mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Merge pull request #6548 from fnorf:master
This commit is contained in:
commit
90b844792d
@ -121,21 +121,21 @@ images = glob.glob('*.jpg')
|
||||
|
||||
for fname in images:
|
||||
img = cv2.imread(fname)
|
||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# Find the chess board corners
|
||||
ret, corners = cv2.findChessboardCorners(gray, (7,6),None)
|
||||
ret, corners = cv2.findChessboardCorners(gray, (7,6), None)
|
||||
|
||||
# If found, add object points, image points (after refining them)
|
||||
if ret == True:
|
||||
objpoints.append(objp)
|
||||
|
||||
cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
|
||||
cv2.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
|
||||
imgpoints.append(corners)
|
||||
|
||||
# Draw and display the corners
|
||||
cv2.drawChessboardCorners(img, (7,6), corners2,ret)
|
||||
cv2.imshow('img',img)
|
||||
cv2.drawChessboardCorners(img, (7,6), corners, ret)
|
||||
cv2.imshow('img', img)
|
||||
cv2.waitKey(500)
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
@ -150,7 +150,7 @@ So now we have our object points and image points we are ready to go for calibra
|
||||
use the function, **cv2.calibrateCamera()**. It returns the camera matrix, distortion coefficients,
|
||||
rotation and translation vectors etc.
|
||||
@code{.py}
|
||||
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
|
||||
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
|
||||
@endcode
|
||||
### Undistortion
|
||||
|
||||
@ -165,7 +165,7 @@ So we take a new image (left12.jpg in this case. That is the first image in this
|
||||
@code{.py}
|
||||
img = cv2.imread('left12.jpg')
|
||||
h, w = img.shape[:2]
|
||||
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))
|
||||
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
|
||||
@endcode
|
||||
#### 1. Using **cv2.undistort()**
|
||||
|
||||
@ -175,9 +175,9 @@ This is the shortest path. Just call the function and use ROI obtained above to
|
||||
dst = cv2.undistort(img, mtx, dist, None, newcameramtx)
|
||||
|
||||
# crop the image
|
||||
x,y,w,h = roi
|
||||
x, y, w, h = roi
|
||||
dst = dst[y:y+h, x:x+w]
|
||||
cv2.imwrite('calibresult.png',dst)
|
||||
cv2.imwrite('calibresult.png', dst)
|
||||
@endcode
|
||||
#### 2. Using **remapping**
|
||||
|
||||
@ -185,13 +185,13 @@ This is curved path. First find a mapping function from distorted image to undis
|
||||
use the remap function.
|
||||
@code{.py}
|
||||
# undistort
|
||||
mapx,mapy = cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5)
|
||||
dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)
|
||||
mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w,h), 5)
|
||||
dst = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR)
|
||||
|
||||
# crop the image
|
||||
x,y,w,h = roi
|
||||
x, y, w, h = roi
|
||||
dst = dst[y:y+h, x:x+w]
|
||||
cv2.imwrite('calibresult.png',dst)
|
||||
cv2.imwrite('calibresult.png', dst)
|
||||
@endcode
|
||||
Both the methods give the same result. See the result below:
|
||||
|
||||
@ -215,8 +215,8 @@ calibration images.
|
||||
mean_error = 0
|
||||
for i in xrange(len(objpoints)):
|
||||
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
|
||||
error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
|
||||
tot_error += error
|
||||
error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2)/len(imgpoints2)
|
||||
mean_error += error
|
||||
|
||||
print "total error: ", mean_error/len(objpoints)
|
||||
@endcode
|
||||
|
Loading…
Reference in New Issue
Block a user