mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 04:12:52 +08:00
Merge pull request #21702 from mlourakis:4.x
Fixes and optimizations for the SQPnP solver * Fixes and optimizations - optimized the calculation of qa_sum by moving equal elements outside the loop - unrolled copying of the lower triangle of omega - substituted SVD with eigendecomposition in the factorization of omega (2-3 times faster) - fixed the initialization of lambda in FOAM - added a cheirality test that checks a solution on all 3D points rather than on their mean. The old test rejected valid poses in some cases - fixed some typos & errors in comments * reverted to SVD Eigen decomposition seems to yield larger errors in certain tests, reverted to SVD * nearestRotationMatrixSVD Added nearestRotationMatrixSVD() Previous nearestRotationMatrix() renamed to nearestRotationMatrixFOAM() and reverts to nearestRotationMatrixSVD() for singular matrices * fixed checks order Fixed the order of checks in PoseSolver::solveInternal()
This commit is contained in:
parent
602caa9cd6
commit
8d0fbc6a1e
@ -118,7 +118,7 @@ void PoseSolver::solve(InputArray objectPoints, InputArray imagePoints, OutputAr
|
||||
num_solutions_ = 0;
|
||||
|
||||
computeOmega(_objectPoints, _imagePoints);
|
||||
solveInternal();
|
||||
solveInternal(_objectPoints);
|
||||
|
||||
int depthRot = rvecs.fixedType() ? rvecs.depth() : CV_64F;
|
||||
int depthTrans = tvecs.fixedType() ? tvecs.depth() : CV_64F;
|
||||
@ -194,37 +194,41 @@ void PoseSolver::computeOmega(InputArray objectPoints, InputArray imagePoints)
|
||||
omega_(7, 7) += sq_norm * Y2; omega_(7, 8) += sq_norm * YZ;
|
||||
omega_(8, 8) += sq_norm * Z2;
|
||||
|
||||
//Compute qa_sum
|
||||
//Compute qa_sum. Certain pairs of elements are equal, so filling them outside the loop saves some operations
|
||||
qa_sum(0, 0) += X; qa_sum(0, 1) += Y; qa_sum(0, 2) += Z;
|
||||
qa_sum(1, 3) += X; qa_sum(1, 4) += Y; qa_sum(1, 5) += Z;
|
||||
|
||||
qa_sum(0, 6) += -x * X; qa_sum(0, 7) += -x * Y; qa_sum(0, 8) += -x * Z;
|
||||
qa_sum(1, 6) += -y * X; qa_sum(1, 7) += -y * Y; qa_sum(1, 8) += -y * Z;
|
||||
|
||||
qa_sum(2, 0) += -x * X; qa_sum(2, 1) += -x * Y; qa_sum(2, 2) += -x * Z;
|
||||
qa_sum(2, 3) += -y * X; qa_sum(2, 4) += -y * Y; qa_sum(2, 5) += -y * Z;
|
||||
|
||||
qa_sum(2, 6) += sq_norm * X; qa_sum(2, 7) += sq_norm * Y; qa_sum(2, 8) += sq_norm * Z;
|
||||
}
|
||||
|
||||
//Complete qa_sum
|
||||
qa_sum(1, 3) = qa_sum(0, 0); qa_sum(1, 4) = qa_sum(0, 1); qa_sum(1, 5) = qa_sum(0, 2);
|
||||
qa_sum(2, 0) = qa_sum(0, 6); qa_sum(2, 1) = qa_sum(0, 7); qa_sum(2, 2) = qa_sum(0, 8);
|
||||
qa_sum(2, 3) = qa_sum(1, 6); qa_sum(2, 4) = qa_sum(1, 7); qa_sum(2, 5) = qa_sum(1, 8);
|
||||
|
||||
|
||||
//lower triangles of omega_'s off-diagonal blocks (0:2, 6:8), (3:5, 6:8) and (6:8, 6:8)
|
||||
omega_(1, 6) = omega_(0, 7); omega_(2, 6) = omega_(0, 8); omega_(2, 7) = omega_(1, 8);
|
||||
omega_(4, 6) = omega_(3, 7); omega_(5, 6) = omega_(3, 8); omega_(5, 7) = omega_(4, 8);
|
||||
omega_(7, 6) = omega_(6, 7); omega_(8, 6) = omega_(6, 8); omega_(8, 7) = omega_(7, 8);
|
||||
|
||||
|
||||
//upper triangle of omega_'s block (3:5, 3:5)
|
||||
omega_(3, 3) = omega_(0, 0); omega_(3, 4) = omega_(0, 1); omega_(3, 5) = omega_(0, 2);
|
||||
omega_(4, 4) = omega_(1, 1); omega_(4, 5) = omega_(1, 2);
|
||||
omega_(5, 5) = omega_(2, 2);
|
||||
omega_(4, 4) = omega_(1, 1); omega_(4, 5) = omega_(1, 2);
|
||||
omega_(5, 5) = omega_(2, 2);
|
||||
|
||||
//Mirror upper triangle to lower triangle
|
||||
for (int r = 0; r < 9; r++)
|
||||
{
|
||||
for (int c = 0; c < r; c++)
|
||||
{
|
||||
omega_(r, c) = omega_(c, r);
|
||||
}
|
||||
}
|
||||
//Mirror omega_'s upper triangle to lower triangle
|
||||
//Note that elements (7, 6), (8, 6) & (8, 7) have already been assigned above
|
||||
omega_(1, 0) = omega_(0, 1);
|
||||
omega_(2, 0) = omega_(0, 2); omega_(2, 1) = omega_(1, 2);
|
||||
omega_(3, 0) = omega_(0, 3); omega_(3, 1) = omega_(1, 3); omega_(3, 2) = omega_(2, 3);
|
||||
omega_(4, 0) = omega_(0, 4); omega_(4, 1) = omega_(1, 4); omega_(4, 2) = omega_(2, 4); omega_(4, 3) = omega_(3, 4);
|
||||
omega_(5, 0) = omega_(0, 5); omega_(5, 1) = omega_(1, 5); omega_(5, 2) = omega_(2, 5); omega_(5, 3) = omega_(3, 5); omega_(5, 4) = omega_(4, 5);
|
||||
omega_(6, 0) = omega_(0, 6); omega_(6, 1) = omega_(1, 6); omega_(6, 2) = omega_(2, 6); omega_(6, 3) = omega_(3, 6); omega_(6, 4) = omega_(4, 6); omega_(6, 5) = omega_(5, 6);
|
||||
omega_(7, 0) = omega_(0, 7); omega_(7, 1) = omega_(1, 7); omega_(7, 2) = omega_(2, 7); omega_(7, 3) = omega_(3, 7); omega_(7, 4) = omega_(4, 7); omega_(7, 5) = omega_(5, 7);
|
||||
omega_(8, 0) = omega_(0, 8); omega_(8, 1) = omega_(1, 8); omega_(8, 2) = omega_(2, 8); omega_(8, 3) = omega_(3, 8); omega_(8, 4) = omega_(4, 8); omega_(8, 5) = omega_(5, 8);
|
||||
|
||||
cv::Matx<double, 3, 3> q;
|
||||
q(0, 0) = n; q(0, 1) = 0; q(0, 2) = -sum_img.x;
|
||||
@ -247,6 +251,11 @@ void PoseSolver::computeOmega(InputArray objectPoints, InputArray imagePoints)
|
||||
cv::SVD omega_svd(omega_, cv::SVD::FULL_UV);
|
||||
s_ = omega_svd.w;
|
||||
u_ = cv::Mat(omega_svd.vt.t());
|
||||
#if 0
|
||||
// EVD equivalent of the SVD; less accurate
|
||||
cv::eigen(omega_, s_, u_);
|
||||
u_ = u_.t(); // eigenvectors were returned as rows
|
||||
#endif
|
||||
|
||||
CV_Assert(s_(0) >= 1e-7);
|
||||
|
||||
@ -257,7 +266,7 @@ void PoseSolver::computeOmega(InputArray objectPoints, InputArray imagePoints)
|
||||
point_mean_ = cv::Vec3d(sum_obj.x / n, sum_obj.y / n, sum_obj.z / n);
|
||||
}
|
||||
|
||||
void PoseSolver::solveInternal()
|
||||
void PoseSolver::solveInternal(InputArray objectPoints)
|
||||
{
|
||||
double min_sq_err = std::numeric_limits<double>::max();
|
||||
int num_eigen_points = num_null_vectors_ > 0 ? num_null_vectors_ : 1;
|
||||
@ -274,42 +283,39 @@ void PoseSolver::solveInternal()
|
||||
{
|
||||
solutions[0].r_hat = det3x3(e) * e;
|
||||
solutions[0].t = p_ * solutions[0].r_hat;
|
||||
checkSolution(solutions[0], min_sq_err);
|
||||
checkSolution(solutions[0], objectPoints, min_sq_err);
|
||||
}
|
||||
else
|
||||
{
|
||||
Matx<double, 9, 1> r;
|
||||
nearestRotationMatrix(e, r);
|
||||
nearestRotationMatrixFOAM(e, r);
|
||||
solutions[0] = runSQP(r);
|
||||
solutions[0].t = p_ * solutions[0].r_hat;
|
||||
checkSolution(solutions[0], min_sq_err);
|
||||
checkSolution(solutions[0], objectPoints, min_sq_err);
|
||||
|
||||
nearestRotationMatrix(-e, r);
|
||||
nearestRotationMatrixFOAM(-e, r);
|
||||
solutions[1] = runSQP(r);
|
||||
solutions[1].t = p_ * solutions[1].r_hat;
|
||||
checkSolution(solutions[1], min_sq_err);
|
||||
checkSolution(solutions[1], objectPoints, min_sq_err);
|
||||
}
|
||||
}
|
||||
|
||||
int c = 1;
|
||||
|
||||
while (min_sq_err > 3 * s_[9 - num_eigen_points - c] && 9 - num_eigen_points - c > 0)
|
||||
int index, c = 1;
|
||||
while ((index = 9 - num_eigen_points - c) > 0 && min_sq_err > 3 * s_[index])
|
||||
{
|
||||
int index = 9 - num_eigen_points - c;
|
||||
|
||||
const cv::Matx<double, 9, 1> e = u_.col(index);
|
||||
SQPSolution solutions[2];
|
||||
|
||||
Matx<double, 9, 1> r;
|
||||
nearestRotationMatrix(e, r);
|
||||
nearestRotationMatrixFOAM(e, r);
|
||||
solutions[0] = runSQP(r);
|
||||
solutions[0].t = p_ * solutions[0].r_hat;
|
||||
checkSolution(solutions[0], min_sq_err);
|
||||
checkSolution(solutions[0], objectPoints, min_sq_err);
|
||||
|
||||
nearestRotationMatrix(-e, r);
|
||||
nearestRotationMatrixFOAM(-e, r);
|
||||
solutions[1] = runSQP(r);
|
||||
solutions[1].t = p_ * solutions[1].r_hat;
|
||||
checkSolution(solutions[1], min_sq_err);
|
||||
checkSolution(solutions[1], objectPoints, min_sq_err);
|
||||
|
||||
c++;
|
||||
}
|
||||
@ -341,7 +347,7 @@ PoseSolver::SQPSolution PoseSolver::runSQP(const cv::Matx<double, 9, 1>& r0)
|
||||
|
||||
if (det_r > SQP_DET_THRESHOLD)
|
||||
{
|
||||
nearestRotationMatrix(r, solution.r_hat);
|
||||
nearestRotationMatrixFOAM(r, solution.r_hat);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -615,12 +621,26 @@ void PoseSolver::computeRowAndNullspace(const cv::Matx<double, 9, 1>& r,
|
||||
|
||||
}
|
||||
|
||||
// faster nearest rotation computation based on FOAM (see: http://users.ics.forth.gr/~lourakis/publ/2018_iros.pdf )
|
||||
// if e = u*w*vt then r=u*diag([1, 1, det(u)*det(v)])*vt
|
||||
void PoseSolver::nearestRotationMatrixSVD(const cv::Matx<double, 9, 1>& e,
|
||||
cv::Matx<double, 9, 1>& r)
|
||||
{
|
||||
cv::Matx<double, 3, 3> e33 = e.reshape<3, 3>();
|
||||
cv::SVD e33_svd(e33, cv::SVD::FULL_UV);
|
||||
double detuv = cv::determinant(e33_svd.u)*cv::determinant(e33_svd.vt);
|
||||
cv::Matx<double, 3, 3> diag = cv::Matx33d::eye();
|
||||
diag(2, 2) = detuv;
|
||||
cv::Matx<double, 3, 3> r33 = cv::Mat(e33_svd.u*diag*e33_svd.vt);
|
||||
r = r33.reshape<9, 1>();
|
||||
}
|
||||
|
||||
// Faster nearest rotation computation based on FOAM. See M. Lourakis: "An Efficient Solution to Absolute Orientation", ICPR 2016
|
||||
// and M. Lourakis, G. Terzakis: "Efficient Absolute Orientation Revisited", IROS 2018.
|
||||
/* Solve the nearest orthogonal approximation problem
|
||||
* i.e., given e, find R minimizing ||R-e||_F
|
||||
*
|
||||
* The computation borrows from Markley's FOAM algorithm
|
||||
* "Attitude Determination Using Vector Observations: A Fast Optimal Matrix Algorithm", J. Astronaut. Sci.
|
||||
* "Attitude Determination Using Vector Observations: A Fast Optimal Matrix Algorithm", J. Astronaut. Sci. 1993.
|
||||
*
|
||||
* See also M. Lourakis: "An Efficient Solution to Absolute Orientation", ICPR 2016
|
||||
*
|
||||
@ -628,24 +648,32 @@ void PoseSolver::computeRowAndNullspace(const cv::Matx<double, 9, 1>& r,
|
||||
* Institute of Computer Science, Foundation for Research & Technology - Hellas
|
||||
* Heraklion, Crete, Greece.
|
||||
*/
|
||||
void PoseSolver::nearestRotationMatrix(const cv::Matx<double, 9, 1>& e,
|
||||
void PoseSolver::nearestRotationMatrixFOAM(const cv::Matx<double, 9, 1>& e,
|
||||
cv::Matx<double, 9, 1>& r)
|
||||
{
|
||||
int i;
|
||||
double l, lprev, det_e, e_sq, adj_e_sq, adj_e[9];
|
||||
|
||||
// det(e)
|
||||
det_e = e(0) * e(4) * e(8) - e(0) * e(5) * e(7) - e(1) * e(3) * e(8) + e(2) * e(3) * e(7) + e(1) * e(6) * e(5) - e(2) * e(6) * e(4);
|
||||
if (fabs(det_e) < 1E-04) { // singular, handle it with SVD
|
||||
PoseSolver::nearestRotationMatrixSVD(e, r);
|
||||
return;
|
||||
}
|
||||
|
||||
// e's adjoint
|
||||
adj_e[0] = e(4) * e(8) - e(5) * e(7); adj_e[1] = e(2) * e(7) - e(1) * e(8); adj_e[2] = e(1) * e(5) - e(2) * e(4);
|
||||
adj_e[3] = e(5) * e(6) - e(3) * e(8); adj_e[4] = e(0) * e(8) - e(2) * e(6); adj_e[5] = e(2) * e(3) - e(0) * e(5);
|
||||
adj_e[6] = e(3) * e(7) - e(4) * e(6); adj_e[7] = e(1) * e(6) - e(0) * e(7); adj_e[8] = e(0) * e(4) - e(1) * e(3);
|
||||
|
||||
// det(e), ||e||^2, ||adj(e)||^2
|
||||
det_e = e(0) * e(4) * e(8) - e(0) * e(5) * e(7) - e(1) * e(3) * e(8) + e(2) * e(3) * e(7) + e(1) * e(6) * e(5) - e(2) * e(6) * e(4);
|
||||
// ||e||^2, ||adj(e)||^2
|
||||
e_sq = e(0) * e(0) + e(1) * e(1) + e(2) * e(2) + e(3) * e(3) + e(4) * e(4) + e(5) * e(5) + e(6) * e(6) + e(7) * e(7) + e(8) * e(8);
|
||||
adj_e_sq = adj_e[0] * adj_e[0] + adj_e[1] * adj_e[1] + adj_e[2] * adj_e[2] + adj_e[3] * adj_e[3] + adj_e[4] * adj_e[4] + adj_e[5] * adj_e[5] + adj_e[6] * adj_e[6] + adj_e[7] * adj_e[7] + adj_e[8] * adj_e[8];
|
||||
|
||||
// compute l_max with Newton-Raphson from FOAM's characteristic polynomial, i.e. eq.(23) - (26)
|
||||
for (i = 200, l = 2.0, lprev = 0.0; fabs(l - lprev) > 1E-12 * fabs(lprev) && i > 0; --i) {
|
||||
l = 0.5*(e_sq + 3.0); // 1/2*(trace(mat(e)*mat(e)') + trace(eye(3)))
|
||||
if (det_e < 0.0) l = -l;
|
||||
for (i = 15, lprev = 0.0; fabs(l - lprev) > 1E-12 * fabs(lprev) && i > 0; --i) {
|
||||
double tmp, p, pp;
|
||||
|
||||
tmp = (l * l - e_sq);
|
||||
@ -719,9 +747,31 @@ inline bool PoseSolver::positiveDepth(const SQPSolution& solution) const
|
||||
return (r(6) * mean(0) + r(7) * mean(1) + r(8) * mean(2) + t(2) > 0);
|
||||
}
|
||||
|
||||
void PoseSolver::checkSolution(SQPSolution& solution, double& min_error)
|
||||
inline bool PoseSolver::positiveMajorityDepths(const SQPSolution& solution, InputArray objectPoints) const
|
||||
{
|
||||
if (positiveDepth(solution))
|
||||
const cv::Matx<double, 9, 1>& r = solution.r_hat;
|
||||
const cv::Matx<double, 3, 1>& t = solution.t;
|
||||
int npos = 0, nneg = 0;
|
||||
|
||||
Mat _objectPoints = objectPoints.getMat();
|
||||
|
||||
int n = _objectPoints.cols * _objectPoints.rows;
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
const cv::Point3d& obj_pt = _objectPoints.at<cv::Point3d>(i);
|
||||
if (r(6) * obj_pt.x + r(7) * obj_pt.y + r(8) * obj_pt.z + t(2) > 0) ++npos;
|
||||
else ++nneg;
|
||||
}
|
||||
|
||||
return npos >= nneg;
|
||||
}
|
||||
|
||||
|
||||
void PoseSolver::checkSolution(SQPSolution& solution, InputArray objectPoints, double& min_error)
|
||||
{
|
||||
bool cheirok = positiveDepth(solution) || positiveMajorityDepths(solution, objectPoints); // check the majority if the check with centroid fails
|
||||
if (cheirok)
|
||||
{
|
||||
solution.sq_error = (omega_ * solution.r_hat).ddot(solution.r_hat);
|
||||
if (fabs(min_error - solution.sq_error) > EQUAL_SQUARED_ERRORS_DIFF)
|
||||
|
@ -85,13 +85,14 @@ private:
|
||||
|
||||
/*
|
||||
* @brief Computes the 9x9 PSD Omega matrix and supporting matrices.
|
||||
* @param objectPoints The 3D points in object coordinates.
|
||||
*/
|
||||
void solveInternal();
|
||||
void solveInternal(InputArray objectPoints);
|
||||
|
||||
/*
|
||||
* @brief Produces the distance from being orthogonal for a given 3x3 matrix
|
||||
* in row-major form.
|
||||
* @param e The vector to test representing a 3x3 matrix in row major form.
|
||||
* in row-major order.
|
||||
* @param e The vector to test representing a 3x3 matrix in row-major order.
|
||||
* @return The distance the matrix is from being orthogonal.
|
||||
*/
|
||||
static double orthogonalityError(const cv::Matx<double, 9, 1>& e);
|
||||
@ -99,31 +100,49 @@ private:
|
||||
/*
|
||||
* @brief Processes a solution and sorts it by error.
|
||||
* @param solution The solution to evaluate.
|
||||
* @param min_error The current minimum error.
|
||||
* @param objectPoints The 3D points in object coordinates.
|
||||
* @param min_error The current minimum error.
|
||||
*/
|
||||
void checkSolution(SQPSolution& solution, double& min_error);
|
||||
void checkSolution(SQPSolution& solution, InputArray objectPoints, double& min_error);
|
||||
|
||||
/*
|
||||
* @brief Computes the determinant of a matrix stored in row-major format.
|
||||
* @param e Vector representing a 3x3 matrix stored in row-major format.
|
||||
* @brief Computes the determinant of a matrix stored in row-major order.
|
||||
* @param e Vector representing a 3x3 matrix stored in row-major order.
|
||||
* @return The determinant of the matrix.
|
||||
*/
|
||||
static double det3x3(const cv::Matx<double, 9, 1>& e);
|
||||
|
||||
/*
|
||||
* @brief Tests the cheirality for a given solution.
|
||||
* @brief Tests the cheirality on the mean object point for a given solution.
|
||||
* @param solution The solution to evaluate.
|
||||
*/
|
||||
inline bool positiveDepth(const SQPSolution& solution) const;
|
||||
|
||||
/*
|
||||
* @brief Determines the nearest rotation matrix to a given rotaiton matrix.
|
||||
* Input and output are 9x1 vector representing a vector stored in row-major
|
||||
* form.
|
||||
* @param e The input 3x3 matrix stored in a vector in row-major form.
|
||||
* @param r The nearest rotation matrix to the input e (again in row-major form).
|
||||
* @brief Tests the cheirality on all object points for a given solution.
|
||||
* @param solution The solution to evaluate.
|
||||
* @param objectPoints The 3D points in object coordinates.
|
||||
*/
|
||||
static void nearestRotationMatrix(const cv::Matx<double, 9, 1>& e,
|
||||
inline bool positiveMajorityDepths(const SQPSolution& solution, InputArray objectPoints) const;
|
||||
|
||||
/*
|
||||
* @brief Determines the nearest rotation matrix to a given rotation matrix using SVD.
|
||||
* Input and output are 9x1 vector representing a matrix stored in row-major
|
||||
* order.
|
||||
* @param e The input 3x3 matrix stored in a vector in row-major order.
|
||||
* @param r The nearest rotation matrix to the input e (again in row-major order).
|
||||
*/
|
||||
static void nearestRotationMatrixSVD(const cv::Matx<double, 9, 1>& e,
|
||||
cv::Matx<double, 9, 1>& r);
|
||||
|
||||
/*
|
||||
* @brief Determines the nearest rotation matrix to a given rotation matrix using the FOAM algorithm.
|
||||
* Input and output are 9x1 vector representing a matrix stored in row-major
|
||||
* order.
|
||||
* @param e The input 3x3 matrix stored in a vector in row-major order.
|
||||
* @param r The nearest rotation matrix to the input e (again in row-major order).
|
||||
*/
|
||||
static void nearestRotationMatrixFOAM(const cv::Matx<double, 9, 1>& e,
|
||||
cv::Matx<double, 9, 1>& r);
|
||||
|
||||
/*
|
||||
|
Loading…
Reference in New Issue
Block a user