mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 11:45:30 +08:00
add half pixel centers and align corners param
This commit is contained in:
parent
ba3f150b14
commit
8c74d7e4fa
@ -108,6 +108,10 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace de
|
||||
|
||||
template <class T> __device__ T clamp(T value, T lower, T upper) { return min(max(value, lower), upper); }
|
||||
|
||||
template <class T> __device__ long lround(T value);
|
||||
template <> inline __device__ long lround(double value) { return ::lround(value); }
|
||||
template <> inline __device__ long lround(float value) { return lroundf(value); }
|
||||
|
||||
template <class T> __device__ T round(T value);
|
||||
template <> inline __device__ double round(double value) { return ::round(value); }
|
||||
template <> inline __device__ float round(float value) { return roundf(value); }
|
||||
|
@ -26,7 +26,8 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
template <class T, std::size_t CHANNELS_PER_ITER>
|
||||
__global__ void resize_nn(
|
||||
Span<T> output, size_type out_height, size_type out_width,
|
||||
View<T> input, size_type in_height, size_type in_width)
|
||||
View<T> input, size_type in_height, size_type in_width,
|
||||
float o2i_fy, float o2i_fx, bool round, bool half_pixel_centers)
|
||||
{
|
||||
auto in_image_size = in_height * in_width;
|
||||
auto out_image_size = out_height * out_width;
|
||||
@ -60,12 +61,16 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
const index_type y = (iter % out_image_size) / out_width;
|
||||
const index_type x = iter % out_width;
|
||||
|
||||
/* o2i = output to input */
|
||||
auto o2i_fy = static_cast<float>(in_height) / out_height;
|
||||
auto o2i_fx = static_cast<float>(in_width) / out_width;
|
||||
auto in_yf = half_pixel_centers ? (y + 0.5f) * o2i_fy : y * o2i_fy;
|
||||
auto in_xf = half_pixel_centers ? (x + 0.5f) * o2i_fx : x * o2i_fx;
|
||||
|
||||
auto in_y = static_cast<index_type>(y * o2i_fy);
|
||||
auto in_x = static_cast<index_type>(x * o2i_fx);
|
||||
using device::lround;
|
||||
index_type in_y = round ? lround(in_yf) : static_cast<index_type>(in_yf);
|
||||
index_type in_x = round ? lround(in_xf) : static_cast<index_type>(in_xf);
|
||||
|
||||
using device::min;
|
||||
in_y = min(in_y, in_height - 1);
|
||||
in_x = min(in_x, in_width - 1);
|
||||
|
||||
index_type in_idx = c_start * in_image_size + in_y * in_width + in_x;
|
||||
index_type out_idx = c_start * out_image_size + y * out_width + x;
|
||||
@ -83,7 +88,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
__global__ void resize_bilinear(
|
||||
Span<T> output, size_type out_height, size_type out_width,
|
||||
View<T> input, size_type in_height, size_type in_width,
|
||||
float o2i_fy, float o2i_fx)
|
||||
float o2i_fy, float o2i_fx, bool half_pixel_centers)
|
||||
{
|
||||
auto in_image_size = in_height * in_width;
|
||||
auto out_image_size = out_height * out_width;
|
||||
@ -119,8 +124,9 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
const index_type y = (iter % out_image_size) / out_width;
|
||||
const index_type x = iter % out_width;
|
||||
|
||||
auto in_x = x * o2i_fx;
|
||||
auto in_y = y * o2i_fy;
|
||||
using device::max;
|
||||
auto in_x = half_pixel_centers ? max<float>((x + 0.5f) * o2i_fx - 0.5f, 0.0f) : x * o2i_fx;
|
||||
auto in_y = half_pixel_centers ? max<float>((y + 0.5f) * o2i_fy - 0.5f, 0.0f) : y * o2i_fy;
|
||||
|
||||
auto in_x0 = static_cast<index_type>(in_x);
|
||||
auto in_y0 = static_cast<index_type>(in_y);
|
||||
@ -157,15 +163,16 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
template <class T, std::size_t CHANNELS_PER_ITER> static
|
||||
void launch_multichannel_resize_nn(const Stream& stream,
|
||||
Span<T> output, size_type out_height, size_type out_width,
|
||||
View<T> input, size_type in_height, size_type in_width)
|
||||
View<T> input, size_type in_height, size_type in_width,
|
||||
float scale_y, float scale_x, bool round, bool half_pixel_centers)
|
||||
{
|
||||
auto kernel = raw::resize_nn<T, CHANNELS_PER_ITER>;
|
||||
auto policy = make_policy(kernel, output.size() / CHANNELS_PER_ITER, 0, stream);
|
||||
launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width);
|
||||
launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void resize_nn(const Stream& stream, TensorSpan<T> output, TensorView<T> input) {
|
||||
void resize_nn(const Stream& stream, TensorSpan<T> output, TensorView<T> input, float scale_y, float scale_x, bool round, bool half_pixel_centers) {
|
||||
auto out_height = output.get_axis_size(-2);
|
||||
auto out_width = output.get_axis_size(-1);
|
||||
|
||||
@ -176,38 +183,38 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
auto num_iters = num_effective_channels * out_height * out_width;
|
||||
|
||||
if (num_effective_channels % 32 == 0 && num_iters > 655360) {
|
||||
launch_multichannel_resize_nn<T, 32>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
launch_multichannel_resize_nn<T, 32>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
|
||||
} else if (num_effective_channels % 16 == 0 && num_iters > 327680) {
|
||||
launch_multichannel_resize_nn<T, 16>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
launch_multichannel_resize_nn<T, 16>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
|
||||
} else if (num_effective_channels % 8 == 0 && num_iters > 163840) {
|
||||
launch_multichannel_resize_nn<T, 8>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
launch_multichannel_resize_nn<T, 8>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
|
||||
} else if (num_effective_channels % 4 == 0 && num_iters > 81920) {
|
||||
launch_multichannel_resize_nn<T, 4>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
launch_multichannel_resize_nn<T, 4>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
|
||||
} else if (num_effective_channels % 2 == 0) {
|
||||
launch_multichannel_resize_nn<T, 2>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
launch_multichannel_resize_nn<T, 2>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
|
||||
} else {
|
||||
launch_multichannel_resize_nn<T, 1>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
launch_multichannel_resize_nn<T, 1>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, round, half_pixel_centers);
|
||||
}
|
||||
}
|
||||
|
||||
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
|
||||
template void resize_nn<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>);
|
||||
template void resize_nn<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>, float, float, bool, bool);
|
||||
#endif
|
||||
template void resize_nn<float>(const Stream&, TensorSpan<float>, TensorView<float>);
|
||||
template void resize_nn<float>(const Stream&, TensorSpan<float>, TensorView<float>, float, float, bool,bool);
|
||||
|
||||
template <class T, std::size_t CHANNELS_PER_ITER> static
|
||||
void launch_multichannel_resize_bilinear(const Stream& stream,
|
||||
Span<T> output, size_type out_height, size_type out_width,
|
||||
View<T> input, size_type in_height, size_type in_width,
|
||||
float scale_y, float scale_x)
|
||||
float scale_y, float scale_x, bool half_pixel_centers)
|
||||
{
|
||||
auto kernel = raw::resize_bilinear<T, CHANNELS_PER_ITER>;
|
||||
auto policy = make_policy(kernel, output.size() / CHANNELS_PER_ITER, 0, stream);
|
||||
launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void resize_bilinear(const Stream& stream, TensorSpan<T> output, TensorView<T> input, float scale_y, float scale_x) {
|
||||
void resize_bilinear(const Stream& stream, TensorSpan<T> output, TensorView<T> input, float scale_y, float scale_x, bool half_pixel_centers) {
|
||||
auto out_height = output.get_axis_size(-2);
|
||||
auto out_width = output.get_axis_size(-1);
|
||||
|
||||
@ -218,21 +225,21 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
auto num_iters = num_effective_channels * out_height * out_width;
|
||||
|
||||
if (num_effective_channels % 16 == 0 && num_iters > 163840) {
|
||||
launch_multichannel_resize_bilinear<T, 16>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
launch_multichannel_resize_bilinear<T, 16>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
|
||||
} else if (num_effective_channels % 8 == 0 && num_iters > 81920) {
|
||||
launch_multichannel_resize_bilinear<T, 8>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
launch_multichannel_resize_bilinear<T, 8>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
|
||||
} else if (num_effective_channels % 4 == 0 && num_iters > 40960) {
|
||||
launch_multichannel_resize_bilinear<T, 4>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
launch_multichannel_resize_bilinear<T, 4>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
|
||||
} else if (num_effective_channels % 2 == 0) {
|
||||
launch_multichannel_resize_bilinear<T, 2>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
launch_multichannel_resize_bilinear<T, 2>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
|
||||
} else {
|
||||
launch_multichannel_resize_bilinear<T, 1>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
launch_multichannel_resize_bilinear<T, 1>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x, half_pixel_centers);
|
||||
}
|
||||
}
|
||||
|
||||
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
|
||||
template void resize_bilinear<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>, float, float);
|
||||
template void resize_bilinear<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>, float, float, bool);
|
||||
#endif
|
||||
template void resize_bilinear<float>(const Stream&, TensorSpan<float>, TensorView<float>, float, float);
|
||||
template void resize_bilinear<float>(const Stream&, TensorSpan<float>, TensorView<float>, float, float, bool);
|
||||
|
||||
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|
||||
|
@ -11,10 +11,10 @@
|
||||
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
|
||||
template <class T>
|
||||
void resize_nn(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input);
|
||||
void resize_nn(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, float scale_y, float scale_x, bool round, bool half_pixel_centers);
|
||||
|
||||
template <class T>
|
||||
void resize_bilinear(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, float scale_y, float scale_x);
|
||||
void resize_bilinear(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, float scale_y, float scale_x, bool half_pixel_centers);
|
||||
|
||||
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|
||||
|
||||
|
@ -20,14 +20,23 @@ namespace cv { namespace dnn { namespace cuda4dnn {
|
||||
BILINEAR
|
||||
};
|
||||
|
||||
struct ResizeConfiguration {
|
||||
InterpolationType type;
|
||||
bool align_corners;
|
||||
bool half_pixel_centers;
|
||||
};
|
||||
|
||||
template <class T>
|
||||
class ResizeOp final : public CUDABackendNode {
|
||||
public:
|
||||
using wrapper_type = GetCUDABackendWrapperType<T>;
|
||||
|
||||
ResizeOp(csl::Stream stream_, InterpolationType type_, float scaleHeight_, float scaleWidth_)
|
||||
: stream(std::move(stream_)), type{ type_ }, scaleHeight{ scaleHeight_ }, scaleWidth{ scaleWidth_ }
|
||||
ResizeOp(csl::Stream stream_, const ResizeConfiguration& config)
|
||||
: stream(std::move(stream_))
|
||||
{
|
||||
type = config.type;
|
||||
align_corners = config.align_corners;
|
||||
half_pixel_centers = config.half_pixel_centers;
|
||||
}
|
||||
|
||||
void forward(
|
||||
@ -44,16 +53,27 @@ namespace cv { namespace dnn { namespace cuda4dnn {
|
||||
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
|
||||
auto output = output_wrapper->getSpan();
|
||||
|
||||
const auto compute_scale = [this](std::size_t input_size, std::size_t output_size) {
|
||||
return (align_corners && output_size > 1) ?
|
||||
static_cast<float>(input_size - 1) / (output_size - 1) :
|
||||
static_cast<float>(input_size) / output_size;
|
||||
};
|
||||
|
||||
auto out_height = output.get_axis_size(-2), out_width = output.get_axis_size(-1);
|
||||
auto in_height = input.get_axis_size(-2), in_width = input.get_axis_size(-1);
|
||||
float scale_height = compute_scale(in_height, out_height),
|
||||
scale_width = compute_scale(in_width, out_width);
|
||||
|
||||
if (type == InterpolationType::NEAREST_NEIGHBOUR)
|
||||
kernels::resize_nn<T>(stream, output, input);
|
||||
kernels::resize_nn<T>(stream, output, input, scale_height, scale_width, align_corners, half_pixel_centers);
|
||||
else if (type == InterpolationType::BILINEAR)
|
||||
kernels::resize_bilinear<T>(stream, output, input, scaleHeight, scaleWidth);
|
||||
kernels::resize_bilinear<T>(stream, output, input, scale_height, scale_width, half_pixel_centers);
|
||||
}
|
||||
|
||||
private:
|
||||
csl::Stream stream;
|
||||
InterpolationType type;
|
||||
float scaleHeight, scaleWidth; /* for bilinear interpolation */
|
||||
bool align_corners, half_pixel_centers;
|
||||
};
|
||||
|
||||
}}} /* namespace cv::dnn::cuda4dnn */
|
||||
|
@ -72,7 +72,7 @@ public:
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
if (backendId == DNN_BACKEND_CUDA)
|
||||
return interpolation == "nearest" || interpolation == "bilinear";
|
||||
return interpolation == "nearest" || interpolation == "bilinear" || interpolation == "opencv_linear";
|
||||
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
@ -299,15 +299,28 @@ public:
|
||||
{
|
||||
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
||||
|
||||
cuda4dnn::InterpolationType itype;
|
||||
cuda4dnn::ResizeConfiguration config;
|
||||
if (interpolation == "nearest")
|
||||
itype = InterpolationType::NEAREST_NEIGHBOUR;
|
||||
{
|
||||
config.type = InterpolationType::NEAREST_NEIGHBOUR;
|
||||
config.align_corners = alignCorners;
|
||||
config.half_pixel_centers = halfPixelCenters;
|
||||
}
|
||||
else if (interpolation == "bilinear")
|
||||
itype = InterpolationType::BILINEAR;
|
||||
{
|
||||
config.type = InterpolationType::BILINEAR;
|
||||
config.align_corners = alignCorners;
|
||||
config.half_pixel_centers = halfPixelCenters;
|
||||
}
|
||||
else if (interpolation == "opencv_linear")
|
||||
{
|
||||
config.type = InterpolationType::BILINEAR;
|
||||
config.align_corners = false;
|
||||
config.half_pixel_centers = true;
|
||||
}
|
||||
else
|
||||
CV_Error(Error::StsNotImplemented, "Requested interpolation mode is not available in resize layer.");
|
||||
|
||||
return make_cuda_node<cuda4dnn::ResizeOp>(preferableTarget, std::move(context->stream), itype, scaleHeight, scaleWidth);
|
||||
return make_cuda_node<cuda4dnn::ResizeOp>(preferableTarget, std::move(context->stream), config);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user