Merge pull request #12123 from allnes:detect_qr_code

This commit is contained in:
Alexander Alekhin 2018-08-03 16:52:26 +00:00
commit 8f57fc93ec

View File

@ -35,9 +35,7 @@ protected:
Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2);
vector<Point2f> getQuadrilateral(vector<Point2f> angle_list);
bool testBypassRoute(vector<Point2f> hull, int start, int finish);
double getTriangleArea(Point2f a, Point2f b, Point2f c);
double getPolygonArea(vector<Point2f> points);
double getCosVectors(Point2f a, Point2f b, Point2f c);
inline double getCosVectors(Point2f a, Point2f b, Point2f c);
Mat barcode, bin_barcode, straight_barcode;
vector<Point2f> localization_points, transformation_points;
@ -69,7 +67,7 @@ void QRDecode::binarization()
{
Mat filter_barcode;
GaussianBlur(barcode, filter_barcode, Size(3, 3), 0);
threshold(filter_barcode, bin_barcode, 0, 255, THRESH_BINARY + THRESH_OTSU);
threshold(filter_barcode, bin_barcode, 100, 255, THRESH_BINARY + THRESH_OTSU);
}
vector<Vec3d> QRDecode::searchVerticalLines()
@ -139,7 +137,7 @@ vector<Point2f> QRDecode::separateHorizontalLines(vector<Vec3d> list_lines)
for (size_t pnt = 0; pnt < list_lines.size(); pnt++)
{
int x = static_cast<int>(list_lines[pnt][0] + list_lines[pnt][2] / 2);
int x = static_cast<int>(list_lines[pnt][0] + list_lines[pnt][2] * 0.5);
int y = static_cast<int>(list_lines[pnt][1]);
// --------------- Search horizontal up-lines --------------- //
@ -203,7 +201,7 @@ vector<Point2f> QRDecode::separateHorizontalLines(vector<Vec3d> list_lines)
{
point2f_result.push_back(
Point2f(static_cast<float>(result[i][1]),
static_cast<float>(result[i][0] + result[i][2] / 2)));
static_cast<float>(result[i][0] + result[i][2] * 0.5)));
}
return point2f_result;
}
@ -352,9 +350,13 @@ bool QRDecode::computeTransformationPoints()
up_left_edge_point = new_non_zero_elem[0][0];
for (size_t i = 0; i < new_non_zero_elem[0].size(); i++)
{
double temp_area = getTriangleArea(new_non_zero_elem[0][i],
down_left_edge_point,
up_right_edge_point);
vector<Point2f> list_edge_points;
list_edge_points.push_back(new_non_zero_elem[0][i]);
list_edge_points.push_back(down_left_edge_point);
list_edge_points.push_back(up_right_edge_point);
double temp_area = contourArea(list_edge_points);
if (max_area < temp_area)
{
up_left_edge_point = new_non_zero_elem[0][i];
@ -485,7 +487,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
hull[i] = Point2f(x, y);
}
const double experimental_area = getPolygonArea(hull);
const double experimental_area = contourArea(hull);
vector<Point2f> result_hull_point(angle_size);
double min_norm;
@ -539,7 +541,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
if (min_norm > temp_norm &&
norm(hull[index_hull] - hull[next_index_hull]) >
norm(angle_list[1] - angle_list[2]) / 10)
norm(angle_list[1] - angle_list[2]) * 0.1)
{
min_norm = temp_norm;
result_side_begin[0] = hull[index_hull];
@ -577,7 +579,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
if (min_norm > temp_norm &&
norm(hull[index_hull] - hull[next_index_hull]) >
norm(angle_list[0] - angle_list[1]) / 20)
norm(angle_list[0] - angle_list[1]) * 0.05)
{
min_norm = temp_norm;
result_side_begin[1] = hull[index_hull];
@ -611,7 +613,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm / 10.0)
if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm * 0.1)
{ index_hull = next_index_hull; continue; }
extra_index_hull = finish_line[1];
@ -623,7 +625,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; }
if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; }
if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm / 10.0)
if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm * 0.1)
{ extra_index_hull = extra_next_index_hull; continue; }
test_result_angle_list[0]
@ -639,7 +641,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
= intersectionLines(hull[index_hull], hull[next_index_hull],
result_side_begin[0], result_side_end[0]);
test_diff_area = fabs(getPolygonArea(test_result_angle_list) - experimental_area);
test_diff_area = fabs(contourArea(test_result_angle_list) - experimental_area);
if (min_diff_area > test_diff_area)
{
min_diff_area = test_diff_area;
@ -659,50 +661,14 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
return result_angle_list;
}
// b
// / |
// / |
// / |
// / S |
// / |
// a ----- c
double QRDecode::getTriangleArea(Point2f a, Point2f b, Point2f c)
{
double norm_sides[] = { norm(a - b), norm(b - c), norm(c - a) };
double half_perimeter = (norm_sides[0] + norm_sides[1] + norm_sides[2]) / 2.0;
double triangle_area = sqrt(half_perimeter *
(half_perimeter - norm_sides[0]) *
(half_perimeter - norm_sides[1]) *
(half_perimeter - norm_sides[2]));
return triangle_area;
}
double QRDecode::getPolygonArea(vector<Point2f> points)
{
CV_Assert(points.size() >= 3);
if (points.size() == 3)
{ return getTriangleArea(points[0], points[1], points[2]); }
else
{
double result_area = 0.0;
for (size_t i = 1; i < points.size() - 1; i++)
{
result_area += getTriangleArea(points[0], points[i], points[i + 1]);
}
return result_area;
}
}
// / | b
// / |
// / |
// a/ | c
double QRDecode::getCosVectors(Point2f a, Point2f b, Point2f c)
inline double QRDecode::getCosVectors(Point2f a, Point2f b, Point2f c)
{
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y)
/ (norm(a - b) * norm(c - b));
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b));
}
bool QRDecode::transformation()