mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge pull request #9576 from dkurt:feature_dnn_tf_importer_fp16
This commit is contained in:
commit
8c7f19850f
@ -63,10 +63,15 @@ void blobShapeFromTensor(const tensorflow::TensorProto &tensor, MatShape& shape)
|
||||
{
|
||||
const tensorflow::TensorShapeProto &_shape = tensor.tensor_shape();
|
||||
int i, n = _shape.dim_size();
|
||||
shape.resize(n);
|
||||
if (n)
|
||||
{
|
||||
shape.resize(n);
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
shape[i] = (int)_shape.dim(i).size();
|
||||
for (i = 0; i < n; i++)
|
||||
shape[i] = (int)_shape.dim(i).size();
|
||||
}
|
||||
else
|
||||
shape.resize(1, 1); // Scalar.
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -74,6 +79,43 @@ void blobShapeFromTensor(const tensorflow::TensorProto &tensor, MatShape& shape)
|
||||
}
|
||||
}
|
||||
|
||||
static Mat getTensorContent(const tensorflow::TensorProto &tensor)
|
||||
{
|
||||
std::string content = tensor.tensor_content();
|
||||
switch (tensor.dtype())
|
||||
{
|
||||
case tensorflow::DT_FLOAT:
|
||||
return Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()).clone();
|
||||
case tensorflow::DT_DOUBLE:
|
||||
return Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()).clone();
|
||||
case tensorflow::DT_HALF:
|
||||
{
|
||||
Mat halfs;
|
||||
if (!content.empty())
|
||||
{
|
||||
static const int kHalfSize = 2;
|
||||
halfs = Mat(1, content.size() / kHalfSize, CV_16UC1, (void*)content.c_str());
|
||||
}
|
||||
else
|
||||
{
|
||||
const RepeatedField<int32_t>& field = tensor.half_val();
|
||||
CV_Assert(!field.empty());
|
||||
Mat ints(1, field.size(), CV_32SC1, (void*)field.data());
|
||||
ints.convertTo(halfs, CV_16UC1);
|
||||
}
|
||||
// Reinterpret as a signed shorts just for a convertFp16 call.
|
||||
Mat halfsSigned(halfs.size(), CV_16SC1, halfs.data);
|
||||
Mat floats(halfs.size(), CV_32FC1);
|
||||
convertFp16(halfsSigned, floats);
|
||||
return floats;
|
||||
}
|
||||
default:
|
||||
CV_Error(Error::StsError, "Tensor's data type is not supported");
|
||||
break;
|
||||
}
|
||||
return Mat();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void parseTensor(const tensorflow::TensorProto &tensor, Mat &dstBlob)
|
||||
{
|
||||
@ -90,11 +132,12 @@ void parseTensor(const tensorflow::TensorProto &tensor, Mat &dstBlob)
|
||||
|
||||
dstBlob.create(shape, CV_32F);
|
||||
|
||||
int size = tensor.tensor_content().size() / sizeof(T);
|
||||
Mat tensorContent = getTensorContent(tensor);
|
||||
int size = tensorContent.total();
|
||||
CV_Assert(size == (int)dstBlob.total());
|
||||
|
||||
float *dstData = dstBlob.ptr<float>();
|
||||
const T *data = reinterpret_cast<const T*>(tensor.tensor_content().c_str());
|
||||
const T *data = reinterpret_cast<const T*>(tensorContent.data);
|
||||
|
||||
if (dims == 4)
|
||||
{
|
||||
@ -125,6 +168,7 @@ void blobFromTensor(const tensorflow::TensorProto &tensor, Mat &dstBlob)
|
||||
{
|
||||
switch (tensor.dtype()) {
|
||||
case tensorflow::DT_FLOAT:
|
||||
case tensorflow::DT_HALF:
|
||||
parseTensor<float>(tensor, dstBlob);
|
||||
break;
|
||||
case tensorflow::DT_DOUBLE:
|
||||
@ -406,7 +450,8 @@ void TFImporter::kernelFromTensor(const tensorflow::TensorProto &tensor, Mat &ds
|
||||
int dims = (int)shape.size();
|
||||
|
||||
// TODO: other blob types
|
||||
CV_Assert(tensor.dtype() == tensorflow::DT_FLOAT);
|
||||
CV_Assert(tensor.dtype() == tensorflow::DT_FLOAT ||
|
||||
tensor.dtype() == tensorflow::DT_HALF);
|
||||
CV_Assert(dims == 4);
|
||||
|
||||
// REORDER kernel HWIO to OIHW
|
||||
@ -416,11 +461,12 @@ void TFImporter::kernelFromTensor(const tensorflow::TensorProto &tensor, Mat &ds
|
||||
|
||||
dstBlob.create(shape, CV_32F);
|
||||
|
||||
int size = tensor.tensor_content().size() / sizeof(float);
|
||||
Mat tensorContent = getTensorContent(tensor);
|
||||
int size = tensorContent.total();
|
||||
CV_Assert(size == (int)dstBlob.total());
|
||||
|
||||
float *dstData = dstBlob.ptr<float>();
|
||||
const float *data = reinterpret_cast<const float*>(tensor.tensor_content().c_str());
|
||||
const float *data = reinterpret_cast<const float*>(tensorContent.data);
|
||||
|
||||
int out_c = shape[0], input_c = shape[1], height = shape[2], width = shape[3];
|
||||
int total = out_c*input_c*height*width;
|
||||
@ -753,7 +799,16 @@ void TFImporter::populateNet(Net dstNet)
|
||||
// Multiplication by constant.
|
||||
CV_Assert(layer.input_size() == 2);
|
||||
|
||||
float scale = getConstBlob(layer, value_id).float_val()[0];
|
||||
float scale;
|
||||
if (!getConstBlob(layer, value_id).float_val().empty())
|
||||
scale = getConstBlob(layer, value_id).float_val()[0];
|
||||
else
|
||||
{
|
||||
Mat scaleMat;
|
||||
blobFromTensor(getConstBlob(layer, value_id), scaleMat);
|
||||
CV_Assert(scaleMat.total() == 1 && scaleMat.type() == CV_32FC1);
|
||||
scale = scaleMat.at<float>(0, 0);
|
||||
}
|
||||
layerParams.set("scale", scale);
|
||||
|
||||
int id = dstNet.addLayer(name, "Power", layerParams);
|
||||
|
@ -76,7 +76,8 @@ static std::string path(const std::string& file)
|
||||
return findDataFile("dnn/tensorflow/" + file, false);
|
||||
}
|
||||
|
||||
static void runTensorFlowNet(const std::string& prefix)
|
||||
static void runTensorFlowNet(const std::string& prefix,
|
||||
double l1 = 1e-5, double lInf = 1e-4)
|
||||
{
|
||||
std::string netPath = path(prefix + "_net.pb");
|
||||
std::string inpPath = path(prefix + "_in.npy");
|
||||
@ -89,7 +90,7 @@ static void runTensorFlowNet(const std::string& prefix)
|
||||
|
||||
net.setInput(input);
|
||||
cv::Mat output = net.forward();
|
||||
normAssert(target, output);
|
||||
normAssert(target, output, "", l1, lInf);
|
||||
}
|
||||
|
||||
TEST(Test_TensorFlow, single_conv)
|
||||
@ -130,4 +131,19 @@ TEST(Test_TensorFlow, deconvolution)
|
||||
runTensorFlowNet("deconvolution");
|
||||
}
|
||||
|
||||
TEST(Test_TensorFlow, fp16)
|
||||
{
|
||||
const float l1 = 1e-3;
|
||||
const float lInf = 1e-2;
|
||||
runTensorFlowNet("fp16_single_conv", l1, lInf);
|
||||
runTensorFlowNet("fp16_deconvolution", l1, lInf);
|
||||
runTensorFlowNet("fp16_max_pool_odd_same", l1, lInf);
|
||||
runTensorFlowNet("fp16_padding_valid", l1, lInf);
|
||||
runTensorFlowNet("fp16_eltwise_add_mul", l1, lInf);
|
||||
runTensorFlowNet("fp16_max_pool_odd_valid", l1, lInf);
|
||||
runTensorFlowNet("fp16_pad_and_concat", l1, lInf);
|
||||
runTensorFlowNet("fp16_max_pool_even", l1, lInf);
|
||||
runTensorFlowNet("fp16_padding_same", l1, lInf);
|
||||
}
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user