mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 15:04:01 +08:00
refactored gpu::dft
This commit is contained in:
parent
a379d011fd
commit
8f0d36b8b6
@ -640,8 +640,9 @@ namespace cv
|
||||
CV_EXPORTS void mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags,
|
||||
float scale, bool conjB=false);
|
||||
|
||||
//! performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix
|
||||
//!
|
||||
//! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix.
|
||||
//! Param dft_size is the size of DFT transform.
|
||||
//!
|
||||
//! If the source matrix is not continous, then additional copy will be done,
|
||||
//! so to avoid copying ensure the source matrix is continous one. If you want to use
|
||||
//! preallocated output ensure it is continuous too, otherwise it will be reallocated.
|
||||
@ -649,10 +650,8 @@ namespace cv
|
||||
//! Being implemented via CUFFT real-to-complex transform result contains only non-redundant values
|
||||
//! in CUFFT's format. Result as full complex matrix for such kind of transform cannot be retrieved.
|
||||
//!
|
||||
//! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format, which
|
||||
//! doesn't allow us to retrieve parity of the destiantion matrix dimension (along which the first step
|
||||
//! of DFT is performed). You must specifiy odd case explicitely.
|
||||
CV_EXPORTS void dft(const GpuMat& src, GpuMat& dst, int flags=0, int nonZeroRows=0, bool odd=false);
|
||||
//! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format.
|
||||
CV_EXPORTS void dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags=0);
|
||||
|
||||
//! computes convolution (or cross-correlation) of two images using discrete Fourier transform
|
||||
//! supports source images of 32FC1 type only
|
||||
|
@ -76,7 +76,7 @@ void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, int, int, double, int) { thro
|
||||
void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); }
|
||||
void cv::gpu::mulSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, bool) { throw_nogpu(); }
|
||||
void cv::gpu::mulAndScaleSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, float, bool) { throw_nogpu(); }
|
||||
void cv::gpu::dft(const GpuMat&, GpuMat&, int, int, bool) { throw_nogpu(); }
|
||||
void cv::gpu::dft(const GpuMat&, GpuMat&, Size, int) { throw_nogpu(); }
|
||||
void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); }
|
||||
|
||||
|
||||
@ -1130,14 +1130,14 @@ void cv::gpu::mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c,
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// dft
|
||||
|
||||
void cv::gpu::dft(const GpuMat& src, GpuMat& dst, int flags, int nonZeroRows, bool odd)
|
||||
void cv::gpu::dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags)
|
||||
{
|
||||
CV_Assert(src.type() == CV_32F || src.type() == CV_32FC2);
|
||||
|
||||
// We don't support unpacked output (in the case of real input)
|
||||
CV_Assert(!(flags & DFT_COMPLEX_OUTPUT));
|
||||
|
||||
bool is_1d_input = (src.rows == 1) || (src.cols == 1);
|
||||
bool is_1d_input = (dft_size.height == 1) || (dft_size.width == 1);
|
||||
int is_row_dft = flags & DFT_ROWS;
|
||||
int is_scaled_dft = flags & DFT_SCALE;
|
||||
int is_inverse = flags & DFT_INVERSE;
|
||||
@ -1156,63 +1156,49 @@ void cv::gpu::dft(const GpuMat& src, GpuMat& dst, int flags, int nonZeroRows, bo
|
||||
if (src_data.data != src.data)
|
||||
src.copyTo(src_data);
|
||||
|
||||
Size dft_size_ = dft_size;
|
||||
if (is_1d_input && !is_row_dft)
|
||||
// If the source matrix is single column reshape it into single row
|
||||
src_data = src_data.reshape(0, std::min(src.rows, src.cols));
|
||||
{
|
||||
// If the source matrix is single column handle it as single row
|
||||
dft_size_.width = std::max(dft_size.width, dft_size.height);
|
||||
dft_size_.height = std::min(dft_size.width, dft_size.height);
|
||||
}
|
||||
|
||||
cufftType dft_type = CUFFT_R2C;
|
||||
if (is_complex_input)
|
||||
dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R;
|
||||
|
||||
int dft_rows = src_data.rows;
|
||||
int dft_cols = src_data.cols;
|
||||
if (is_complex_input && !is_complex_output)
|
||||
dft_cols = (src_data.cols - 1) * 2 + (int)odd;
|
||||
CV_Assert(dft_cols > 1);
|
||||
CV_Assert(dft_size_.width > 1);
|
||||
|
||||
cufftHandle plan;
|
||||
if (is_1d_input || is_row_dft)
|
||||
cufftPlan1d(&plan, dft_cols, dft_type, dft_rows);
|
||||
cufftPlan1d(&plan, dft_size_.width, dft_type, dft_size_.height);
|
||||
else
|
||||
cufftPlan2d(&plan, dft_rows, dft_cols, dft_type);
|
||||
|
||||
int dst_cols, dst_rows;
|
||||
cufftPlan2d(&plan, dft_size_.height, dft_size_.width, dft_type);
|
||||
|
||||
if (is_complex_input)
|
||||
{
|
||||
if (is_complex_output)
|
||||
{
|
||||
createContinuous(src.rows, src.cols, CV_32FC2, dst);
|
||||
createContinuous(dft_size, CV_32FC2, dst);
|
||||
cufftSafeCall(cufftExecC2C(
|
||||
plan, src_data.ptr<cufftComplex>(), dst.ptr<cufftComplex>(),
|
||||
is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD));
|
||||
}
|
||||
else
|
||||
{
|
||||
dst_rows = src.rows;
|
||||
dst_cols = (src.cols - 1) * 2 + (int)odd;
|
||||
if (src_data.size() != src.size())
|
||||
{
|
||||
dst_rows = (src.rows - 1) * 2 + (int)odd;
|
||||
dst_cols = src.cols;
|
||||
}
|
||||
|
||||
createContinuous(dst_rows, dst_cols, CV_32F, dst);
|
||||
createContinuous(dft_size, CV_32F, dst);
|
||||
cufftSafeCall(cufftExecC2R(
|
||||
plan, src_data.ptr<cufftComplex>(), dst.ptr<cufftReal>()));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
dst_rows = src.rows;
|
||||
dst_cols = src.cols / 2 + 1;
|
||||
if (src_data.size() != src.size())
|
||||
{
|
||||
dst_rows = src.rows / 2 + 1;
|
||||
dst_cols = src.cols;
|
||||
}
|
||||
if (dft_size == dft_size_)
|
||||
createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, dst);
|
||||
else
|
||||
createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, dst);
|
||||
|
||||
createContinuous(dst_rows, dst_cols, CV_32FC2, dst);
|
||||
cufftSafeCall(cufftExecR2C(
|
||||
plan, src_data.ptr<cufftReal>(), dst.ptr<cufftComplex>()));
|
||||
}
|
||||
@ -1220,7 +1206,7 @@ void cv::gpu::dft(const GpuMat& src, GpuMat& dst, int flags, int nonZeroRows, bo
|
||||
cufftSafeCall(cufftDestroy(plan));
|
||||
|
||||
if (is_scaled_dft)
|
||||
multiply(dst, Scalar::all(1. / (dft_rows * dft_cols)), dst);
|
||||
multiply(dst, Scalar::all(1. / (dft_size.area())), dst);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
@ -328,7 +328,7 @@ struct CV_GpuDftTest: CvTest
|
||||
d_b = GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
|
||||
}
|
||||
|
||||
dft(GpuMat(a), d_b, flags);
|
||||
dft(GpuMat(a), d_b, Size(cols, rows), flags);
|
||||
|
||||
bool ok = true;
|
||||
if (ok && inplace && d_b.ptr() != d_b_data.ptr())
|
||||
@ -360,9 +360,6 @@ struct CV_GpuDftTest: CvTest
|
||||
Mat a;
|
||||
gen(cols, rows, 1, a);
|
||||
|
||||
bool odd = false;
|
||||
if (a.cols == 1) odd = a.rows % 2 == 1;
|
||||
else odd = a.cols % 2 == 1;
|
||||
bool ok = true;
|
||||
|
||||
GpuMat d_b, d_c;
|
||||
@ -382,8 +379,9 @@ struct CV_GpuDftTest: CvTest
|
||||
d_c_data.create(1, a.size().area(), CV_32F);
|
||||
d_c = GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
|
||||
}
|
||||
dft(GpuMat(a), d_b, 0);
|
||||
dft(d_b, d_c, DFT_REAL_OUTPUT | DFT_SCALE, 0, odd);
|
||||
|
||||
dft(GpuMat(a), d_b, Size(cols, rows), 0);
|
||||
dft(d_b, d_c, Size(cols, rows), DFT_REAL_OUTPUT | DFT_SCALE);
|
||||
|
||||
if (ok && inplace && d_b.ptr() != d_b_data.ptr())
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user