mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 13:47:32 +08:00
Update samples/c/smiledetect.cpp
- Changed to floating neighbor maximum mode - Fixed some previous errors.
This commit is contained in:
parent
379dcf87d5
commit
8cfba6456b
@ -14,12 +14,12 @@ static void help()
|
||||
cout << "\nThis program demonstrates the smile detector.\n"
|
||||
"Usage:\n"
|
||||
"./smiledetect [--cascade=<cascade_path> this is the frontal face classifier]\n"
|
||||
" [--smile-cascade[=smile_cascade_path]]\n"
|
||||
" [--scale=<image scale greater or equal to 1, try 1.3 for example. The larger the faster the processing>]\n"
|
||||
" [--smile-cascade=[<smile_cascade_path>]]\n"
|
||||
" [--scale=<image scale greater or equal to 1, try 2.0 for example. The larger the faster the processing>]\n"
|
||||
" [--try-flip]\n"
|
||||
" [filename|camera_index]\n\n"
|
||||
" [video_filename|camera_index]\n\n"
|
||||
"Example:\n"
|
||||
"./smiledetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"../../data/haarcascades/haarcascade_smile.xml\" --scale=1.3\n\n"
|
||||
"./smiledetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"../../data/haarcascades/haarcascade_smile.xml\" --scale=2.0\n\n"
|
||||
"During execution:\n\tHit any key to quit.\n"
|
||||
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
|
||||
}
|
||||
@ -31,10 +31,6 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
||||
string cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||||
string nestedCascadeName = "../../data/haarcascades/haarcascade_smile.xml";
|
||||
|
||||
// The number of detected neighbors depends on image size, these are for performing an approximate mapping to a maximum number of neighbors
|
||||
const float coef1 = 0.3190;
|
||||
const float coef2 = -48.7187;
|
||||
|
||||
|
||||
int main( int argc, const char** argv )
|
||||
{
|
||||
@ -68,8 +64,6 @@ int main( int argc, const char** argv )
|
||||
{
|
||||
if( argv[i][nestedCascadeOpt.length()] == '=' )
|
||||
nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 );
|
||||
if( !nestedCascade.load( nestedCascadeName ) )
|
||||
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
|
||||
}
|
||||
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
|
||||
{
|
||||
@ -92,7 +86,13 @@ int main( int argc, const char** argv )
|
||||
|
||||
if( !cascade.load( cascadeName ) )
|
||||
{
|
||||
cerr << "ERROR: Could not load classifier cascade" << endl;
|
||||
cerr << "ERROR: Could not load face cascade" << endl;
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
if( !nestedCascade.load( nestedCascadeName ) )
|
||||
{
|
||||
cerr << "ERROR: Could not load smile cascade" << endl;
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
@ -105,17 +105,8 @@ int main( int argc, const char** argv )
|
||||
}
|
||||
else if( inputName.size() )
|
||||
{
|
||||
image = imread( inputName, 1 );
|
||||
if( image.empty() )
|
||||
{
|
||||
capture = cvCaptureFromAVI( inputName.c_str() );
|
||||
if(!capture) cout << "Capture from AVI didn't work" << endl;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
image = imread( "lena.jpg", 1 );
|
||||
if(image.empty()) cout << "Couldn't read lena.jpg" << endl;
|
||||
capture = cvCaptureFromAVI( inputName.c_str() );
|
||||
if(!capture) cout << "Capture from AVI didn't work" << endl;
|
||||
}
|
||||
|
||||
cvNamedWindow( "result", 1 );
|
||||
@ -123,6 +114,8 @@ int main( int argc, const char** argv )
|
||||
if( capture )
|
||||
{
|
||||
cout << "In capture ..." << endl;
|
||||
cout << endl << "NOTE: Smile intensity will only be valid after a first smile has been detected" << endl;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
IplImage* iplImg = cvQueryFrame( capture );
|
||||
@ -147,43 +140,9 @@ _cleanup_:
|
||||
}
|
||||
else
|
||||
{
|
||||
cout << "In image read" << endl;
|
||||
if( !image.empty() )
|
||||
{
|
||||
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
|
||||
waitKey(0);
|
||||
}
|
||||
else if( !inputName.empty() )
|
||||
{
|
||||
/* assume it is a text file containing the
|
||||
list of the image filenames to be processed - one per line */
|
||||
FILE* f = fopen( inputName.c_str(), "rt" );
|
||||
if( f )
|
||||
{
|
||||
char buf[1000+1];
|
||||
while( fgets( buf, 1000, f ) )
|
||||
{
|
||||
int len = (int)strlen(buf), c;
|
||||
while( len > 0 && isspace(buf[len-1]) )
|
||||
len--;
|
||||
buf[len] = '\0';
|
||||
cout << "file " << buf << endl;
|
||||
image = imread( buf, 1 );
|
||||
if( !image.empty() )
|
||||
{
|
||||
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
|
||||
c = waitKey(0);
|
||||
if( c == 27 || c == 'q' || c == 'Q' )
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
cerr << "Aw snap, couldn't read image " << buf << endl;
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
}
|
||||
}
|
||||
cerr << "ERROR: Could not initiate capture" << endl;
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
|
||||
cvDestroyWindow("result");
|
||||
@ -206,8 +165,6 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
||||
CV_RGB(255,0,255)} ;
|
||||
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
|
||||
const int max_neighbors = MAX(0, cvRound((float)coef1*smallImg.cols + coef2));
|
||||
|
||||
cvtColor( img, gray, CV_BGR2GRAY );
|
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
equalizeHist( smallImg, smallImg );
|
||||
@ -234,6 +191,7 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
||||
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
|
||||
}
|
||||
}
|
||||
|
||||
for( vector<Rect>::iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
||||
{
|
||||
Mat smallImgROI;
|
||||
@ -254,8 +212,6 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
||||
rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),
|
||||
cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),
|
||||
color, 3, 8, 0);
|
||||
if( nestedCascade.empty() )
|
||||
continue;
|
||||
|
||||
const int half_height=cvRound((float)r->height/2);
|
||||
r->y=r->y + half_height;
|
||||
@ -270,13 +226,21 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
||||
,
|
||||
Size(30, 30) );
|
||||
|
||||
// Draw rectangle reflecting confidence
|
||||
// The number of detected neighbors depends on image size (and also illumination, etc.). The
|
||||
// following steps use a floating minimum and maximum of neighbors. Intensity thus estimated will be
|
||||
//accurate only after a first smile has been displayed by the user.
|
||||
const int smile_neighbors = nestedObjects.size();
|
||||
cout << "Detected " << smile_neighbors << " smile neighbors" << endl;
|
||||
const int rect_height = cvRound((float)img.rows * smile_neighbors / max_neighbors);
|
||||
CvScalar col = CV_RGB((float)255 * smile_neighbors / max_neighbors, 0, 0);
|
||||
rectangle(img, cvPoint(0, img.rows), cvPoint(img.cols/10, img.rows - rect_height), col, -1);
|
||||
}
|
||||
static int max_neighbors=-1;
|
||||
static int min_neighbors=-1;
|
||||
if (min_neighbors == -1) min_neighbors = smile_neighbors;
|
||||
max_neighbors = MAX(max_neighbors, smile_neighbors);
|
||||
|
||||
cv::imshow( "result", img );
|
||||
// Draw rectangle on the left side of the image reflecting smile intensity
|
||||
float intensityZeroOne = ((float)smile_neighbors - min_neighbors) / (max_neighbors - min_neighbors + 1);
|
||||
int rect_height = cvRound((float)img.rows * intensityZeroOne);
|
||||
CvScalar col = CV_RGB((float)255 * intensityZeroOne, 0, 0);
|
||||
rectangle(img, cvPoint(0, img.rows), cvPoint(img.cols/10, img.rows - rect_height), col, -1);
|
||||
}
|
||||
|
||||
cv::imshow( "result", img );
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user