implemented gpu::reduce

This commit is contained in:
Vladislav Vinogradov 2011-09-22 07:08:26 +00:00
parent ce35a6d8be
commit 8b23c79294
4 changed files with 496 additions and 0 deletions

View File

@ -860,6 +860,9 @@ namespace cv
//! counts non-zero array elements //! counts non-zero array elements
CV_EXPORTS int countNonZero(const GpuMat& src, GpuMat& buf); CV_EXPORTS int countNonZero(const GpuMat& src, GpuMat& buf);
//! reduces a matrix to a vector
CV_EXPORTS void reduce(const GpuMat& mtx, GpuMat& vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null());
///////////////////////////// Calibration 3D ////////////////////////////////// ///////////////////////////// Calibration 3D //////////////////////////////////

View File

@ -1804,4 +1804,278 @@ namespace cv { namespace gpu { namespace mathfunc
template void sqrSumCaller<short>(const DevMem2D, PtrStep, double*, int); template void sqrSumCaller<short>(const DevMem2D, PtrStep, double*, int);
template void sqrSumCaller<int>(const DevMem2D, PtrStep, double*, int); template void sqrSumCaller<int>(const DevMem2D, PtrStep, double*, int);
template void sqrSumCaller<float>(const DevMem2D, PtrStep, double*, int); template void sqrSumCaller<float>(const DevMem2D, PtrStep, double*, int);
//////////////////////////////////////////////////////////////////////////////
// reduce
template <typename S> struct SumReductor
{
__device__ __forceinline__ S startValue() const
{
return 0;
}
__device__ __forceinline__ S operator ()(volatile S a, volatile S b) const
{
return a + b;
}
__device__ __forceinline S result(S r, double) const
{
return r;
}
};
template <typename S> struct AvgReductor
{
__device__ __forceinline__ S startValue() const
{
return 0;
}
__device__ __forceinline__ S operator ()(volatile S a, volatile S b) const
{
return a + b;
}
__device__ __forceinline double result(S r, double sz) const
{
return r / sz;
}
};
template <typename S> struct MinReductor
{
__device__ __forceinline__ S startValue() const
{
return numeric_limits<S>::max();
}
template <typename T> __device__ __forceinline__ T operator ()(volatile T a, volatile T b) const
{
return saturate_cast<T>(::min(a, b));
}
__device__ __forceinline__ float operator ()(volatile float a, volatile float b) const
{
return ::fmin(a, b);
}
__device__ __forceinline S result(S r, double) const
{
return r;
}
};
template <typename S> struct MaxReductor
{
__device__ __forceinline__ S startValue() const
{
return numeric_limits<S>::min();
}
template <typename T> __device__ __forceinline__ int operator ()(volatile T a, volatile T b) const
{
return ::max(a, b);
}
__device__ __forceinline__ float operator ()(volatile float a, volatile float b) const
{
return ::fmax(a, b);
}
__device__ __forceinline S result(S r, double) const
{
return r;
}
};
template <class Op, typename T, typename S, typename D> __global__ void reduceRows(const DevMem2D_<T> src, D* dst, const Op op)
{
__shared__ S smem[16 * 16];
const int x = blockIdx.x * 16 + threadIdx.x;
if (x < src.cols)
{
S myVal = op.startValue();
for (int y = threadIdx.y; y < src.rows; y += 16)
myVal = op(myVal, src.ptr(y)[x]);
smem[threadIdx.y * 16 + threadIdx.x] = myVal;
__syncthreads();
if (threadIdx.y == 0)
{
myVal = smem[threadIdx.x];
#pragma unroll
for (int i = 1; i < 16; ++i)
myVal = op(myVal, smem[i * 16 + threadIdx.x]);
dst[x] = saturate_cast<D>(op.result(myVal, src.rows));
}
}
}
template <template <typename> class Op, typename T, typename S, typename D> void reduceRows_caller(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream)
{
const dim3 block(16, 16);
const dim3 grid(divUp(src.cols, block.x));
Op<S> op;
reduceRows<Op<S>, T, S, D><<<grid, block, 0, stream>>>(src, dst.data, op);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T, typename S, typename D> void reduceRows_gpu(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream)
{
typedef void (*caller_t)(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream);
static const caller_t callers[] =
{
reduceRows_caller<SumReductor, T, S, D>,
reduceRows_caller<AvgReductor, T, S, D>,
reduceRows_caller<MaxReductor, T, S, D>,
reduceRows_caller<MinReductor, T, S, D>
};
callers[reduceOp](static_cast< DevMem2D_<T> >(src), static_cast< DevMem2D_<D> >(dst), stream);
}
template void reduceRows_gpu<uchar, int, uchar>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceRows_gpu<uchar, int, int>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceRows_gpu<uchar, int, float>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceRows_gpu<ushort, int, ushort>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceRows_gpu<ushort, int, int>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceRows_gpu<ushort, int, float>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceRows_gpu<short, int, short>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceRows_gpu<short, int, int>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceRows_gpu<short, int, float>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceRows_gpu<int, int, int>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceRows_gpu<int, int, float>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceRows_gpu<float, float, float>(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template <int cn, class Op, typename T, typename S, typename D> __global__ void reduceCols(const DevMem2D_<T> src, D* dst, const Op op)
{
__shared__ S smem[256 * cn];
const int y = blockIdx.x;
const T* src_row = src.ptr(y);
S myVal[cn];
#pragma unroll
for (int c = 0; c < cn; ++c)
myVal[c] = op.startValue();
for (int x = threadIdx.x; x < src.cols; x += 256)
{
#pragma unroll
for (int c = 0; c < cn; ++c)
myVal[c] = op(myVal[c], src_row[x * cn + c]);
}
#pragma unroll
for (int c = 0; c < cn; ++c)
smem[c * 256 + threadIdx.x] = myVal[c];
__syncthreads();
if (threadIdx.x < 128)
{
#pragma unroll
for (int c = 0; c < cn; ++c)
smem[c * 256 + threadIdx.x] = op(smem[c * 256 + threadIdx.x], smem[c * 256 + threadIdx.x + 128]);
}
__syncthreads();
if (threadIdx.x < 64)
{
#pragma unroll
for (int c = 0; c < cn; ++c)
smem[c * 256 + threadIdx.x] = op(smem[c * 256 + threadIdx.x], smem[c * 256 + threadIdx.x + 64]);
}
__syncthreads();
volatile S* sdata = smem;
if (threadIdx.x < 32)
{
#pragma unroll
for (int c = 0; c < cn; ++c)
{
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 32]);
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 16]);
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 8]);
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 4]);
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 2]);
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 1]);
}
}
__syncthreads();
if (threadIdx.x == 0)
{
#pragma unroll
for (int c = 0; c < cn; ++c)
dst[y * cn + c] = saturate_cast<D>(op.result(smem[c * 256], src.cols));
}
}
template <int cn, template <typename> class Op, typename T, typename S, typename D> void reduceCols_caller(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream)
{
const dim3 block(256);
const dim3 grid(src.rows);
Op<S> op;
reduceCols<cn, Op<S>, T, S, D><<<grid, block, 0, stream>>>(src, dst.data, op);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T, typename S, typename D> void reduceCols_gpu(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream)
{
typedef void (*caller_t)(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream);
static const caller_t callers[4][4] =
{
{reduceCols_caller<1, SumReductor, T, S, D>, reduceCols_caller<1, AvgReductor, T, S, D>, reduceCols_caller<1, MaxReductor, T, S, D>, reduceCols_caller<1, MinReductor, T, S, D>},
{reduceCols_caller<2, SumReductor, T, S, D>, reduceCols_caller<2, AvgReductor, T, S, D>, reduceCols_caller<2, MaxReductor, T, S, D>, reduceCols_caller<2, MinReductor, T, S, D>},
{reduceCols_caller<3, SumReductor, T, S, D>, reduceCols_caller<3, AvgReductor, T, S, D>, reduceCols_caller<3, MaxReductor, T, S, D>, reduceCols_caller<3, MinReductor, T, S, D>},
{reduceCols_caller<4, SumReductor, T, S, D>, reduceCols_caller<4, AvgReductor, T, S, D>, reduceCols_caller<4, MaxReductor, T, S, D>, reduceCols_caller<4, MinReductor, T, S, D>},
};
callers[cn - 1][reduceOp](static_cast< DevMem2D_<T> >(src), static_cast< DevMem2D_<D> >(dst), stream);
}
template void reduceCols_gpu<uchar, int, uchar>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceCols_gpu<uchar, int, int>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceCols_gpu<uchar, int, float>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceCols_gpu<ushort, int, ushort>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceCols_gpu<ushort, int, int>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceCols_gpu<ushort, int, float>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceCols_gpu<short, int, short>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceCols_gpu<short, int, int>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceCols_gpu<short, int, float>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceCols_gpu<int, int, int>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceCols_gpu<int, int, float>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template void reduceCols_gpu<float, float, float>(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
}}} }}}

View File

@ -63,6 +63,7 @@ void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const G
void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
int cv::gpu::countNonZero(const GpuMat&) { throw_nogpu(); return 0; } int cv::gpu::countNonZero(const GpuMat&) { throw_nogpu(); return 0; }
int cv::gpu::countNonZero(const GpuMat&, GpuMat&) { throw_nogpu(); return 0; } int cv::gpu::countNonZero(const GpuMat&, GpuMat&) { throw_nogpu(); return 0; }
void cv::gpu::reduce(const GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); }
#else #else
@ -598,4 +599,150 @@ int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf)
return caller(src, buf); return caller(src, buf);
} }
//////////////////////////////////////////////////////////////////////////////
// reduce
namespace cv { namespace gpu { namespace mathfunc {
template <typename T, typename S, typename D> void reduceRows_gpu(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
template <typename T, typename S, typename D> void reduceCols_gpu(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
}}}
void cv::gpu::reduce(const GpuMat& src, GpuMat& dst, int dim, int reduceOp, int dtype, Stream& stream)
{
using namespace cv::gpu::mathfunc;
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4 && dtype <= CV_32F);
CV_Assert(dim == 0 || dim == 1);
CV_Assert(reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG || reduceOp == CV_REDUCE_MAX || reduceOp == CV_REDUCE_MIN);
if (dtype < 0)
dtype = src.depth();
dst.create(1, dim == 0 ? src.cols : src.rows, CV_MAKETYPE(dtype, src.channels()));
if (dim == 0)
{
typedef void (*caller_t)(const DevMem2D& src, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
static const caller_t callers[6][6] =
{
{
reduceRows_gpu<unsigned char, int, unsigned char>,
0/*reduceRows_gpu<unsigned char, int, signed char>*/,
0/*reduceRows_gpu<unsigned char, int, unsigned short>*/,
0/*reduceRows_gpu<unsigned char, int, short>*/,
reduceRows_gpu<unsigned char, int, int>,
reduceRows_gpu<unsigned char, int, float>
},
{
0/*reduceRows_gpu<signed char, int, unsigned char>*/,
0/*reduceRows_gpu<signed char, int, signed char>*/,
0/*reduceRows_gpu<signed char, int, unsigned short>*/,
0/*reduceRows_gpu<signed char, int, short>*/,
0/*reduceRows_gpu<signed char, int, int>*/,
0/*reduceRows_gpu<signed char, int, float>*/
},
{
0/*reduceRows_gpu<unsigned short, int, unsigned char>*/,
0/*reduceRows_gpu<unsigned short, int, signed char>*/,
reduceRows_gpu<unsigned short, int, unsigned short>,
0/*reduceRows_gpu<unsigned short, int, short>*/,
reduceRows_gpu<unsigned short, int, int>,
reduceRows_gpu<unsigned short, int, float>
},
{
0/*reduceRows_gpu<short, int, unsigned char>*/,
0/*reduceRows_gpu<short, int, signed char>*/,
0/*reduceRows_gpu<short, int, unsigned short>*/,
reduceRows_gpu<short, int, short>,
reduceRows_gpu<short, int, int>,
reduceRows_gpu<short, int, float>
},
{
0/*reduceRows_gpu<int, int, unsigned char>*/,
0/*reduceRows_gpu<int, int, signed char>*/,
0/*reduceRows_gpu<int, int, unsigned short>*/,
0/*reduceRows_gpu<int, int, short>*/,
reduceRows_gpu<int, int, int>,
reduceRows_gpu<int, int, float>
},
{
0/*reduceRows_gpu<float, float, unsigned char>*/,
0/*reduceRows_gpu<float, float, signed char>*/,
0/*reduceRows_gpu<float, float, unsigned short>*/,
0/*reduceRows_gpu<float, float, short>*/,
0/*reduceRows_gpu<float, float, int>*/,
reduceRows_gpu<float, float, float>
}
};
const caller_t func = callers[src.depth()][dst.depth()];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");
func(src.reshape(1), dst.reshape(1), reduceOp, StreamAccessor::getStream(stream));
}
else
{
typedef void (*caller_t)(const DevMem2D& src, int cn, const DevMem2D& dst, int reduceOp, cudaStream_t stream);
static const caller_t callers[6][6] =
{
{
reduceCols_gpu<unsigned char, int, unsigned char>,
0/*reduceCols_gpu<unsigned char, int, signed char>*/,
0/*reduceCols_gpu<unsigned char, int, unsigned short>*/,
0/*reduceCols_gpu<unsigned char, int, short>*/,
reduceCols_gpu<unsigned char, int, int>,
reduceCols_gpu<unsigned char, int, float>
},
{
0/*reduceCols_gpu<signed char, int, unsigned char>*/,
0/*reduceCols_gpu<signed char, int, signed char>*/,
0/*reduceCols_gpu<signed char, int, unsigned short>*/,
0/*reduceCols_gpu<signed char, int, short>*/,
0/*reduceCols_gpu<signed char, int, int>*/,
0/*reduceCols_gpu<signed char, int, float>*/
},
{
0/*reduceCols_gpu<unsigned short, int, unsigned char>*/,
0/*reduceCols_gpu<unsigned short, int, signed char>*/,
reduceCols_gpu<unsigned short, int, unsigned short>,
0/*reduceCols_gpu<unsigned short, int, short>*/,
reduceCols_gpu<unsigned short, int, int>,
reduceCols_gpu<unsigned short, int, float>
},
{
0/*reduceCols_gpu<short, int, unsigned char>*/,
0/*reduceCols_gpu<short, int, signed char>*/,
0/*reduceCols_gpu<short, int, unsigned short>*/,
reduceCols_gpu<short, int, short>,
reduceCols_gpu<short, int, int>,
reduceCols_gpu<short, int, float>
},
{
0/*reduceCols_gpu<int, int, unsigned char>*/,
0/*reduceCols_gpu<int, int, signed char>*/,
0/*reduceCols_gpu<int, int, unsigned short>*/,
0/*reduceCols_gpu<int, int, short>*/,
reduceCols_gpu<int, int, int>,
reduceCols_gpu<int, int, float>
},
{
0/*reduceCols_gpu<float, unsigned char>*/,
0/*reduceCols_gpu<float, signed char>*/,
0/*reduceCols_gpu<float, unsigned short>*/,
0/*reduceCols_gpu<float, short>*/,
0/*reduceCols_gpu<float, int>*/,
reduceCols_gpu<float, float, float>
}
};
const caller_t func = callers[src.depth()][dst.depth()];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of input and output array formats");
func(src, src.channels(), dst, reduceOp, StreamAccessor::getStream(stream));
}
}
#endif #endif

View File

@ -1788,4 +1788,76 @@ INSTANTIATE_TEST_CASE_P(Arithm, AddWeighted, testing::Combine(
testing::ValuesIn(types(CV_8U, CV_64F, 1, 1)), testing::ValuesIn(types(CV_8U, CV_64F, 1, 1)),
testing::ValuesIn(types(CV_8U, CV_64F, 1, 1)))); testing::ValuesIn(types(CV_8U, CV_64F, 1, 1))));
//////////////////////////////////////////////////////////////////////////////
// reduce
struct Reduce : testing::TestWithParam< std::tr1::tuple<cv::gpu::DeviceInfo, int, int, int> >
{
cv::gpu::DeviceInfo devInfo;
int type;
int dim;
int reduceOp;
cv::Size size;
cv::Mat src;
cv::Mat dst_gold;
virtual void SetUp()
{
devInfo = std::tr1::get<0>(GetParam());
type = std::tr1::get<1>(GetParam());
dim = std::tr1::get<2>(GetParam());
reduceOp = std::tr1::get<3>(GetParam());
cv::gpu::setDevice(devInfo.deviceID());
cv::RNG& rng = cvtest::TS::ptr()->get_rng();
size = cv::Size(rng.uniform(100, 400), rng.uniform(100, 400));
src = cvtest::randomMat(rng, size, type, 0.0, 255.0, false);
cv::reduce(src, dst_gold, dim, reduceOp, reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? CV_32F : CV_MAT_DEPTH(type));
if (dim == 1)
{
dst_gold.cols = dst_gold.rows;
dst_gold.rows = 1;
dst_gold.step = dst_gold.cols * dst_gold.elemSize();
}
}
};
TEST_P(Reduce, Accuracy)
{
static const char* reduceOpStrs[] = {"CV_REDUCE_SUM", "CV_REDUCE_AVG", "CV_REDUCE_MAX", "CV_REDUCE_MIN"};
const char* reduceOpStr = reduceOpStrs[reduceOp];
PRINT_PARAM(devInfo);
PRINT_TYPE(type);
PRINT_PARAM(dim);
PRINT_PARAM(reduceOpStr);
PRINT_PARAM(size);
cv::Mat dst;
ASSERT_NO_THROW(
cv::gpu::GpuMat dev_dst;
cv::gpu::reduce(cv::gpu::GpuMat(src), dev_dst, dim, reduceOp, reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? CV_32F : CV_MAT_DEPTH(type));
dev_dst.download(dst);
);
double norm = reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? 1e-1 : 0.0;
EXPECT_MAT_NEAR(dst_gold, dst, norm);
}
INSTANTIATE_TEST_CASE_P(Arithm, Reduce, testing::Combine(
testing::ValuesIn(devices()),
testing::Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_32FC1, CV_32FC3, CV_32FC4),
testing::Values(0, 1),
testing::Values((int)CV_REDUCE_SUM, (int)CV_REDUCE_AVG, (int)CV_REDUCE_MAX, (int)CV_REDUCE_MIN)));
#endif // HAVE_CUDA #endif // HAVE_CUDA