mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
Added 02 tutorials for Hough Lines and Circle detection in tutorial_code -- based on code existent
This commit is contained in:
parent
773654e11a
commit
8f01f2cc9f
55
samples/cpp/tutorial_code/ImgTrans/HoughCircle_Demo.cpp
Normal file
55
samples/cpp/tutorial_code/ImgTrans/HoughCircle_Demo.cpp
Normal file
@ -0,0 +1,55 @@
|
||||
/**
|
||||
* @file HoughCircle_Demo.cpp
|
||||
* @brief Demo code for Hough Transform
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace cv;
|
||||
|
||||
/**
|
||||
* @function main
|
||||
*/
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Mat src, src_gray;
|
||||
|
||||
/// Read the image
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
|
||||
/// Convert it to gray
|
||||
cvtColor( src, src_gray, CV_BGR2GRAY );
|
||||
|
||||
/// Reduce the noise so we avoid false circle detection
|
||||
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
|
||||
|
||||
vector<Vec3f> circles;
|
||||
|
||||
/// Apply the Hough Transform to find the circles
|
||||
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
|
||||
|
||||
/// Draw the circles detected
|
||||
for( size_t i = 0; i < circles.size(); i++ )
|
||||
{
|
||||
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
||||
int radius = cvRound(circles[i][2]);
|
||||
// circle center
|
||||
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
||||
// circle outline
|
||||
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
||||
}
|
||||
|
||||
/// Show your results
|
||||
namedWindow( "Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE );
|
||||
imshow( "Hough Circle Transform Demo", src );
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
128
samples/cpp/tutorial_code/ImgTrans/HoughLines_Demo.cpp
Normal file
128
samples/cpp/tutorial_code/ImgTrans/HoughLines_Demo.cpp
Normal file
@ -0,0 +1,128 @@
|
||||
/**
|
||||
* @file HoughLines_Demo.cpp
|
||||
* @brief Demo code for Hough Transform
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
/// Global variables
|
||||
|
||||
/** General variables */
|
||||
Mat src, edges;
|
||||
Mat src_gray;
|
||||
Mat standard_hough, probabilistic_hough;
|
||||
int min_threshold = 50;
|
||||
int max_trackbar = 150;
|
||||
|
||||
char* standard_name = "Standard Hough Lines Demo";
|
||||
char* probabilistic_name = "Probabilistic Hough Lines Demo";
|
||||
|
||||
int s_trackbar = max_trackbar;
|
||||
int p_trackbar = max_trackbar;
|
||||
|
||||
/// Function Headers
|
||||
void help();
|
||||
void Standard_Hough( int, void* );
|
||||
void Probabilistic_Hough( int, void* );
|
||||
|
||||
/**
|
||||
* @function main
|
||||
*/
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
/// Read the image
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
if( src.empty() )
|
||||
{ help();
|
||||
return -1;
|
||||
}
|
||||
|
||||
/// Pass the image to gray
|
||||
cvtColor( src, src_gray, CV_RGB2GRAY );
|
||||
|
||||
/// Apply Canny edge detector
|
||||
Canny( src_gray, edges, 50, 200, 3 );
|
||||
|
||||
/// Create Trackbars for Thresholds
|
||||
char thresh_label[50];
|
||||
sprintf( thresh_label, "Thres: %d + input", min_threshold );
|
||||
|
||||
namedWindow( standard_name, CV_WINDOW_AUTOSIZE );
|
||||
createTrackbar( thresh_label, standard_name, &s_trackbar, max_trackbar, Standard_Hough);
|
||||
|
||||
namedWindow( probabilistic_name, CV_WINDOW_AUTOSIZE );
|
||||
createTrackbar( thresh_label, probabilistic_name, &p_trackbar, max_trackbar, Probabilistic_Hough);
|
||||
|
||||
/// Initialize
|
||||
Standard_Hough(0, 0);
|
||||
Probabilistic_Hough(0, 0);
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @function help
|
||||
* @brief Indications of how to run this program and why is it for
|
||||
*/
|
||||
void help()
|
||||
{
|
||||
printf("\t Hough Transform to detect lines \n ");
|
||||
printf("\t---------------------------------\n ");
|
||||
printf(" Usage: ./HoughLines_Demo <image_name> \n");
|
||||
}
|
||||
|
||||
/**
|
||||
* @function Standard_Hough
|
||||
*/
|
||||
void Standard_Hough( int, void* )
|
||||
{
|
||||
vector<Vec2f> s_lines;
|
||||
cvtColor( edges, standard_hough, CV_GRAY2BGR );
|
||||
|
||||
/// 1. Use Standard Hough Transform
|
||||
HoughLines( edges, s_lines, 1, CV_PI/180, min_threshold + s_trackbar, 0, 0 );
|
||||
|
||||
/// Show the result
|
||||
for( int i = 0; i < s_lines.size(); i++ )
|
||||
{
|
||||
float r = s_lines[i][0], t = s_lines[i][1];
|
||||
double cos_t = cos(t), sin_t = sin(t);
|
||||
double x0 = r*cos_t, y0 = r*sin_t;
|
||||
double alpha = 1000;
|
||||
|
||||
Point pt1( cvRound(x0 + alpha*(-sin_t)), cvRound(y0 + alpha*cos_t) );
|
||||
Point pt2( cvRound(x0 - alpha*(-sin_t)), cvRound(y0 - alpha*cos_t) );
|
||||
line( standard_hough, pt1, pt2, Scalar(255,0,0), 3, CV_AA);
|
||||
}
|
||||
|
||||
imshow( standard_name, standard_hough );
|
||||
}
|
||||
|
||||
/**
|
||||
* @function Probabilistic_Hough
|
||||
*/
|
||||
void Probabilistic_Hough( int, void* )
|
||||
{
|
||||
vector<Vec4i> p_lines;
|
||||
cvtColor( edges, probabilistic_hough, CV_GRAY2BGR );
|
||||
|
||||
/// 2. Use Probabilistic Hough Transform
|
||||
HoughLinesP( edges, p_lines, 1, CV_PI/180, min_threshold + p_trackbar, 30, 10 );
|
||||
|
||||
/// Show the result
|
||||
for( size_t i = 0; i < p_lines.size(); i++ )
|
||||
{
|
||||
Vec4i l = p_lines[i];
|
||||
line( probabilistic_hough, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(255,0,0), 3, CV_AA);
|
||||
}
|
||||
|
||||
imshow( probabilistic_name, probabilistic_hough );
|
||||
}
|
Loading…
Reference in New Issue
Block a user