classifier
|
||||
*******************
|
||||
|
||||
Goal
|
||||
=====
|
||||
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
* Use the :cascade_classifier:`CascadeClassifier <>` class to detect objects in a video stream. Particularly, we will use the functions:
|
||||
|
||||
* :cascade_classifier_load:`load <>` to load a .xml classifier file. It can be either a Haar or a LBP classifer
|
||||
* :cascade_classifier_detect_multiscale:`detectMultiScale <>` to perform the detection.
|
||||
|
||||
|
||||
Theory
|
||||
======
|
||||
|
||||
Code
|
||||
====
|
||||
|
||||
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/objectDetection/objectDetection.cpp>`_ . The second version (using LBP for face detection) can be found `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/objectDetection/objectDetection2.cpp>`_
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include "opencv2/objdetect/objdetect.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
/** Function Headers */
|
||||
void detectAndDisplay( Mat frame );
|
||||
|
||||
/** Global variables */
|
||||
String face_cascade_name = "haarcascade_frontalface_alt.xml";
|
||||
String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
|
||||
CascadeClassifier face_cascade;
|
||||
CascadeClassifier eyes_cascade;
|
||||
string window_name = "Capture - Face detection";
|
||||
RNG rng(12345);
|
||||
|
||||
/** @function main */
|
||||
int main( int argc, const char** argv )
|
||||
{
|
||||
CvCapture* capture;
|
||||
Mat frame;
|
||||
|
||||
//-- 1. Load the cascades
|
||||
if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
|
||||
if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
|
||||
|
||||
//-- 2. Read the video stream
|
||||
capture = cvCaptureFromCAM( -1 );
|
||||
if( capture )
|
||||
{
|
||||
while( true )
|
||||
{
|
||||
frame = cvQueryFrame( capture );
|
||||
|
||||
//-- 3. Apply the classifier to the frame
|
||||
if( !frame.empty() )
|
||||
{ detectAndDisplay( frame ); }
|
||||
else
|
||||
{ printf(" --(!) No captured frame -- Break!"); break; }
|
||||
|
||||
int c = waitKey(10);
|
||||
if( (char)c == 'c' ) { break; }
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** @function detectAndDisplay */
|
||||
void detectAndDisplay( Mat frame )
|
||||
{
|
||||
std::vector<Rect> faces;
|
||||
Mat frame_gray;
|
||||
|
||||
cvtColor( frame, frame_gray, CV_BGR2GRAY );
|
||||
equalizeHist( frame_gray, frame_gray );
|
||||
|
||||
//-- Detect faces
|
||||
face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
|
||||
|
||||
for( int i = 0; i < faces.size(); i++ )
|
||||
{
|
||||
Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 );
|
||||
ellipse( frame, center, Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );
|
||||
|
||||
Mat faceROI = frame_gray( faces[i] );
|
||||
std::vector<Rect> eyes;
|
||||
|
||||
//-- In each face, detect eyes
|
||||
eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30) );
|
||||
|
||||
for( int j = 0; j < eyes.size(); j++ )
|
||||
{
|
||||
Point center( faces[i].x + eyes[j].x + eyes[j].width*0.5, faces[i].y + eyes[j].y + eyes[j].height*0.5 );
|
||||
int radius = cvRound( (eyes[j].width + eyes[i].height)*0.25 );
|
||||
circle( frame, center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 );
|
||||
}
|
||||
}
|
||||
//-- Show what you got
|
||||
imshow( window_name, frame );
|
||||
}
|
||||
|
||||
Explanation
|
||||
============
|
||||
|
||||
Result
|
||||
======
|
||||
|
||||
#. Here it is:
|
||||
|
||||
========== ==========
|
||||
|CCH| |CCLBP|
|
||||
========== ==========
|
||||
|
||||
.. |CCH| image:: images/Cascade_Classifier_Tutorial_Result_Haar.jpg
|
||||
:align: middle
|
||||
:height: 200pt
|
||||
|
||||
.. |CCLBP| image:: images/Cascade_Classifier_Tutorial_Result_LBP.jpg
|
||||
:align: middle
|
||||
:height: 200pt
|
||||
|
Binary file not shown.
After Width: | Height: | Size: 55 KiB |
Binary file not shown.
After Width: | Height: | Size: 52 KiB |
Binary file not shown.
After Width: | Height: | Size: 39 KiB |
@ -5,4 +5,32 @@
|
||||
|
||||
Ever wondered how your digital camera detects peoples and faces? Look here to find out!
|
||||
|
||||
.. include:: ../../definitions/noContent.rst
|
||||
.. include:: ../../definitions/tocDefinitions.rst
|
||||
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|CascadeClassif| **Title:** :ref:`cascade_classifier`
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
Here we learn how to use *objdetect* to find objects in our images or videos
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
.. |CascadeClassif| image:: images/Cascade_Classifier_Tutorial_Cover.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
.. raw:: latex
|
||||
|
||||
\pagebreak
|
||||
|
||||
.. toctree::
|
||||
:hidden:
|
||||
|
||||
../cascade_classifier/cascade_classifier
|
||||
|
Loading…
Reference in New Issue
Block a user