mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 09:25:45 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
8fad85edda
@ -138,8 +138,8 @@ if(INF_ENGINE_TARGET)
|
||||
math(EXPR INF_ENGINE_RELEASE "${InferenceEngine_VERSION_MAJOR} * 1000000 + ${InferenceEngine_VERSION_MINOR} * 10000 + ${InferenceEngine_VERSION_PATCH} * 100")
|
||||
endif()
|
||||
if(NOT INF_ENGINE_RELEASE)
|
||||
message(WARNING "InferenceEngine version has not been set, 2021.3 will be used by default. Set INF_ENGINE_RELEASE variable if you experience build errors.")
|
||||
set(INF_ENGINE_RELEASE "2021030000")
|
||||
message(WARNING "InferenceEngine version has not been set, 2021.4 will be used by default. Set INF_ENGINE_RELEASE variable if you experience build errors.")
|
||||
set(INF_ENGINE_RELEASE "2021040000")
|
||||
endif()
|
||||
set(INF_ENGINE_RELEASE "${INF_ENGINE_RELEASE}" CACHE STRING "Force IE version, should be in form YYYYAABBCC (e.g. 2020.1.0.2 -> 2020010002)")
|
||||
set_target_properties(${INF_ENGINE_TARGET} PROPERTIES
|
||||
|
@ -16,8 +16,8 @@
|
||||
# define OPENCV_HAVE_FILESYSTEM_SUPPORT 1
|
||||
# elif defined(__APPLE__)
|
||||
# include <TargetConditionals.h>
|
||||
# if (defined(TARGET_OS_OSX) && TARGET_OS_OSX) || (!defined(TARGET_OS_OSX) && !TARGET_OS_IPHONE)
|
||||
# define OPENCV_HAVE_FILESYSTEM_SUPPORT 1 // OSX only
|
||||
# if (defined(TARGET_OS_OSX) && TARGET_OS_OSX) || (defined(TARGET_OS_IOS) && TARGET_OS_IOS)
|
||||
# define OPENCV_HAVE_FILESYSTEM_SUPPORT 1 // OSX, iOS only
|
||||
# endif
|
||||
# else
|
||||
/* unknown */
|
||||
|
@ -657,7 +657,11 @@ void InfEngineNgraphNet::initPlugin(InferenceEngine::CNNNetwork& net)
|
||||
try
|
||||
{
|
||||
InferenceEngine::IExtensionPtr extension =
|
||||
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2021_4)
|
||||
std::make_shared<InferenceEngine::Extension>(libName);
|
||||
#else
|
||||
InferenceEngine::make_so_pointer<InferenceEngine::IExtension>(libName);
|
||||
#endif
|
||||
|
||||
ie.AddExtension(extension, "CPU");
|
||||
CV_LOG_INFO(NULL, "DNN-IE: Loaded extension plugin: " << libName);
|
||||
@ -1005,35 +1009,54 @@ void InfEngineNgraphNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlo
|
||||
reqWrapper->req.SetInput(inpBlobs);
|
||||
reqWrapper->req.SetOutput(outBlobs);
|
||||
|
||||
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2021_4)
|
||||
InferenceEngine::InferRequest infRequest = reqWrapper->req;
|
||||
NgraphReqWrapper* wrapperPtr = reqWrapper.get();
|
||||
CV_Assert(wrapperPtr && "Internal error");
|
||||
#else
|
||||
InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req;
|
||||
infRequestPtr->SetUserData(reqWrapper.get(), 0);
|
||||
CV_Assert(infRequestPtr);
|
||||
InferenceEngine::IInferRequest& infRequest = *infRequestPtr.get();
|
||||
infRequest.SetUserData(reqWrapper.get(), 0);
|
||||
#endif
|
||||
|
||||
infRequestPtr->SetCompletionCallback(
|
||||
[](InferenceEngine::IInferRequest::Ptr request, InferenceEngine::StatusCode status)
|
||||
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2021_4)
|
||||
// do NOT capture 'reqWrapper' (smart ptr) in the lambda callback
|
||||
infRequest.SetCompletionCallback<std::function<void(InferenceEngine::InferRequest, InferenceEngine::StatusCode)>>(
|
||||
[wrapperPtr](InferenceEngine::InferRequest /*request*/, InferenceEngine::StatusCode status)
|
||||
#else
|
||||
infRequest.SetCompletionCallback(
|
||||
[](InferenceEngine::IInferRequest::Ptr requestPtr, InferenceEngine::StatusCode status)
|
||||
#endif
|
||||
{
|
||||
CV_LOG_DEBUG(NULL, "DNN(nGraph): completionCallback(" << (int)status << ")");
|
||||
#if !INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2021_4)
|
||||
CV_Assert(requestPtr);
|
||||
InferenceEngine::IInferRequest& request = *requestPtr.get();
|
||||
|
||||
NgraphReqWrapper* wrapper;
|
||||
request->GetUserData((void**)&wrapper, 0);
|
||||
CV_Assert(wrapper && "Internal error");
|
||||
NgraphReqWrapper* wrapperPtr;
|
||||
request.GetUserData((void**)&wrapperPtr, 0);
|
||||
CV_Assert(wrapperPtr && "Internal error");
|
||||
#endif
|
||||
NgraphReqWrapper& wrapper = *wrapperPtr;
|
||||
|
||||
size_t processedOutputs = 0;
|
||||
try
|
||||
{
|
||||
for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs)
|
||||
for (; processedOutputs < wrapper.outProms.size(); ++processedOutputs)
|
||||
{
|
||||
const std::string& name = wrapper->outsNames[processedOutputs];
|
||||
Mat m = ngraphBlobToMat(wrapper->req.GetBlob(name));
|
||||
const std::string& name = wrapper.outsNames[processedOutputs];
|
||||
Mat m = ngraphBlobToMat(wrapper.req.GetBlob(name));
|
||||
|
||||
try
|
||||
{
|
||||
CV_Assert(status == InferenceEngine::StatusCode::OK);
|
||||
wrapper->outProms[processedOutputs].setValue(m.clone());
|
||||
wrapper.outProms[processedOutputs].setValue(m.clone());
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
try {
|
||||
wrapper->outProms[processedOutputs].setException(std::current_exception());
|
||||
wrapper.outProms[processedOutputs].setException(std::current_exception());
|
||||
} catch(...) {
|
||||
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
|
||||
}
|
||||
@ -1043,16 +1066,16 @@ void InfEngineNgraphNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlo
|
||||
catch (...)
|
||||
{
|
||||
std::exception_ptr e = std::current_exception();
|
||||
for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs)
|
||||
for (; processedOutputs < wrapper.outProms.size(); ++processedOutputs)
|
||||
{
|
||||
try {
|
||||
wrapper->outProms[processedOutputs].setException(e);
|
||||
wrapper.outProms[processedOutputs].setException(e);
|
||||
} catch(...) {
|
||||
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
|
||||
}
|
||||
}
|
||||
}
|
||||
wrapper->isReady = true;
|
||||
wrapper.isReady = true;
|
||||
}
|
||||
);
|
||||
}
|
||||
|
@ -35,6 +35,7 @@ namespace dnn
|
||||
class BatchNormLayerImpl CV_FINAL : public BatchNormLayer
|
||||
{
|
||||
public:
|
||||
Mat origin_weights, origin_bias;
|
||||
Mat weights_, bias_;
|
||||
UMat umat_weight, umat_bias;
|
||||
mutable int dims;
|
||||
@ -88,11 +89,11 @@ public:
|
||||
const float* weightsData = hasWeights ? blobs[weightsBlobIndex].ptr<float>() : 0;
|
||||
const float* biasData = hasBias ? blobs[biasBlobIndex].ptr<float>() : 0;
|
||||
|
||||
weights_.create(1, (int)n, CV_32F);
|
||||
bias_.create(1, (int)n, CV_32F);
|
||||
origin_weights.create(1, (int)n, CV_32F);
|
||||
origin_bias.create(1, (int)n, CV_32F);
|
||||
|
||||
float* dstWeightsData = weights_.ptr<float>();
|
||||
float* dstBiasData = bias_.ptr<float>();
|
||||
float* dstWeightsData = origin_weights.ptr<float>();
|
||||
float* dstBiasData = origin_bias.ptr<float>();
|
||||
|
||||
for (size_t i = 0; i < n; ++i)
|
||||
{
|
||||
@ -100,15 +101,12 @@ public:
|
||||
dstWeightsData[i] = w;
|
||||
dstBiasData[i] = (hasBias ? biasData[i] : 0.0f) - w * meanData[i] * varMeanScale;
|
||||
}
|
||||
// We will use blobs to store origin weights and bias to restore them in case of reinitialization.
|
||||
weights_.copyTo(blobs[0].reshape(1, 1));
|
||||
bias_.copyTo(blobs[1].reshape(1, 1));
|
||||
}
|
||||
|
||||
virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE
|
||||
{
|
||||
blobs[0].reshape(1, 1).copyTo(weights_);
|
||||
blobs[1].reshape(1, 1).copyTo(bias_);
|
||||
origin_weights.reshape(1, 1).copyTo(weights_);
|
||||
origin_bias.reshape(1, 1).copyTo(bias_);
|
||||
}
|
||||
|
||||
void getScaleShift(Mat& scale, Mat& shift) const CV_OVERRIDE
|
||||
|
@ -1954,6 +1954,23 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
addConstant(layerParams.name, concatenated[0]);
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < node_proto.input_size(); ++i)
|
||||
{
|
||||
if (constBlobs.find(node_proto.input(i)) != constBlobs.end())
|
||||
{
|
||||
LayerParams constParams;
|
||||
constParams.name = node_proto.input(i);
|
||||
constParams.type = "Const";
|
||||
constParams.blobs.push_back(getBlob(node_proto, i));
|
||||
|
||||
opencv_onnx::NodeProto proto;
|
||||
proto.add_output(constParams.name);
|
||||
addLayer(constParams, proto);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (layer_type == "Resize")
|
||||
{
|
||||
|
@ -30,10 +30,11 @@
|
||||
#define INF_ENGINE_RELEASE_2021_1 2021010000
|
||||
#define INF_ENGINE_RELEASE_2021_2 2021020000
|
||||
#define INF_ENGINE_RELEASE_2021_3 2021030000
|
||||
#define INF_ENGINE_RELEASE_2021_4 2021040000
|
||||
|
||||
#ifndef INF_ENGINE_RELEASE
|
||||
#warning("IE version have not been provided via command-line. Using 2021.3 by default")
|
||||
#define INF_ENGINE_RELEASE INF_ENGINE_RELEASE_2021_3
|
||||
#warning("IE version have not been provided via command-line. Using 2021.4 by default")
|
||||
#define INF_ENGINE_RELEASE INF_ENGINE_RELEASE_2021_4
|
||||
#endif
|
||||
|
||||
#define INF_ENGINE_VER_MAJOR_GT(ver) (((INF_ENGINE_RELEASE) / 10000) > ((ver) / 10000))
|
||||
|
@ -204,7 +204,7 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe)
|
||||
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
|
||||
float scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1.5e-2 : 0.0;
|
||||
float iouDiff = (target == DNN_TARGET_MYRIAD) ? 0.063 : 0.0;
|
||||
float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.252 : FLT_MIN;
|
||||
float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.262 : FLT_MIN;
|
||||
processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt",
|
||||
inp, "detection_out", "", scoreDiff, iouDiff, detectionConfThresh);
|
||||
expectNoFallbacksFromIE(net);
|
||||
@ -359,8 +359,8 @@ TEST_P(DNNTestNetwork, OpenPose_pose_coco)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
|
||||
const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.0056 : 0.0;
|
||||
const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.072 : 0.0;
|
||||
const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.009 : 0.0;
|
||||
const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.09 : 0.0;
|
||||
processNet("dnn/openpose_pose_coco.caffemodel", "dnn/openpose_pose_coco.prototxt",
|
||||
Size(46, 46), "", "", l1, lInf);
|
||||
expectNoFallbacksFromIE(net);
|
||||
@ -380,8 +380,8 @@ TEST_P(DNNTestNetwork, OpenPose_pose_mpi)
|
||||
#endif
|
||||
|
||||
// output range: [-0.001, 0.97]
|
||||
const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.012 : 0.0;
|
||||
const float lInf = (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.16 : 0.0;
|
||||
const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.02 : 0.0;
|
||||
const float lInf = (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_OPENCL_FP16) ? 0.2 : 0.0;
|
||||
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi.prototxt",
|
||||
Size(46, 46), "", "", l1, lInf);
|
||||
expectNoFallbacksFromIE(net);
|
||||
|
@ -307,6 +307,15 @@ TEST_P(DNNTestOpenVINO, models)
|
||||
ASSERT_FALSE(backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) <<
|
||||
"Inference Engine backend is required";
|
||||
|
||||
#if INF_ENGINE_VER_MAJOR_EQ(2021040000)
|
||||
if (targetId == DNN_TARGET_MYRIAD && (
|
||||
modelName == "person-detection-retail-0013" || // ncDeviceOpen:1013 Failed to find booted device after boot
|
||||
modelName == "age-gender-recognition-retail-0013" // ncDeviceOpen:1013 Failed to find booted device after boot
|
||||
)
|
||||
)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
|
||||
#if INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (targetId == DNN_TARGET_MYRIAD && backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
{
|
||||
|
@ -349,6 +349,7 @@ TEST_P(Test_ONNX_layers, Concatenation)
|
||||
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
}
|
||||
testONNXModels("concatenation");
|
||||
testONNXModels("concat_const_blobs");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Eltwise3D)
|
||||
|
@ -290,9 +290,14 @@ TEST_P(Test_Torch_layers, net_padding)
|
||||
|
||||
TEST_P(Test_Torch_layers, net_non_spatial)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000)
|
||||
#if defined(INF_ENGINE_RELEASE) && ( \
|
||||
INF_ENGINE_VER_MAJOR_EQ(2021030000) || \
|
||||
INF_ENGINE_VER_MAJOR_EQ(2021040000) \
|
||||
)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // crash
|
||||
// 2021.3: crash
|
||||
// 2021.4: [ GENERAL_ERROR ] AssertionFailed: !out.networkInputs.empty()
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||||
|
@ -89,7 +89,7 @@ void MatchingMethod( int, void* )
|
||||
|
||||
//! [create_result_matrix]
|
||||
/// Create the result matrix
|
||||
int result_cols = img.cols - templ.cols + 1;
|
||||
int result_cols = img.cols - templ.cols + 1;
|
||||
int result_rows = img.rows - templ.rows + 1;
|
||||
|
||||
result.create( result_rows, result_cols, CV_32FC1 );
|
||||
|
@ -72,18 +72,18 @@ void Hist_and_Backproj(int, void* )
|
||||
//! [initialize]
|
||||
int histSize = MAX( bins, 2 );
|
||||
float hue_range[] = { 0, 180 };
|
||||
const float* ranges = { hue_range };
|
||||
const float* ranges[] = { hue_range };
|
||||
//! [initialize]
|
||||
|
||||
//! [Get the Histogram and normalize it]
|
||||
Mat hist;
|
||||
calcHist( &hue, 1, 0, Mat(), hist, 1, &histSize, &ranges, true, false );
|
||||
calcHist( &hue, 1, 0, Mat(), hist, 1, &histSize, ranges, true, false );
|
||||
normalize( hist, hist, 0, 255, NORM_MINMAX, -1, Mat() );
|
||||
//! [Get the Histogram and normalize it]
|
||||
|
||||
//! [Get Backprojection]
|
||||
Mat backproj;
|
||||
calcBackProject( &hue, 1, 0, hist, backproj, &ranges, 1, true );
|
||||
calcBackProject( &hue, 1, 0, hist, backproj, ranges, 1, true );
|
||||
//! [Get Backprojection]
|
||||
|
||||
//! [Draw the backproj]
|
||||
|
@ -37,7 +37,7 @@ int main(int argc, char** argv)
|
||||
|
||||
//! [Set the ranges ( for B,G,R) )]
|
||||
float range[] = { 0, 256 }; //the upper boundary is exclusive
|
||||
const float* histRange = { range };
|
||||
const float* histRange[] = { range };
|
||||
//! [Set the ranges ( for B,G,R) )]
|
||||
|
||||
//! [Set histogram param]
|
||||
@ -46,9 +46,9 @@ int main(int argc, char** argv)
|
||||
|
||||
//! [Compute the histograms]
|
||||
Mat b_hist, g_hist, r_hist;
|
||||
calcHist( &bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, histRange, uniform, accumulate );
|
||||
calcHist( &bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, histRange, uniform, accumulate );
|
||||
//! [Compute the histograms]
|
||||
|
||||
//! [Draw the histograms for B, G and R]
|
||||
|
@ -188,7 +188,7 @@ def main():
|
||||
|
||||
fig = plt.figure()
|
||||
ax = fig.gca(projection='3d')
|
||||
ax.set_aspect("equal")
|
||||
ax.set_aspect("auto")
|
||||
|
||||
cam_width = args.cam_width
|
||||
cam_height = args.cam_height
|
||||
|
@ -32,7 +32,7 @@ def draw_gaussain(img, mean, cov, color):
|
||||
w, u, _vt = cv.SVDecomp(cov)
|
||||
ang = np.arctan2(u[1, 0], u[0, 0])*(180/np.pi)
|
||||
s1, s2 = np.sqrt(w)*3.0
|
||||
cv.ellipse(img, (x, y), (s1, s2), ang, 0, 360, color, 1, cv.LINE_AA)
|
||||
cv.ellipse(img, (int(x), int(y)), (int(s1), int(s2)), ang, 0, 360, color, 1, cv.LINE_AA)
|
||||
|
||||
|
||||
def main():
|
||||
|
@ -48,7 +48,7 @@ def hist_lines(im):
|
||||
cv.normalize(hist_item,hist_item,0,255,cv.NORM_MINMAX)
|
||||
hist=np.int32(np.around(hist_item))
|
||||
for x,y in enumerate(hist):
|
||||
cv.line(h,(x,0),(x,y),(255,255,255))
|
||||
cv.line(h,(x,0),(x,y[0]),(255,255,255))
|
||||
y = np.flipud(h)
|
||||
return y
|
||||
|
||||
|
@ -77,8 +77,8 @@ class App:
|
||||
|
||||
for (x0, y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]):
|
||||
if good:
|
||||
cv.line(vis, (x0, y0), (x1, y1), (0, 128, 0))
|
||||
cv.circle(vis, (x1, y1), 2, (red, green)[good], -1)
|
||||
cv.line(vis, (int(x0), int(y0)), (int(x1), int(y1)), (0, 128, 0))
|
||||
cv.circle(vis, (int(x1), int(y1)), 2, (red, green)[good], -1)
|
||||
draw_str(vis, (20, 20), 'track count: %d' % len(self.p1))
|
||||
if self.use_ransac:
|
||||
draw_str(vis, (20, 40), 'RANSAC')
|
||||
@ -86,7 +86,7 @@ class App:
|
||||
p = cv.goodFeaturesToTrack(frame_gray, **feature_params)
|
||||
if p is not None:
|
||||
for x, y in p[:,0]:
|
||||
cv.circle(vis, (x, y), 2, green, -1)
|
||||
cv.circle(vis, (int(x), int(y)), 2, green, -1)
|
||||
draw_str(vis, (20, 20), 'feature count: %d' % len(p))
|
||||
|
||||
cv.imshow('lk_homography', vis)
|
||||
|
@ -65,7 +65,7 @@ class App:
|
||||
if len(tr) > self.track_len:
|
||||
del tr[0]
|
||||
new_tracks.append(tr)
|
||||
cv.circle(vis, (x, y), 2, (0, 255, 0), -1)
|
||||
cv.circle(vis, (int(x), int(y)), 2, (0, 255, 0), -1)
|
||||
self.tracks = new_tracks
|
||||
cv.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 255, 0))
|
||||
draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks))
|
||||
|
@ -30,7 +30,7 @@ def main():
|
||||
color = (0, 255, 0)
|
||||
|
||||
cap = cv.VideoCapture(0)
|
||||
cap.set(cv.CAP_PROP_AUTOFOCUS, False) # Known bug: https://github.com/opencv/opencv/pull/5474
|
||||
cap.set(cv.CAP_PROP_AUTOFOCUS, 0) # Known bug: https://github.com/opencv/opencv/pull/5474
|
||||
|
||||
cv.namedWindow("Video")
|
||||
|
||||
@ -67,7 +67,7 @@ def main():
|
||||
break
|
||||
elif k == ord('g'):
|
||||
convert_rgb = not convert_rgb
|
||||
cap.set(cv.CAP_PROP_CONVERT_RGB, convert_rgb)
|
||||
cap.set(cv.CAP_PROP_CONVERT_RGB, 1 if convert_rgb else 0)
|
||||
|
||||
print('Done')
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user