mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
Merge pull request #12234 from cv3d:python/cuda/wrapping_functionalities
This commit is contained in:
commit
90f47eb952
@ -105,7 +105,7 @@ streams.
|
||||
class CV_EXPORTS_W GpuMat
|
||||
{
|
||||
public:
|
||||
class CV_EXPORTS Allocator
|
||||
class CV_EXPORTS_W Allocator
|
||||
{
|
||||
public:
|
||||
virtual ~Allocator() {}
|
||||
@ -116,8 +116,8 @@ public:
|
||||
};
|
||||
|
||||
//! default allocator
|
||||
static Allocator* defaultAllocator();
|
||||
static void setDefaultAllocator(Allocator* allocator);
|
||||
CV_WRAP static GpuMat::Allocator* defaultAllocator();
|
||||
CV_WRAP static void setDefaultAllocator(GpuMat::Allocator* allocator);
|
||||
|
||||
//! default constructor
|
||||
CV_WRAP explicit GpuMat(GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
|
||||
@ -131,15 +131,15 @@ public:
|
||||
CV_WRAP GpuMat(Size size, int type, Scalar s, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
|
||||
|
||||
//! copy constructor
|
||||
GpuMat(const GpuMat& m);
|
||||
CV_WRAP GpuMat(const GpuMat& m);
|
||||
|
||||
//! constructor for GpuMat headers pointing to user-allocated data
|
||||
GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP);
|
||||
GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP);
|
||||
CV_WRAP GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP);
|
||||
CV_WRAP GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP);
|
||||
|
||||
//! creates a GpuMat header for a part of the bigger matrix
|
||||
GpuMat(const GpuMat& m, Range rowRange, Range colRange);
|
||||
GpuMat(const GpuMat& m, Rect roi);
|
||||
CV_WRAP GpuMat(const GpuMat& m, Range rowRange, Range colRange);
|
||||
CV_WRAP GpuMat(const GpuMat& m, Rect roi);
|
||||
|
||||
//! builds GpuMat from host memory (Blocking call)
|
||||
CV_WRAP explicit GpuMat(InputArray arr, GpuMat::Allocator* allocator = GpuMat::defaultAllocator());
|
||||
@ -158,7 +158,7 @@ public:
|
||||
void release();
|
||||
|
||||
//! swaps with other smart pointer
|
||||
void swap(GpuMat& mat);
|
||||
CV_WRAP void swap(GpuMat& mat);
|
||||
|
||||
/** @brief Performs data upload to GpuMat (Blocking call)
|
||||
|
||||
@ -195,7 +195,7 @@ public:
|
||||
CV_WRAP void download(OutputArray dst, Stream& stream) const;
|
||||
|
||||
//! returns deep copy of the GpuMat, i.e. the data is copied
|
||||
GpuMat clone() const;
|
||||
CV_WRAP GpuMat clone() const;
|
||||
|
||||
//! copies the GpuMat content to device memory (Blocking call)
|
||||
CV_WRAP void copyTo(OutputArray dst) const;
|
||||
@ -210,16 +210,16 @@ public:
|
||||
CV_WRAP void copyTo(OutputArray dst, InputArray mask, Stream& stream) const;
|
||||
|
||||
//! sets some of the GpuMat elements to s (Blocking call)
|
||||
GpuMat& setTo(Scalar s);
|
||||
CV_WRAP GpuMat& setTo(Scalar s);
|
||||
|
||||
//! sets some of the GpuMat elements to s (Non-Blocking call)
|
||||
GpuMat& setTo(Scalar s, Stream& stream);
|
||||
CV_WRAP GpuMat& setTo(Scalar s, Stream& stream);
|
||||
|
||||
//! sets some of the GpuMat elements to s, according to the mask (Blocking call)
|
||||
GpuMat& setTo(Scalar s, InputArray mask);
|
||||
CV_WRAP GpuMat& setTo(Scalar s, InputArray mask);
|
||||
|
||||
//! sets some of the GpuMat elements to s, according to the mask (Non-Blocking call)
|
||||
GpuMat& setTo(Scalar s, InputArray mask, Stream& stream);
|
||||
CV_WRAP GpuMat& setTo(Scalar s, InputArray mask, Stream& stream);
|
||||
|
||||
//! converts GpuMat to another datatype (Blocking call)
|
||||
CV_WRAP void convertTo(OutputArray dst, int rtype) const;
|
||||
@ -236,7 +236,7 @@ public:
|
||||
//! converts GpuMat to another datatype with scaling (Non-Blocking call)
|
||||
CV_WRAP void convertTo(OutputArray dst, int rtype, double alpha, double beta, Stream& stream) const;
|
||||
|
||||
void assignTo(GpuMat& m, int type=-1) const;
|
||||
CV_WRAP void assignTo(GpuMat& m, int type = -1) const;
|
||||
|
||||
//! returns pointer to y-th row
|
||||
uchar* ptr(int y = 0);
|
||||
@ -250,18 +250,18 @@ public:
|
||||
template <typename _Tp> operator PtrStep<_Tp>() const;
|
||||
|
||||
//! returns a new GpuMat header for the specified row
|
||||
GpuMat row(int y) const;
|
||||
CV_WRAP GpuMat row(int y) const;
|
||||
|
||||
//! returns a new GpuMat header for the specified column
|
||||
GpuMat col(int x) const;
|
||||
CV_WRAP GpuMat col(int x) const;
|
||||
|
||||
//! ... for the specified row span
|
||||
GpuMat rowRange(int startrow, int endrow) const;
|
||||
GpuMat rowRange(Range r) const;
|
||||
CV_WRAP GpuMat rowRange(int startrow, int endrow) const;
|
||||
CV_WRAP GpuMat rowRange(Range r) const;
|
||||
|
||||
//! ... for the specified column span
|
||||
GpuMat colRange(int startcol, int endcol) const;
|
||||
GpuMat colRange(Range r) const;
|
||||
CV_WRAP GpuMat colRange(int startcol, int endcol) const;
|
||||
CV_WRAP GpuMat colRange(Range r) const;
|
||||
|
||||
//! extracts a rectangular sub-GpuMat (this is a generalized form of row, rowRange etc.)
|
||||
GpuMat operator ()(Range rowRange, Range colRange) const;
|
||||
@ -269,44 +269,44 @@ public:
|
||||
|
||||
//! creates alternative GpuMat header for the same data, with different
|
||||
//! number of channels and/or different number of rows
|
||||
GpuMat reshape(int cn, int rows = 0) const;
|
||||
CV_WRAP GpuMat reshape(int cn, int rows = 0) const;
|
||||
|
||||
//! locates GpuMat header within a parent GpuMat
|
||||
void locateROI(Size& wholeSize, Point& ofs) const;
|
||||
CV_WRAP void locateROI(Size& wholeSize, Point& ofs) const;
|
||||
|
||||
//! moves/resizes the current GpuMat ROI inside the parent GpuMat
|
||||
GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright);
|
||||
CV_WRAP GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright);
|
||||
|
||||
//! returns true iff the GpuMat data is continuous
|
||||
//! (i.e. when there are no gaps between successive rows)
|
||||
bool isContinuous() const;
|
||||
CV_WRAP bool isContinuous() const;
|
||||
|
||||
//! returns element size in bytes
|
||||
size_t elemSize() const;
|
||||
CV_WRAP size_t elemSize() const;
|
||||
|
||||
//! returns the size of element channel in bytes
|
||||
size_t elemSize1() const;
|
||||
CV_WRAP size_t elemSize1() const;
|
||||
|
||||
//! returns element type
|
||||
int type() const;
|
||||
CV_WRAP int type() const;
|
||||
|
||||
//! returns element type
|
||||
int depth() const;
|
||||
CV_WRAP int depth() const;
|
||||
|
||||
//! returns number of channels
|
||||
int channels() const;
|
||||
CV_WRAP int channels() const;
|
||||
|
||||
//! returns step/elemSize1()
|
||||
size_t step1() const;
|
||||
CV_WRAP size_t step1() const;
|
||||
|
||||
//! returns GpuMat size : width == number of columns, height == number of rows
|
||||
Size size() const;
|
||||
CV_WRAP Size size() const;
|
||||
|
||||
//! returns true if GpuMat data is NULL
|
||||
bool empty() const;
|
||||
CV_WRAP bool empty() const;
|
||||
|
||||
//! internal use method: updates the continuity flag
|
||||
void updateContinuityFlag();
|
||||
CV_WRAP void updateContinuityFlag();
|
||||
|
||||
/*! includes several bit-fields:
|
||||
- the magic signature
|
||||
@ -320,7 +320,7 @@ public:
|
||||
int rows, cols;
|
||||
|
||||
//! a distance between successive rows in bytes; includes the gap if any
|
||||
size_t step;
|
||||
CV_PROP size_t step;
|
||||
|
||||
//! pointer to the data
|
||||
uchar* data;
|
||||
@ -348,7 +348,7 @@ public:
|
||||
Matrix is called continuous if its elements are stored continuously, that is, without gaps at the
|
||||
end of each row.
|
||||
*/
|
||||
CV_EXPORTS void createContinuous(int rows, int cols, int type, OutputArray arr);
|
||||
CV_EXPORTS_W void createContinuous(int rows, int cols, int type, OutputArray arr);
|
||||
|
||||
/** @brief Ensures that the size of a matrix is big enough and the matrix has a proper type.
|
||||
|
||||
@ -359,7 +359,7 @@ CV_EXPORTS void createContinuous(int rows, int cols, int type, OutputArray arr);
|
||||
|
||||
The function does not reallocate memory if the matrix has proper attributes already.
|
||||
*/
|
||||
CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr);
|
||||
CV_EXPORTS_W void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr);
|
||||
|
||||
/** @brief BufferPool for use with CUDA streams
|
||||
|
||||
@ -478,7 +478,7 @@ and the corresponding memory is automatically returned to the pool for later usa
|
||||
}
|
||||
@endcode
|
||||
*/
|
||||
class CV_EXPORTS BufferPool
|
||||
class CV_EXPORTS_W BufferPool
|
||||
{
|
||||
public:
|
||||
|
||||
@ -486,21 +486,21 @@ public:
|
||||
explicit BufferPool(Stream& stream);
|
||||
|
||||
//! Allocates a new GpuMat of given size and type.
|
||||
GpuMat getBuffer(int rows, int cols, int type);
|
||||
CV_WRAP GpuMat getBuffer(int rows, int cols, int type);
|
||||
|
||||
//! Allocates a new GpuMat of given size and type.
|
||||
GpuMat getBuffer(Size size, int type) { return getBuffer(size.height, size.width, type); }
|
||||
CV_WRAP GpuMat getBuffer(Size size, int type) { return getBuffer(size.height, size.width, type); }
|
||||
|
||||
//! Returns the allocator associated with the stream.
|
||||
Ptr<GpuMat::Allocator> getAllocator() const { return allocator_; }
|
||||
CV_WRAP Ptr<GpuMat::Allocator> getAllocator() const { return allocator_; }
|
||||
|
||||
private:
|
||||
Ptr<GpuMat::Allocator> allocator_;
|
||||
};
|
||||
|
||||
//! BufferPool management (must be called before Stream creation)
|
||||
CV_EXPORTS void setBufferPoolUsage(bool on);
|
||||
CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount);
|
||||
CV_EXPORTS_W void setBufferPoolUsage(bool on);
|
||||
CV_EXPORTS_W void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount);
|
||||
|
||||
//===================================================================================
|
||||
// HostMem
|
||||
@ -521,46 +521,46 @@ Its interface is also Mat-like but with additional memory type parameters.
|
||||
@note Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2
|
||||
Pinned Memory APIs* document or *CUDA C Programming Guide*.
|
||||
*/
|
||||
class CV_EXPORTS HostMem
|
||||
class CV_EXPORTS_W HostMem
|
||||
{
|
||||
public:
|
||||
enum AllocType { PAGE_LOCKED = 1, SHARED = 2, WRITE_COMBINED = 4 };
|
||||
|
||||
static MatAllocator* getAllocator(AllocType alloc_type = PAGE_LOCKED);
|
||||
static MatAllocator* getAllocator(HostMem::AllocType alloc_type = HostMem::AllocType::PAGE_LOCKED);
|
||||
|
||||
explicit HostMem(AllocType alloc_type = PAGE_LOCKED);
|
||||
CV_WRAP explicit HostMem(HostMem::AllocType alloc_type = HostMem::AllocType::PAGE_LOCKED);
|
||||
|
||||
HostMem(const HostMem& m);
|
||||
|
||||
HostMem(int rows, int cols, int type, AllocType alloc_type = PAGE_LOCKED);
|
||||
HostMem(Size size, int type, AllocType alloc_type = PAGE_LOCKED);
|
||||
CV_WRAP HostMem(int rows, int cols, int type, HostMem::AllocType alloc_type = HostMem::AllocType::PAGE_LOCKED);
|
||||
CV_WRAP HostMem(Size size, int type, HostMem::AllocType alloc_type = HostMem::AllocType::PAGE_LOCKED);
|
||||
|
||||
//! creates from host memory with coping data
|
||||
explicit HostMem(InputArray arr, AllocType alloc_type = PAGE_LOCKED);
|
||||
CV_WRAP explicit HostMem(InputArray arr, HostMem::AllocType alloc_type = HostMem::AllocType::PAGE_LOCKED);
|
||||
|
||||
~HostMem();
|
||||
|
||||
HostMem& operator =(const HostMem& m);
|
||||
|
||||
//! swaps with other smart pointer
|
||||
void swap(HostMem& b);
|
||||
CV_WRAP void swap(HostMem& b);
|
||||
|
||||
//! returns deep copy of the matrix, i.e. the data is copied
|
||||
HostMem clone() const;
|
||||
CV_WRAP HostMem clone() const;
|
||||
|
||||
//! allocates new matrix data unless the matrix already has specified size and type.
|
||||
void create(int rows, int cols, int type);
|
||||
CV_WRAP void create(int rows, int cols, int type);
|
||||
void create(Size size, int type);
|
||||
|
||||
//! creates alternative HostMem header for the same data, with different
|
||||
//! number of channels and/or different number of rows
|
||||
HostMem reshape(int cn, int rows = 0) const;
|
||||
CV_WRAP HostMem reshape(int cn, int rows = 0) const;
|
||||
|
||||
//! decrements reference counter and released memory if needed.
|
||||
void release();
|
||||
|
||||
//! returns matrix header with disabled reference counting for HostMem data.
|
||||
Mat createMatHeader() const;
|
||||
CV_WRAP Mat createMatHeader() const;
|
||||
|
||||
/** @brief Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting
|
||||
for it.
|
||||
@ -572,20 +572,20 @@ public:
|
||||
GpuMat createGpuMatHeader() const;
|
||||
|
||||
// Please see cv::Mat for descriptions
|
||||
bool isContinuous() const;
|
||||
size_t elemSize() const;
|
||||
size_t elemSize1() const;
|
||||
int type() const;
|
||||
int depth() const;
|
||||
int channels() const;
|
||||
size_t step1() const;
|
||||
Size size() const;
|
||||
bool empty() const;
|
||||
CV_WRAP bool isContinuous() const;
|
||||
CV_WRAP size_t elemSize() const;
|
||||
CV_WRAP size_t elemSize1() const;
|
||||
CV_WRAP int type() const;
|
||||
CV_WRAP int depth() const;
|
||||
CV_WRAP int channels() const;
|
||||
CV_WRAP size_t step1() const;
|
||||
CV_WRAP Size size() const;
|
||||
CV_WRAP bool empty() const;
|
||||
|
||||
// Please see cv::Mat for descriptions
|
||||
int flags;
|
||||
int rows, cols;
|
||||
size_t step;
|
||||
CV_PROP size_t step;
|
||||
|
||||
uchar* data;
|
||||
int* refcount;
|
||||
@ -600,13 +600,13 @@ public:
|
||||
|
||||
@param m Input matrix.
|
||||
*/
|
||||
CV_EXPORTS void registerPageLocked(Mat& m);
|
||||
CV_EXPORTS_W void registerPageLocked(Mat& m);
|
||||
|
||||
/** @brief Unmaps the memory of matrix and makes it pageable again.
|
||||
|
||||
@param m Input matrix.
|
||||
*/
|
||||
CV_EXPORTS void unregisterPageLocked(Mat& m);
|
||||
CV_EXPORTS_W void unregisterPageLocked(Mat& m);
|
||||
|
||||
//===================================================================================
|
||||
// Stream
|
||||
@ -639,7 +639,7 @@ void thread2()
|
||||
@note By default all CUDA routines are launched in Stream::Null() object, if the stream is not specified by user.
|
||||
In multi-threading environment the stream objects must be passed explicitly (see previous note).
|
||||
*/
|
||||
class CV_EXPORTS Stream
|
||||
class CV_EXPORTS_W Stream
|
||||
{
|
||||
typedef void (Stream::*bool_type)() const;
|
||||
void this_type_does_not_support_comparisons() const {}
|
||||
@ -648,22 +648,22 @@ public:
|
||||
typedef void (*StreamCallback)(int status, void* userData);
|
||||
|
||||
//! creates a new asynchronous stream
|
||||
Stream();
|
||||
CV_WRAP Stream();
|
||||
|
||||
//! creates a new asynchronous stream with custom allocator
|
||||
Stream(const Ptr<GpuMat::Allocator>& allocator);
|
||||
CV_WRAP Stream(const Ptr<GpuMat::Allocator>& allocator);
|
||||
|
||||
/** @brief Returns true if the current stream queue is finished. Otherwise, it returns false.
|
||||
*/
|
||||
bool queryIfComplete() const;
|
||||
CV_WRAP bool queryIfComplete() const;
|
||||
|
||||
/** @brief Blocks the current CPU thread until all operations in the stream are complete.
|
||||
*/
|
||||
void waitForCompletion();
|
||||
CV_WRAP void waitForCompletion();
|
||||
|
||||
/** @brief Makes a compute stream wait on an event.
|
||||
*/
|
||||
void waitEvent(const Event& event);
|
||||
CV_WRAP void waitEvent(const Event& event);
|
||||
|
||||
/** @brief Adds a callback to be called on the host after all currently enqueued items in the stream have
|
||||
completed.
|
||||
@ -676,7 +676,7 @@ public:
|
||||
void enqueueHostCallback(StreamCallback callback, void* userData);
|
||||
|
||||
//! return Stream object for default CUDA stream
|
||||
static Stream& Null();
|
||||
CV_WRAP static Stream& Null();
|
||||
|
||||
//! returns true if stream object is not default (!= 0)
|
||||
operator bool_type() const;
|
||||
@ -692,7 +692,7 @@ private:
|
||||
friend class DefaultDeviceInitializer;
|
||||
};
|
||||
|
||||
class CV_EXPORTS Event
|
||||
class CV_EXPORTS_W Event
|
||||
{
|
||||
public:
|
||||
enum CreateFlags
|
||||
@ -703,19 +703,19 @@ public:
|
||||
INTERPROCESS = 0x04 /**< Event is suitable for interprocess use. DisableTiming must be set */
|
||||
};
|
||||
|
||||
explicit Event(CreateFlags flags = DEFAULT);
|
||||
CV_WRAP explicit Event(Event::CreateFlags flags = Event::CreateFlags::DEFAULT);
|
||||
|
||||
//! records an event
|
||||
void record(Stream& stream = Stream::Null());
|
||||
CV_WRAP void record(Stream& stream = Stream::Null());
|
||||
|
||||
//! queries an event's status
|
||||
bool queryIfComplete() const;
|
||||
CV_WRAP bool queryIfComplete() const;
|
||||
|
||||
//! waits for an event to complete
|
||||
void waitForCompletion();
|
||||
CV_WRAP void waitForCompletion();
|
||||
|
||||
//! computes the elapsed time between events
|
||||
static float elapsedTime(const Event& start, const Event& end);
|
||||
CV_WRAP static float elapsedTime(const Event& start, const Event& end);
|
||||
|
||||
class Impl;
|
||||
|
||||
@ -793,7 +793,7 @@ built for.
|
||||
According to the CUDA C Programming Guide Version 3.2: "PTX code produced for some specific compute
|
||||
capability can always be compiled to binary code of greater or equal compute capability".
|
||||
*/
|
||||
class CV_EXPORTS TargetArchs
|
||||
class CV_EXPORTS_W TargetArchs
|
||||
{
|
||||
public:
|
||||
/** @brief The following method checks whether the module was built with the support of the given feature:
|
||||
@ -808,23 +808,23 @@ public:
|
||||
@param major Major compute capability version.
|
||||
@param minor Minor compute capability version.
|
||||
*/
|
||||
static bool has(int major, int minor);
|
||||
static bool hasPtx(int major, int minor);
|
||||
static bool hasBin(int major, int minor);
|
||||
CV_WRAP static bool has(int major, int minor);
|
||||
CV_WRAP static bool hasPtx(int major, int minor);
|
||||
CV_WRAP static bool hasBin(int major, int minor);
|
||||
|
||||
static bool hasEqualOrLessPtx(int major, int minor);
|
||||
static bool hasEqualOrGreater(int major, int minor);
|
||||
static bool hasEqualOrGreaterPtx(int major, int minor);
|
||||
static bool hasEqualOrGreaterBin(int major, int minor);
|
||||
CV_WRAP static bool hasEqualOrLessPtx(int major, int minor);
|
||||
CV_WRAP static bool hasEqualOrGreater(int major, int minor);
|
||||
CV_WRAP static bool hasEqualOrGreaterPtx(int major, int minor);
|
||||
CV_WRAP static bool hasEqualOrGreaterBin(int major, int minor);
|
||||
};
|
||||
|
||||
/** @brief Class providing functionality for querying the specified GPU properties.
|
||||
*/
|
||||
class CV_EXPORTS DeviceInfo
|
||||
class CV_EXPORTS_W DeviceInfo
|
||||
{
|
||||
public:
|
||||
//! creates DeviceInfo object for the current GPU
|
||||
DeviceInfo();
|
||||
CV_WRAP DeviceInfo();
|
||||
|
||||
/** @brief The constructors.
|
||||
|
||||
@ -833,68 +833,68 @@ public:
|
||||
Constructs the DeviceInfo object for the specified device. If device_id parameter is missed, it
|
||||
constructs an object for the current device.
|
||||
*/
|
||||
DeviceInfo(int device_id);
|
||||
CV_WRAP DeviceInfo(int device_id);
|
||||
|
||||
/** @brief Returns system index of the CUDA device starting with 0.
|
||||
*/
|
||||
int deviceID() const;
|
||||
CV_WRAP int deviceID() const;
|
||||
|
||||
//! ASCII string identifying device
|
||||
const char* name() const;
|
||||
|
||||
//! global memory available on device in bytes
|
||||
size_t totalGlobalMem() const;
|
||||
CV_WRAP size_t totalGlobalMem() const;
|
||||
|
||||
//! shared memory available per block in bytes
|
||||
size_t sharedMemPerBlock() const;
|
||||
CV_WRAP size_t sharedMemPerBlock() const;
|
||||
|
||||
//! 32-bit registers available per block
|
||||
int regsPerBlock() const;
|
||||
CV_WRAP int regsPerBlock() const;
|
||||
|
||||
//! warp size in threads
|
||||
int warpSize() const;
|
||||
CV_WRAP int warpSize() const;
|
||||
|
||||
//! maximum pitch in bytes allowed by memory copies
|
||||
size_t memPitch() const;
|
||||
CV_WRAP size_t memPitch() const;
|
||||
|
||||
//! maximum number of threads per block
|
||||
int maxThreadsPerBlock() const;
|
||||
CV_WRAP int maxThreadsPerBlock() const;
|
||||
|
||||
//! maximum size of each dimension of a block
|
||||
Vec3i maxThreadsDim() const;
|
||||
CV_WRAP Vec3i maxThreadsDim() const;
|
||||
|
||||
//! maximum size of each dimension of a grid
|
||||
Vec3i maxGridSize() const;
|
||||
CV_WRAP Vec3i maxGridSize() const;
|
||||
|
||||
//! clock frequency in kilohertz
|
||||
int clockRate() const;
|
||||
CV_WRAP int clockRate() const;
|
||||
|
||||
//! constant memory available on device in bytes
|
||||
size_t totalConstMem() const;
|
||||
CV_WRAP size_t totalConstMem() const;
|
||||
|
||||
//! major compute capability
|
||||
int majorVersion() const;
|
||||
CV_WRAP int majorVersion() const;
|
||||
|
||||
//! minor compute capability
|
||||
int minorVersion() const;
|
||||
CV_WRAP int minorVersion() const;
|
||||
|
||||
//! alignment requirement for textures
|
||||
size_t textureAlignment() const;
|
||||
CV_WRAP size_t textureAlignment() const;
|
||||
|
||||
//! pitch alignment requirement for texture references bound to pitched memory
|
||||
size_t texturePitchAlignment() const;
|
||||
CV_WRAP size_t texturePitchAlignment() const;
|
||||
|
||||
//! number of multiprocessors on device
|
||||
int multiProcessorCount() const;
|
||||
CV_WRAP int multiProcessorCount() const;
|
||||
|
||||
//! specified whether there is a run time limit on kernels
|
||||
bool kernelExecTimeoutEnabled() const;
|
||||
CV_WRAP bool kernelExecTimeoutEnabled() const;
|
||||
|
||||
//! device is integrated as opposed to discrete
|
||||
bool integrated() const;
|
||||
CV_WRAP bool integrated() const;
|
||||
|
||||
//! device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer
|
||||
bool canMapHostMemory() const;
|
||||
CV_WRAP bool canMapHostMemory() const;
|
||||
|
||||
enum ComputeMode
|
||||
{
|
||||
@ -905,108 +905,108 @@ public:
|
||||
};
|
||||
|
||||
//! compute mode
|
||||
ComputeMode computeMode() const;
|
||||
CV_WRAP DeviceInfo::ComputeMode computeMode() const;
|
||||
|
||||
//! maximum 1D texture size
|
||||
int maxTexture1D() const;
|
||||
CV_WRAP int maxTexture1D() const;
|
||||
|
||||
//! maximum 1D mipmapped texture size
|
||||
int maxTexture1DMipmap() const;
|
||||
CV_WRAP int maxTexture1DMipmap() const;
|
||||
|
||||
//! maximum size for 1D textures bound to linear memory
|
||||
int maxTexture1DLinear() const;
|
||||
CV_WRAP int maxTexture1DLinear() const;
|
||||
|
||||
//! maximum 2D texture dimensions
|
||||
Vec2i maxTexture2D() const;
|
||||
CV_WRAP Vec2i maxTexture2D() const;
|
||||
|
||||
//! maximum 2D mipmapped texture dimensions
|
||||
Vec2i maxTexture2DMipmap() const;
|
||||
CV_WRAP Vec2i maxTexture2DMipmap() const;
|
||||
|
||||
//! maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory
|
||||
Vec3i maxTexture2DLinear() const;
|
||||
CV_WRAP Vec3i maxTexture2DLinear() const;
|
||||
|
||||
//! maximum 2D texture dimensions if texture gather operations have to be performed
|
||||
Vec2i maxTexture2DGather() const;
|
||||
CV_WRAP Vec2i maxTexture2DGather() const;
|
||||
|
||||
//! maximum 3D texture dimensions
|
||||
Vec3i maxTexture3D() const;
|
||||
CV_WRAP Vec3i maxTexture3D() const;
|
||||
|
||||
//! maximum Cubemap texture dimensions
|
||||
int maxTextureCubemap() const;
|
||||
CV_WRAP int maxTextureCubemap() const;
|
||||
|
||||
//! maximum 1D layered texture dimensions
|
||||
Vec2i maxTexture1DLayered() const;
|
||||
CV_WRAP Vec2i maxTexture1DLayered() const;
|
||||
|
||||
//! maximum 2D layered texture dimensions
|
||||
Vec3i maxTexture2DLayered() const;
|
||||
CV_WRAP Vec3i maxTexture2DLayered() const;
|
||||
|
||||
//! maximum Cubemap layered texture dimensions
|
||||
Vec2i maxTextureCubemapLayered() const;
|
||||
CV_WRAP Vec2i maxTextureCubemapLayered() const;
|
||||
|
||||
//! maximum 1D surface size
|
||||
int maxSurface1D() const;
|
||||
CV_WRAP int maxSurface1D() const;
|
||||
|
||||
//! maximum 2D surface dimensions
|
||||
Vec2i maxSurface2D() const;
|
||||
CV_WRAP Vec2i maxSurface2D() const;
|
||||
|
||||
//! maximum 3D surface dimensions
|
||||
Vec3i maxSurface3D() const;
|
||||
CV_WRAP Vec3i maxSurface3D() const;
|
||||
|
||||
//! maximum 1D layered surface dimensions
|
||||
Vec2i maxSurface1DLayered() const;
|
||||
CV_WRAP Vec2i maxSurface1DLayered() const;
|
||||
|
||||
//! maximum 2D layered surface dimensions
|
||||
Vec3i maxSurface2DLayered() const;
|
||||
CV_WRAP Vec3i maxSurface2DLayered() const;
|
||||
|
||||
//! maximum Cubemap surface dimensions
|
||||
int maxSurfaceCubemap() const;
|
||||
CV_WRAP int maxSurfaceCubemap() const;
|
||||
|
||||
//! maximum Cubemap layered surface dimensions
|
||||
Vec2i maxSurfaceCubemapLayered() const;
|
||||
CV_WRAP Vec2i maxSurfaceCubemapLayered() const;
|
||||
|
||||
//! alignment requirements for surfaces
|
||||
size_t surfaceAlignment() const;
|
||||
CV_WRAP size_t surfaceAlignment() const;
|
||||
|
||||
//! device can possibly execute multiple kernels concurrently
|
||||
bool concurrentKernels() const;
|
||||
CV_WRAP bool concurrentKernels() const;
|
||||
|
||||
//! device has ECC support enabled
|
||||
bool ECCEnabled() const;
|
||||
CV_WRAP bool ECCEnabled() const;
|
||||
|
||||
//! PCI bus ID of the device
|
||||
int pciBusID() const;
|
||||
CV_WRAP int pciBusID() const;
|
||||
|
||||
//! PCI device ID of the device
|
||||
int pciDeviceID() const;
|
||||
CV_WRAP int pciDeviceID() const;
|
||||
|
||||
//! PCI domain ID of the device
|
||||
int pciDomainID() const;
|
||||
CV_WRAP int pciDomainID() const;
|
||||
|
||||
//! true if device is a Tesla device using TCC driver, false otherwise
|
||||
bool tccDriver() const;
|
||||
CV_WRAP bool tccDriver() const;
|
||||
|
||||
//! number of asynchronous engines
|
||||
int asyncEngineCount() const;
|
||||
CV_WRAP int asyncEngineCount() const;
|
||||
|
||||
//! device shares a unified address space with the host
|
||||
bool unifiedAddressing() const;
|
||||
CV_WRAP bool unifiedAddressing() const;
|
||||
|
||||
//! peak memory clock frequency in kilohertz
|
||||
int memoryClockRate() const;
|
||||
CV_WRAP int memoryClockRate() const;
|
||||
|
||||
//! global memory bus width in bits
|
||||
int memoryBusWidth() const;
|
||||
CV_WRAP int memoryBusWidth() const;
|
||||
|
||||
//! size of L2 cache in bytes
|
||||
int l2CacheSize() const;
|
||||
CV_WRAP int l2CacheSize() const;
|
||||
|
||||
//! maximum resident threads per multiprocessor
|
||||
int maxThreadsPerMultiProcessor() const;
|
||||
CV_WRAP int maxThreadsPerMultiProcessor() const;
|
||||
|
||||
//! gets free and total device memory
|
||||
void queryMemory(size_t& totalMemory, size_t& freeMemory) const;
|
||||
size_t freeMemory() const;
|
||||
size_t totalMemory() const;
|
||||
CV_WRAP void queryMemory(size_t& totalMemory, size_t& freeMemory) const;
|
||||
CV_WRAP size_t freeMemory() const;
|
||||
CV_WRAP size_t totalMemory() const;
|
||||
|
||||
/** @brief Provides information on CUDA feature support.
|
||||
|
||||
@ -1021,7 +1021,7 @@ public:
|
||||
This function returns true if the CUDA module can be run on the specified device. Otherwise, it
|
||||
returns false .
|
||||
*/
|
||||
bool isCompatible() const;
|
||||
CV_WRAP bool isCompatible() const;
|
||||
|
||||
private:
|
||||
int device_id_;
|
||||
|
@ -4,51 +4,27 @@
|
||||
|
||||
typedef std::vector<cuda::GpuMat> vector_GpuMat;
|
||||
typedef cuda::GpuMat::Allocator GpuMat_Allocator;
|
||||
typedef cuda::HostMem::AllocType HostMem_AllocType;
|
||||
typedef cuda::Event::CreateFlags Event_CreateFlags;
|
||||
|
||||
template<> bool pyopencv_to(PyObject* o, Ptr<cuda::GpuMat>& m, const char* name);
|
||||
template<> PyObject* pyopencv_from(const Ptr<cuda::GpuMat>& m);
|
||||
CV_PY_TO_CLASS(cuda::GpuMat);
|
||||
CV_PY_TO_CLASS(cuda::Stream);
|
||||
CV_PY_TO_CLASS(cuda::Event);
|
||||
CV_PY_TO_CLASS(cuda::HostMem);
|
||||
|
||||
template<>
|
||||
bool pyopencv_to(PyObject* o, cuda::GpuMat& m, const char* name)
|
||||
{
|
||||
if (!o || o == Py_None)
|
||||
return true;
|
||||
Ptr<cuda::GpuMat> mPtr(new cuda::GpuMat());
|
||||
CV_PY_TO_CLASS_PTR(cuda::GpuMat);
|
||||
CV_PY_TO_CLASS_PTR(cuda::GpuMat::Allocator);
|
||||
|
||||
if (!pyopencv_to(o, mPtr, name)) return false;
|
||||
m = *mPtr;
|
||||
return true;
|
||||
}
|
||||
CV_PY_TO_ENUM(cuda::Event::CreateFlags);
|
||||
CV_PY_TO_ENUM(cuda::HostMem::AllocType);
|
||||
CV_PY_TO_ENUM(cuda::FeatureSet);
|
||||
|
||||
template<>
|
||||
PyObject* pyopencv_from(const cuda::GpuMat& m)
|
||||
{
|
||||
Ptr<cuda::GpuMat> mPtr(new cuda::GpuMat());
|
||||
CV_PY_FROM_CLASS(cuda::GpuMat);
|
||||
CV_PY_FROM_CLASS(cuda::Stream);
|
||||
CV_PY_FROM_CLASS(cuda::HostMem);
|
||||
|
||||
*mPtr = m;
|
||||
return pyopencv_from(mPtr);
|
||||
}
|
||||
CV_PY_FROM_CLASS_PTR(cuda::GpuMat::Allocator);
|
||||
|
||||
template<>
|
||||
bool pyopencv_to(PyObject *o, cuda::GpuMat::Allocator* &allocator, const char *name)
|
||||
{
|
||||
(void)name;
|
||||
if (!o || o == Py_None)
|
||||
return true;
|
||||
|
||||
failmsg("Python binding for cv::cuda::GpuMat::Allocator is not implemented yet.");
|
||||
return false;
|
||||
}
|
||||
|
||||
template<>
|
||||
bool pyopencv_to(PyObject *o, cuda::Stream &stream, const char *name)
|
||||
{
|
||||
(void)name;
|
||||
if (!o || o == Py_None)
|
||||
return true;
|
||||
|
||||
failmsg("Python binding for cv::cuda::Stream is not implemented yet.");
|
||||
return false;
|
||||
}
|
||||
CV_PY_FROM_ENUM(cuda::DeviceInfo::ComputeMode);
|
||||
|
||||
#endif
|
||||
|
@ -6,7 +6,7 @@ set(the_description "CUDA-accelerated Operations on Matrices")
|
||||
|
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4127 /wd4324 /wd4512 -Wundef -Wmissing-declarations -Wshadow)
|
||||
|
||||
ocv_add_module(cudaarithm opencv_core OPTIONAL opencv_cudev)
|
||||
ocv_add_module(cudaarithm opencv_core OPTIONAL opencv_cudev WRAP python)
|
||||
|
||||
ocv_module_include_directories()
|
||||
ocv_glob_module_sources()
|
||||
|
@ -83,7 +83,7 @@ destination array to be changed. The mask can be used only with single channel i
|
||||
|
||||
@sa add
|
||||
*/
|
||||
CV_EXPORTS void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes a matrix-matrix or matrix-scalar difference.
|
||||
|
||||
@ -98,7 +98,7 @@ destination array to be changed. The mask can be used only with single channel i
|
||||
|
||||
@sa subtract
|
||||
*/
|
||||
CV_EXPORTS void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes a matrix-matrix or matrix-scalar per-element product.
|
||||
|
||||
@ -112,7 +112,7 @@ The depth is defined by dtype or src1 depth.
|
||||
|
||||
@sa multiply
|
||||
*/
|
||||
CV_EXPORTS void multiply(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void multiply(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes a matrix-matrix or matrix-scalar division.
|
||||
|
||||
@ -128,7 +128,7 @@ This function, in contrast to divide, uses a round-down rounding mode.
|
||||
|
||||
@sa divide
|
||||
*/
|
||||
CV_EXPORTS void divide(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes per-element absolute difference of two matrices (or of a matrix and scalar).
|
||||
|
||||
@ -139,7 +139,7 @@ CV_EXPORTS void divide(InputArray src1, InputArray src2, OutputArray dst, double
|
||||
|
||||
@sa absdiff
|
||||
*/
|
||||
CV_EXPORTS void absdiff(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes an absolute value of each matrix element.
|
||||
|
||||
@ -149,7 +149,7 @@ CV_EXPORTS void absdiff(InputArray src1, InputArray src2, OutputArray dst, Strea
|
||||
|
||||
@sa abs
|
||||
*/
|
||||
CV_EXPORTS void abs(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void abs(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes a square value of each matrix element.
|
||||
|
||||
@ -157,7 +157,7 @@ CV_EXPORTS void abs(InputArray src, OutputArray dst, Stream& stream = Stream::Nu
|
||||
@param dst Destination matrix with the same size and type as src .
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void sqr(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void sqr(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes a square root of each matrix element.
|
||||
|
||||
@ -167,7 +167,7 @@ CV_EXPORTS void sqr(InputArray src, OutputArray dst, Stream& stream = Stream::Nu
|
||||
|
||||
@sa sqrt
|
||||
*/
|
||||
CV_EXPORTS void sqrt(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes an exponent of each matrix element.
|
||||
|
||||
@ -177,7 +177,7 @@ CV_EXPORTS void sqrt(InputArray src, OutputArray dst, Stream& stream = Stream::N
|
||||
|
||||
@sa exp
|
||||
*/
|
||||
CV_EXPORTS void exp(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void exp(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes a natural logarithm of absolute value of each matrix element.
|
||||
|
||||
@ -187,7 +187,7 @@ CV_EXPORTS void exp(InputArray src, OutputArray dst, Stream& stream = Stream::Nu
|
||||
|
||||
@sa log
|
||||
*/
|
||||
CV_EXPORTS void log(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void log(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Raises every matrix element to a power.
|
||||
|
||||
@ -202,7 +202,7 @@ The function pow raises every element of the input matrix to power :
|
||||
|
||||
@sa pow
|
||||
*/
|
||||
CV_EXPORTS void pow(InputArray src, double power, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Compares elements of two matrices (or of a matrix and scalar).
|
||||
|
||||
@ -220,7 +220,7 @@ CV_EXPORTS void pow(InputArray src, double power, OutputArray dst, Stream& strea
|
||||
|
||||
@sa compare
|
||||
*/
|
||||
CV_EXPORTS void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Performs a per-element bitwise inversion.
|
||||
|
||||
@ -230,7 +230,7 @@ CV_EXPORTS void compare(InputArray src1, InputArray src2, OutputArray dst, int c
|
||||
destination array to be changed. The mask can be used only with single channel images.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void bitwise_not(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Performs a per-element bitwise disjunction of two matrices (or of matrix and scalar).
|
||||
|
||||
@ -241,7 +241,7 @@ CV_EXPORTS void bitwise_not(InputArray src, OutputArray dst, InputArray mask = n
|
||||
destination array to be changed. The mask can be used only with single channel images.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Performs a per-element bitwise conjunction of two matrices (or of matrix and scalar).
|
||||
|
||||
@ -252,7 +252,7 @@ CV_EXPORTS void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, In
|
||||
destination array to be changed. The mask can be used only with single channel images.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Performs a per-element bitwise exclusive or operation of two matrices (or of matrix and scalar).
|
||||
|
||||
@ -263,7 +263,7 @@ CV_EXPORTS void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, I
|
||||
destination array to be changed. The mask can be used only with single channel images.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Performs pixel by pixel right shift of an image by a constant value.
|
||||
|
||||
@ -293,7 +293,7 @@ CV_EXPORTS void lshift(InputArray src, Scalar_<int> val, OutputArray dst, Stream
|
||||
|
||||
@sa min
|
||||
*/
|
||||
CV_EXPORTS void min(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes the per-element maximum of two matrices (or a matrix and a scalar).
|
||||
|
||||
@ -304,7 +304,7 @@ CV_EXPORTS void min(InputArray src1, InputArray src2, OutputArray dst, Stream& s
|
||||
|
||||
@sa max
|
||||
*/
|
||||
CV_EXPORTS void max(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes the weighted sum of two arrays.
|
||||
|
||||
@ -327,7 +327,7 @@ channel is processed independently.
|
||||
|
||||
@sa addWeighted
|
||||
*/
|
||||
CV_EXPORTS void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst,
|
||||
CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst,
|
||||
int dtype = -1, Stream& stream = Stream::Null());
|
||||
|
||||
//! adds scaled array to another one (dst = alpha*src1 + src2)
|
||||
@ -348,7 +348,7 @@ threshold types are not supported.
|
||||
|
||||
@sa threshold
|
||||
*/
|
||||
CV_EXPORTS double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes magnitudes of complex matrix elements.
|
||||
|
||||
@ -358,7 +358,7 @@ CV_EXPORTS double threshold(InputArray src, OutputArray dst, double thresh, doub
|
||||
|
||||
@sa magnitude
|
||||
*/
|
||||
CV_EXPORTS void magnitude(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void magnitude(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes squared magnitudes of complex matrix elements.
|
||||
|
||||
@ -366,7 +366,7 @@ CV_EXPORTS void magnitude(InputArray xy, OutputArray magnitude, Stream& stream =
|
||||
@param magnitude Destination matrix of float magnitude squares ( CV_32FC1 ).
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void magnitudeSqr(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void magnitudeSqr(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null());
|
||||
|
||||
/** @overload
|
||||
computes magnitude of each (x(i), y(i)) vector
|
||||
@ -376,7 +376,7 @@ CV_EXPORTS void magnitudeSqr(InputArray xy, OutputArray magnitude, Stream& strea
|
||||
@param magnitude Destination matrix of float magnitudes ( CV_32FC1 ).
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void magnitude(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null());
|
||||
|
||||
/** @overload
|
||||
computes squared magnitude of each (x(i), y(i)) vector
|
||||
@ -386,7 +386,7 @@ CV_EXPORTS void magnitude(InputArray x, InputArray y, OutputArray magnitude, Str
|
||||
@param magnitude Destination matrix of float magnitude squares ( CV_32FC1 ).
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void magnitudeSqr(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void magnitudeSqr(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes polar angles of complex matrix elements.
|
||||
|
||||
@ -398,7 +398,7 @@ CV_EXPORTS void magnitudeSqr(InputArray x, InputArray y, OutputArray magnitude,
|
||||
|
||||
@sa phase
|
||||
*/
|
||||
CV_EXPORTS void phase(InputArray x, InputArray y, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Converts Cartesian coordinates into polar.
|
||||
|
||||
@ -411,7 +411,7 @@ CV_EXPORTS void phase(InputArray x, InputArray y, OutputArray angle, bool angleI
|
||||
|
||||
@sa cartToPolar
|
||||
*/
|
||||
CV_EXPORTS void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Converts polar coordinates into Cartesian.
|
||||
|
||||
@ -422,7 +422,7 @@ CV_EXPORTS void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, O
|
||||
@param angleInDegrees Flag that indicates angles in degrees.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void polarToCart(InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool angleInDegrees = false, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool angleInDegrees = false, Stream& stream = Stream::Null());
|
||||
|
||||
//! @} cudaarithm_elem
|
||||
|
||||
@ -438,9 +438,9 @@ CV_EXPORTS void polarToCart(InputArray magnitude, InputArray angle, OutputArray
|
||||
|
||||
@sa merge
|
||||
*/
|
||||
CV_EXPORTS void merge(const GpuMat* src, size_t n, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void merge(const GpuMat* src, size_t n, OutputArray dst, Stream& stream = Stream::Null());
|
||||
/** @overload */
|
||||
CV_EXPORTS void merge(const std::vector<GpuMat>& src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void merge(const std::vector<GpuMat>& src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Copies each plane of a multi-channel matrix into an array.
|
||||
|
||||
@ -450,9 +450,9 @@ CV_EXPORTS void merge(const std::vector<GpuMat>& src, OutputArray dst, Stream& s
|
||||
|
||||
@sa split
|
||||
*/
|
||||
CV_EXPORTS void split(InputArray src, GpuMat* dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void split(InputArray src, GpuMat* dst, Stream& stream = Stream::Null());
|
||||
/** @overload */
|
||||
CV_EXPORTS void split(InputArray src, std::vector<GpuMat>& dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void split(InputArray src, std::vector<GpuMat>& dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Transposes a matrix.
|
||||
|
||||
@ -462,7 +462,7 @@ CV_EXPORTS void split(InputArray src, std::vector<GpuMat>& dst, Stream& stream =
|
||||
|
||||
@sa transpose
|
||||
*/
|
||||
CV_EXPORTS void transpose(InputArray src1, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void transpose(InputArray src1, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Flips a 2D matrix around vertical, horizontal, or both axes.
|
||||
|
||||
@ -477,11 +477,11 @@ CV_32F depth.
|
||||
|
||||
@sa flip
|
||||
*/
|
||||
CV_EXPORTS void flip(InputArray src, OutputArray dst, int flipCode, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Base class for transform using lookup table.
|
||||
*/
|
||||
class CV_EXPORTS LookUpTable : public Algorithm
|
||||
class CV_EXPORTS_W LookUpTable : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Transforms the source matrix into the destination matrix using the given look-up table:
|
||||
@ -491,14 +491,14 @@ public:
|
||||
@param dst Destination matrix.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
virtual void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates implementation for cuda::LookUpTable .
|
||||
|
||||
@param lut Look-up table of 256 elements. It is a continuous CV_8U matrix.
|
||||
*/
|
||||
CV_EXPORTS Ptr<LookUpTable> createLookUpTable(InputArray lut);
|
||||
CV_EXPORTS_W Ptr<LookUpTable> createLookUpTable(InputArray lut);
|
||||
|
||||
/** @brief Forms a border around an image.
|
||||
|
||||
@ -515,7 +515,7 @@ BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supporte
|
||||
@param value Border value.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void copyMakeBorder(InputArray src, OutputArray dst, int top, int bottom, int left, int right, int borderType,
|
||||
CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst, int top, int bottom, int left, int right, int borderType,
|
||||
Scalar value = Scalar(), Stream& stream = Stream::Null());
|
||||
|
||||
//! @} cudaarithm_core
|
||||
@ -531,9 +531,9 @@ CV_EXPORTS void copyMakeBorder(InputArray src, OutputArray dst, int top, int bot
|
||||
|
||||
@sa norm
|
||||
*/
|
||||
CV_EXPORTS double norm(InputArray src1, int normType, InputArray mask = noArray());
|
||||
CV_EXPORTS_W double norm(InputArray src1, int normType, InputArray mask = noArray());
|
||||
/** @overload */
|
||||
CV_EXPORTS void calcNorm(InputArray src, OutputArray dst, int normType, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void calcNorm(InputArray src, OutputArray dst, int normType, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Returns the difference of two matrices.
|
||||
|
||||
@ -543,9 +543,9 @@ CV_EXPORTS void calcNorm(InputArray src, OutputArray dst, int normType, InputArr
|
||||
|
||||
@sa norm
|
||||
*/
|
||||
CV_EXPORTS double norm(InputArray src1, InputArray src2, int normType=NORM_L2);
|
||||
CV_EXPORTS_W double norm(InputArray src1, InputArray src2, int normType=NORM_L2);
|
||||
/** @overload */
|
||||
CV_EXPORTS void calcNormDiff(InputArray src1, InputArray src2, OutputArray dst, int normType=NORM_L2, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void calcNormDiff(InputArray src1, InputArray src2, OutputArray dst, int normType=NORM_L2, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Returns the sum of matrix elements.
|
||||
|
||||
@ -554,27 +554,27 @@ CV_EXPORTS void calcNormDiff(InputArray src1, InputArray src2, OutputArray dst,
|
||||
|
||||
@sa sum
|
||||
*/
|
||||
CV_EXPORTS Scalar sum(InputArray src, InputArray mask = noArray());
|
||||
CV_EXPORTS_W Scalar sum(InputArray src, InputArray mask = noArray());
|
||||
/** @overload */
|
||||
CV_EXPORTS void calcSum(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void calcSum(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Returns the sum of absolute values for matrix elements.
|
||||
|
||||
@param src Source image of any depth except for CV_64F .
|
||||
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
|
||||
*/
|
||||
CV_EXPORTS Scalar absSum(InputArray src, InputArray mask = noArray());
|
||||
CV_EXPORTS_W Scalar absSum(InputArray src, InputArray mask = noArray());
|
||||
/** @overload */
|
||||
CV_EXPORTS void calcAbsSum(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void calcAbsSum(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Returns the squared sum of matrix elements.
|
||||
|
||||
@param src Source image of any depth except for CV_64F .
|
||||
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
|
||||
*/
|
||||
CV_EXPORTS Scalar sqrSum(InputArray src, InputArray mask = noArray());
|
||||
CV_EXPORTS_W Scalar sqrSum(InputArray src, InputArray mask = noArray());
|
||||
/** @overload */
|
||||
CV_EXPORTS void calcSqrSum(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void calcSqrSum(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Finds global minimum and maximum matrix elements and returns their values.
|
||||
|
||||
@ -587,9 +587,9 @@ The function does not work with CV_64F images on GPUs with the compute capabilit
|
||||
|
||||
@sa minMaxLoc
|
||||
*/
|
||||
CV_EXPORTS void minMax(InputArray src, double* minVal, double* maxVal, InputArray mask = noArray());
|
||||
CV_EXPORTS_W void minMax(InputArray src, double* minVal, double* maxVal, InputArray mask = noArray());
|
||||
/** @overload */
|
||||
CV_EXPORTS void findMinMax(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void findMinMax(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Finds global minimum and maximum matrix elements and returns their values with locations.
|
||||
|
||||
@ -604,10 +604,10 @@ The function does not work with CV_64F images on GPU with the compute capability
|
||||
|
||||
@sa minMaxLoc
|
||||
*/
|
||||
CV_EXPORTS void minMaxLoc(InputArray src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc,
|
||||
CV_EXPORTS_W void minMaxLoc(InputArray src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc,
|
||||
InputArray mask = noArray());
|
||||
/** @overload */
|
||||
CV_EXPORTS void findMinMaxLoc(InputArray src, OutputArray minMaxVals, OutputArray loc,
|
||||
CV_EXPORTS_W void findMinMaxLoc(InputArray src, OutputArray minMaxVals, OutputArray loc,
|
||||
InputArray mask = noArray(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Counts non-zero matrix elements.
|
||||
@ -618,9 +618,9 @@ The function does not work with CV_64F images on GPUs with the compute capabilit
|
||||
|
||||
@sa countNonZero
|
||||
*/
|
||||
CV_EXPORTS int countNonZero(InputArray src);
|
||||
CV_EXPORTS_W int countNonZero(InputArray src);
|
||||
/** @overload */
|
||||
CV_EXPORTS void countNonZero(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void countNonZero(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Reduces a matrix to a vector.
|
||||
|
||||
@ -648,7 +648,7 @@ modes.
|
||||
|
||||
@sa reduce
|
||||
*/
|
||||
CV_EXPORTS void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes a mean value and a standard deviation of matrix elements.
|
||||
|
||||
@ -658,9 +658,9 @@ CV_EXPORTS void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, i
|
||||
|
||||
@sa meanStdDev
|
||||
*/
|
||||
CV_EXPORTS void meanStdDev(InputArray mtx, Scalar& mean, Scalar& stddev);
|
||||
CV_EXPORTS_W void meanStdDev(InputArray mtx, Scalar& mean, Scalar& stddev);
|
||||
/** @overload */
|
||||
CV_EXPORTS void meanStdDev(InputArray mtx, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void meanStdDev(InputArray mtx, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes a standard deviation of integral images.
|
||||
|
||||
@ -670,7 +670,7 @@ CV_EXPORTS void meanStdDev(InputArray mtx, OutputArray dst, Stream& stream = Str
|
||||
@param rect Rectangular window.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void rectStdDev(InputArray src, InputArray sqr, OutputArray dst, Rect rect, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void rectStdDev(InputArray src, InputArray sqr, OutputArray dst, Rect rect, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Normalizes the norm or value range of an array.
|
||||
|
||||
@ -688,7 +688,7 @@ number of channels as src and the depth =CV_MAT_DEPTH(dtype).
|
||||
|
||||
@sa normalize
|
||||
*/
|
||||
CV_EXPORTS void normalize(InputArray src, OutputArray dst, double alpha, double beta,
|
||||
CV_EXPORTS_W void normalize(InputArray src, OutputArray dst, double alpha, double beta,
|
||||
int norm_type, int dtype, InputArray mask = noArray(),
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
@ -700,7 +700,7 @@ CV_EXPORTS void normalize(InputArray src, OutputArray dst, double alpha, double
|
||||
|
||||
@sa integral
|
||||
*/
|
||||
CV_EXPORTS void integral(InputArray src, OutputArray sum, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void integral(InputArray src, OutputArray sum, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes a squared integral image.
|
||||
|
||||
@ -709,7 +709,7 @@ CV_EXPORTS void integral(InputArray src, OutputArray sum, Stream& stream = Strea
|
||||
CV_64FC1 .
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void sqrIntegral(InputArray src, OutputArray sqsum, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void sqrIntegral(InputArray src, OutputArray sqsum, Stream& stream = Stream::Null());
|
||||
|
||||
//! @} cudaarithm_reduce
|
||||
|
||||
@ -741,7 +741,7 @@ The function performs generalized matrix multiplication similar to the gemm func
|
||||
|
||||
@sa gemm
|
||||
*/
|
||||
CV_EXPORTS void gemm(InputArray src1, InputArray src2, double alpha,
|
||||
CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
|
||||
InputArray src3, double beta, OutputArray dst, int flags = 0, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Performs a per-element multiplication of two Fourier spectrums.
|
||||
@ -758,7 +758,7 @@ Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are
|
||||
|
||||
@sa mulSpectrums
|
||||
*/
|
||||
CV_EXPORTS void mulSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, bool conjB=false, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void mulSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, bool conjB=false, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Performs a per-element multiplication of two Fourier spectrums and scales the result.
|
||||
|
||||
@ -775,7 +775,7 @@ Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are
|
||||
|
||||
@sa mulSpectrums
|
||||
*/
|
||||
CV_EXPORTS void mulAndScaleSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, float scale, bool conjB=false, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void mulAndScaleSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, float scale, bool conjB=false, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix.
|
||||
|
||||
@ -812,11 +812,11 @@ instead of the width.
|
||||
|
||||
@sa dft
|
||||
*/
|
||||
CV_EXPORTS void dft(InputArray src, OutputArray dst, Size dft_size, int flags=0, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void dft(InputArray src, OutputArray dst, Size dft_size, int flags=0, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Base class for DFT operator as a cv::Algorithm. :
|
||||
*/
|
||||
class CV_EXPORTS DFT : public Algorithm
|
||||
class CV_EXPORTS_W DFT : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Computes an FFT of a given image.
|
||||
@ -825,7 +825,7 @@ public:
|
||||
@param result Result image.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
virtual void compute(InputArray image, OutputArray result, Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void compute(InputArray image, OutputArray result, Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates implementation for cuda::DFT.
|
||||
@ -841,11 +841,11 @@ cases are always forward and inverse, respectively).
|
||||
- **DFT_REAL_OUTPUT** specifies the output as real. The source matrix is the result of
|
||||
real-complex transform, so the destination matrix must be real.
|
||||
*/
|
||||
CV_EXPORTS Ptr<DFT> createDFT(Size dft_size, int flags);
|
||||
CV_EXPORTS_W Ptr<DFT> createDFT(Size dft_size, int flags);
|
||||
|
||||
/** @brief Base class for convolution (or cross-correlation) operator. :
|
||||
*/
|
||||
class CV_EXPORTS Convolution : public Algorithm
|
||||
class CV_EXPORTS_W Convolution : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Computes a convolution (or cross-correlation) of two images.
|
||||
@ -867,7 +867,7 @@ public:
|
||||
estimation of block size will be used (which is optimized for speed). By varying user_block_size
|
||||
you can reduce memory requirements at the cost of speed.
|
||||
*/
|
||||
CV_EXPORTS Ptr<Convolution> createConvolution(Size user_block_size = Size());
|
||||
CV_EXPORTS_W Ptr<Convolution> createConvolution(Size user_block_size = Size());
|
||||
|
||||
//! @} cudaarithm_arithm
|
||||
|
||||
|
@ -77,27 +77,27 @@ class implements algorithm described in @cite MOG2001 .
|
||||
- An example on gaussian mixture based background/foreground segmantation can be found at
|
||||
opencv_source_code/samples/gpu/bgfg_segm.cpp
|
||||
*/
|
||||
class CV_EXPORTS BackgroundSubtractorMOG : public cv::BackgroundSubtractor
|
||||
class CV_EXPORTS_W BackgroundSubtractorMOG : public cv::BackgroundSubtractor
|
||||
{
|
||||
public:
|
||||
|
||||
using cv::BackgroundSubtractor::apply;
|
||||
virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0;
|
||||
CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0;
|
||||
|
||||
using cv::BackgroundSubtractor::getBackgroundImage;
|
||||
virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0;
|
||||
CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0;
|
||||
|
||||
virtual int getHistory() const = 0;
|
||||
virtual void setHistory(int nframes) = 0;
|
||||
CV_WRAP virtual int getHistory() const = 0;
|
||||
CV_WRAP virtual void setHistory(int nframes) = 0;
|
||||
|
||||
virtual int getNMixtures() const = 0;
|
||||
virtual void setNMixtures(int nmix) = 0;
|
||||
CV_WRAP virtual int getNMixtures() const = 0;
|
||||
CV_WRAP virtual void setNMixtures(int nmix) = 0;
|
||||
|
||||
virtual double getBackgroundRatio() const = 0;
|
||||
virtual void setBackgroundRatio(double backgroundRatio) = 0;
|
||||
CV_WRAP virtual double getBackgroundRatio() const = 0;
|
||||
CV_WRAP virtual void setBackgroundRatio(double backgroundRatio) = 0;
|
||||
|
||||
virtual double getNoiseSigma() const = 0;
|
||||
virtual void setNoiseSigma(double noiseSigma) = 0;
|
||||
CV_WRAP virtual double getNoiseSigma() const = 0;
|
||||
CV_WRAP virtual void setNoiseSigma(double noiseSigma) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates mixture-of-gaussian background subtractor
|
||||
@ -108,7 +108,7 @@ public:
|
||||
@param noiseSigma Noise strength (standard deviation of the brightness or each color channel). 0
|
||||
means some automatic value.
|
||||
*/
|
||||
CV_EXPORTS Ptr<cuda::BackgroundSubtractorMOG>
|
||||
CV_EXPORTS_W Ptr<cuda::BackgroundSubtractorMOG>
|
||||
createBackgroundSubtractorMOG(int history = 200, int nmixtures = 5,
|
||||
double backgroundRatio = 0.7, double noiseSigma = 0);
|
||||
|
||||
@ -123,15 +123,15 @@ class implements algorithm described in @cite Zivkovic2004 .
|
||||
|
||||
@sa BackgroundSubtractorMOG2
|
||||
*/
|
||||
class CV_EXPORTS BackgroundSubtractorMOG2 : public cv::BackgroundSubtractorMOG2
|
||||
class CV_EXPORTS_W BackgroundSubtractorMOG2 : public cv::BackgroundSubtractorMOG2
|
||||
{
|
||||
public:
|
||||
using cv::BackgroundSubtractorMOG2::apply;
|
||||
using cv::BackgroundSubtractorMOG2::getBackgroundImage;
|
||||
|
||||
virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0;
|
||||
CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream) = 0;
|
||||
|
||||
virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0;
|
||||
CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates MOG2 Background Subtractor
|
||||
@ -143,7 +143,7 @@ affect the background update.
|
||||
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
|
||||
speed a bit, so if you do not need this feature, set the parameter to false.
|
||||
*/
|
||||
CV_EXPORTS Ptr<cuda::BackgroundSubtractorMOG2>
|
||||
CV_EXPORTS_W Ptr<cuda::BackgroundSubtractorMOG2>
|
||||
createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16,
|
||||
bool detectShadows = true);
|
||||
|
||||
|
@ -6,7 +6,7 @@ set(the_description "CUDA-accelerated Video Encoding/Decoding")
|
||||
|
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4127 /wd4324 /wd4512 -Wundef -Wshadow)
|
||||
|
||||
ocv_add_module(cudacodec opencv_core opencv_videoio OPTIONAL opencv_cudev)
|
||||
ocv_add_module(cudacodec opencv_core opencv_videoio OPTIONAL opencv_cudev WRAP python)
|
||||
|
||||
ocv_module_include_directories()
|
||||
ocv_glob_module_sources()
|
||||
|
@ -80,7 +80,7 @@ enum SurfaceFormat
|
||||
|
||||
/** @brief Different parameters for CUDA video encoder.
|
||||
*/
|
||||
struct CV_EXPORTS EncoderParams
|
||||
struct CV_EXPORTS_W EncoderParams
|
||||
{
|
||||
int P_Interval; //!< NVVE_P_INTERVAL,
|
||||
int IDR_Period; //!< NVVE_IDR_PERIOD,
|
||||
@ -125,7 +125,7 @@ struct CV_EXPORTS EncoderParams
|
||||
|
||||
/** @brief Callbacks for CUDA video encoder.
|
||||
*/
|
||||
class CV_EXPORTS EncoderCallBack
|
||||
class CV_EXPORTS_W EncoderCallBack
|
||||
{
|
||||
public:
|
||||
enum PicType
|
||||
@ -152,14 +152,14 @@ public:
|
||||
@param frameNumber
|
||||
@param picType Specify frame type (I-Frame, P-Frame or B-Frame).
|
||||
*/
|
||||
virtual void onBeginFrame(int frameNumber, PicType picType) = 0;
|
||||
CV_WRAP virtual void onBeginFrame(int frameNumber, EncoderCallBack::PicType picType) = 0;
|
||||
|
||||
/** @brief Callback function signals that the encoding operation on the frame has finished.
|
||||
|
||||
@param frameNumber
|
||||
@param picType Specify frame type (I-Frame, P-Frame or B-Frame).
|
||||
*/
|
||||
virtual void onEndFrame(int frameNumber, PicType picType) = 0;
|
||||
CV_WRAP virtual void onEndFrame(int frameNumber, EncoderCallBack::PicType picType) = 0;
|
||||
};
|
||||
|
||||
/** @brief Video writer interface.
|
||||
@ -172,7 +172,7 @@ The implementation uses H264 video codec.
|
||||
- An example on how to use the videoWriter class can be found at
|
||||
opencv_source_code/samples/gpu/video_writer.cpp
|
||||
*/
|
||||
class CV_EXPORTS VideoWriter
|
||||
class CV_EXPORTS_W VideoWriter
|
||||
{
|
||||
public:
|
||||
virtual ~VideoWriter() {}
|
||||
@ -185,9 +185,9 @@ public:
|
||||
The method write the specified image to video file. The image must have the same size and the same
|
||||
surface format as has been specified when opening the video writer.
|
||||
*/
|
||||
virtual void write(InputArray frame, bool lastFrame = false) = 0;
|
||||
CV_WRAP virtual void write(InputArray frame, bool lastFrame = false) = 0;
|
||||
|
||||
virtual EncoderParams getEncoderParams() const = 0;
|
||||
CV_WRAP virtual EncoderParams getEncoderParams() const = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates video writer.
|
||||
@ -202,7 +202,7 @@ encoding, frames with other formats will be used as is.
|
||||
The constructors initialize video writer. FFMPEG is used to write videos. User can implement own
|
||||
multiplexing with cudacodec::EncoderCallBack .
|
||||
*/
|
||||
CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const String& fileName, Size frameSize, double fps, SurfaceFormat format = SF_BGR);
|
||||
CV_EXPORTS_W Ptr<cudacodec::VideoWriter> createVideoWriter(const String& fileName, Size frameSize, double fps, SurfaceFormat format = SF_BGR);
|
||||
/** @overload
|
||||
@param fileName Name of the output video file. Only AVI file format is supported.
|
||||
@param frameSize Size of the input video frames.
|
||||
@ -212,7 +212,7 @@ CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const String& fileName, Size frame
|
||||
SF_IYUV , SF_BGR or SF_GRAY). BGR or gray frames will be converted to YV12 format before
|
||||
encoding, frames with other formats will be used as is.
|
||||
*/
|
||||
CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const String& fileName, Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
|
||||
CV_EXPORTS_W Ptr<cudacodec::VideoWriter> createVideoWriter(const String& fileName, Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
|
||||
|
||||
/** @overload
|
||||
@param encoderCallback Callbacks for video encoder. See cudacodec::EncoderCallBack . Use it if you
|
||||
@ -223,7 +223,7 @@ want to work with raw video stream.
|
||||
SF_IYUV , SF_BGR or SF_GRAY). BGR or gray frames will be converted to YV12 format before
|
||||
encoding, frames with other formats will be used as is.
|
||||
*/
|
||||
CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const Ptr<EncoderCallBack>& encoderCallback, Size frameSize, double fps, SurfaceFormat format = SF_BGR);
|
||||
CV_EXPORTS_W Ptr<cudacodec::VideoWriter> createVideoWriter(const Ptr<EncoderCallBack>& encoderCallback, Size frameSize, double fps, SurfaceFormat format = SF_BGR);
|
||||
/** @overload
|
||||
@param encoderCallback Callbacks for video encoder. See cudacodec::EncoderCallBack . Use it if you
|
||||
want to work with raw video stream.
|
||||
@ -234,7 +234,7 @@ want to work with raw video stream.
|
||||
SF_IYUV , SF_BGR or SF_GRAY). BGR or gray frames will be converted to YV12 format before
|
||||
encoding, frames with other formats will be used as is.
|
||||
*/
|
||||
CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const Ptr<EncoderCallBack>& encoderCallback, Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
|
||||
CV_EXPORTS_W Ptr<cudacodec::VideoWriter> createVideoWriter(const Ptr<EncoderCallBack>& encoderCallback, Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
|
||||
|
||||
////////////////////////////////// Video Decoding //////////////////////////////////////////
|
||||
|
||||
@ -284,7 +284,7 @@ struct FormatInfo
|
||||
- An example on how to use the videoReader class can be found at
|
||||
opencv_source_code/samples/gpu/video_reader.cpp
|
||||
*/
|
||||
class CV_EXPORTS VideoReader
|
||||
class CV_EXPORTS_W VideoReader
|
||||
{
|
||||
public:
|
||||
virtual ~VideoReader() {}
|
||||
@ -294,7 +294,7 @@ public:
|
||||
If no frames has been grabbed (there are no more frames in video file), the methods return false .
|
||||
The method throws Exception if error occurs.
|
||||
*/
|
||||
virtual bool nextFrame(OutputArray frame) = 0;
|
||||
CV_WRAP virtual bool nextFrame(OutputArray frame) = 0;
|
||||
|
||||
/** @brief Returns information about video file format.
|
||||
*/
|
||||
@ -305,7 +305,7 @@ public:
|
||||
|
||||
User can implement own demultiplexing by implementing this interface.
|
||||
*/
|
||||
class CV_EXPORTS RawVideoSource
|
||||
class CV_EXPORTS_W RawVideoSource
|
||||
{
|
||||
public:
|
||||
virtual ~RawVideoSource() {}
|
||||
@ -329,11 +329,11 @@ public:
|
||||
|
||||
FFMPEG is used to read videos. User can implement own demultiplexing with cudacodec::RawVideoSource
|
||||
*/
|
||||
CV_EXPORTS Ptr<VideoReader> createVideoReader(const String& filename);
|
||||
CV_EXPORTS_W Ptr<VideoReader> createVideoReader(const String& filename);
|
||||
/** @overload
|
||||
@param source RAW video source implemented by user.
|
||||
*/
|
||||
CV_EXPORTS Ptr<VideoReader> createVideoReader(const Ptr<RawVideoSource>& source);
|
||||
CV_EXPORTS_W Ptr<VideoReader> createVideoReader(const Ptr<RawVideoSource>& source);
|
||||
|
||||
//! @}
|
||||
|
||||
|
14
modules/cudacodec/misc/python/pyopencv_cudacodec.hpp
Normal file
14
modules/cudacodec/misc/python/pyopencv_cudacodec.hpp
Normal file
@ -0,0 +1,14 @@
|
||||
#ifdef HAVE_OPENCV_CUDACODEC
|
||||
|
||||
#include "opencv2/cudacodec.hpp"
|
||||
|
||||
typedef cudacodec::EncoderCallBack::PicType EncoderCallBack_PicType;
|
||||
|
||||
CV_PY_TO_CLASS(cudacodec::EncoderParams);
|
||||
|
||||
CV_PY_TO_ENUM(cudacodec::EncoderCallBack::PicType);
|
||||
CV_PY_TO_ENUM(cudacodec::SurfaceFormat);
|
||||
|
||||
CV_PY_FROM_CLASS(cudacodec::EncoderParams);
|
||||
|
||||
#endif
|
@ -72,7 +72,7 @@ namespace cv { namespace cuda {
|
||||
It has two groups of match methods: for matching descriptors of an image with another image or with
|
||||
an image set.
|
||||
*/
|
||||
class CV_EXPORTS DescriptorMatcher : public cv::Algorithm
|
||||
class CV_EXPORTS_W DescriptorMatcher : public cv::Algorithm
|
||||
{
|
||||
public:
|
||||
//
|
||||
@ -89,7 +89,7 @@ public:
|
||||
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
|
||||
BRIEF).
|
||||
*/
|
||||
static Ptr<DescriptorMatcher> createBFMatcher(int normType = cv::NORM_L2);
|
||||
CV_WRAP static Ptr<cuda::DescriptorMatcher> createBFMatcher(int normType = cv::NORM_L2);
|
||||
|
||||
//
|
||||
// Utility
|
||||
@ -97,7 +97,7 @@ public:
|
||||
|
||||
/** @brief Returns true if the descriptor matcher supports masking permissible matches.
|
||||
*/
|
||||
virtual bool isMaskSupported() const = 0;
|
||||
CV_WRAP virtual bool isMaskSupported() const = 0;
|
||||
|
||||
//
|
||||
// Descriptor collection
|
||||
@ -110,26 +110,26 @@ public:
|
||||
@param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same
|
||||
train image.
|
||||
*/
|
||||
virtual void add(const std::vector<GpuMat>& descriptors) = 0;
|
||||
CV_WRAP virtual void add(const std::vector<GpuMat>& descriptors) = 0;
|
||||
|
||||
/** @brief Returns a constant link to the train descriptor collection.
|
||||
*/
|
||||
virtual const std::vector<GpuMat>& getTrainDescriptors() const = 0;
|
||||
CV_WRAP virtual const std::vector<GpuMat>& getTrainDescriptors() const = 0;
|
||||
|
||||
/** @brief Clears the train descriptor collection.
|
||||
*/
|
||||
virtual void clear() = 0;
|
||||
CV_WRAP virtual void clear() = 0;
|
||||
|
||||
/** @brief Returns true if there are no train descriptors in the collection.
|
||||
*/
|
||||
virtual bool empty() const = 0;
|
||||
CV_WRAP virtual bool empty() const = 0;
|
||||
|
||||
/** @brief Trains a descriptor matcher.
|
||||
|
||||
Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
|
||||
train() is run every time before matching.
|
||||
*/
|
||||
virtual void train() = 0;
|
||||
CV_WRAP virtual void train() = 0;
|
||||
|
||||
//
|
||||
// 1 to 1 match
|
||||
@ -151,14 +151,14 @@ public:
|
||||
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
|
||||
mask.at\<uchar\>(i,j) is non-zero.
|
||||
*/
|
||||
virtual void match(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
std::vector<DMatch>& matches,
|
||||
CV_WRAP virtual void match(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
CV_OUT std::vector<DMatch>& matches,
|
||||
InputArray mask = noArray()) = 0;
|
||||
|
||||
/** @overload
|
||||
*/
|
||||
virtual void match(InputArray queryDescriptors,
|
||||
std::vector<DMatch>& matches,
|
||||
CV_WRAP virtual void match(InputArray queryDescriptors,
|
||||
CV_OUT std::vector<DMatch>& matches,
|
||||
const std::vector<GpuMat>& masks = std::vector<GpuMat>()) = 0;
|
||||
|
||||
/** @brief Finds the best match for each descriptor from a query set (asynchronous version).
|
||||
@ -178,14 +178,14 @@ public:
|
||||
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
|
||||
mask.at\<uchar\>(i,j) is non-zero.
|
||||
*/
|
||||
virtual void matchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
CV_WRAP virtual void matchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
OutputArray matches,
|
||||
InputArray mask = noArray(),
|
||||
Stream& stream = Stream::Null()) = 0;
|
||||
|
||||
/** @overload
|
||||
*/
|
||||
virtual void matchAsync(InputArray queryDescriptors,
|
||||
CV_WRAP virtual void matchAsync(InputArray queryDescriptors,
|
||||
OutputArray matches,
|
||||
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
||||
Stream& stream = Stream::Null()) = 0;
|
||||
@ -198,8 +198,8 @@ public:
|
||||
@param gpu_matches Matches, returned from DescriptorMatcher::matchAsync.
|
||||
@param matches Vector of DMatch objects.
|
||||
*/
|
||||
virtual void matchConvert(InputArray gpu_matches,
|
||||
std::vector<DMatch>& matches) = 0;
|
||||
CV_WRAP virtual void matchConvert(InputArray gpu_matches,
|
||||
CV_OUT std::vector<DMatch>& matches) = 0;
|
||||
|
||||
//
|
||||
// knn match
|
||||
@ -223,16 +223,16 @@ public:
|
||||
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
|
||||
for the details about query and train descriptors.
|
||||
*/
|
||||
virtual void knnMatch(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
std::vector<std::vector<DMatch> >& matches,
|
||||
CV_WRAP virtual void knnMatch(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
CV_OUT std::vector<std::vector<DMatch> >& matches,
|
||||
int k,
|
||||
InputArray mask = noArray(),
|
||||
bool compactResult = false) = 0;
|
||||
|
||||
/** @overload
|
||||
*/
|
||||
virtual void knnMatch(InputArray queryDescriptors,
|
||||
std::vector<std::vector<DMatch> >& matches,
|
||||
CV_WRAP virtual void knnMatch(InputArray queryDescriptors,
|
||||
CV_OUT std::vector<std::vector<DMatch> >& matches,
|
||||
int k,
|
||||
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
||||
bool compactResult = false) = 0;
|
||||
@ -254,7 +254,7 @@ public:
|
||||
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::matchAsync
|
||||
for the details about query and train descriptors.
|
||||
*/
|
||||
virtual void knnMatchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
CV_WRAP virtual void knnMatchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
OutputArray matches,
|
||||
int k,
|
||||
InputArray mask = noArray(),
|
||||
@ -262,7 +262,7 @@ public:
|
||||
|
||||
/** @overload
|
||||
*/
|
||||
virtual void knnMatchAsync(InputArray queryDescriptors,
|
||||
CV_WRAP virtual void knnMatchAsync(InputArray queryDescriptors,
|
||||
OutputArray matches,
|
||||
int k,
|
||||
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
||||
@ -279,7 +279,7 @@ public:
|
||||
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
|
||||
the matches vector does not contain matches for fully masked-out query descriptors.
|
||||
*/
|
||||
virtual void knnMatchConvert(InputArray gpu_matches,
|
||||
CV_WRAP virtual void knnMatchConvert(InputArray gpu_matches,
|
||||
std::vector< std::vector<DMatch> >& matches,
|
||||
bool compactResult = false) = 0;
|
||||
|
||||
@ -306,16 +306,16 @@ public:
|
||||
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
|
||||
returned in the distance increasing order.
|
||||
*/
|
||||
virtual void radiusMatch(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
std::vector<std::vector<DMatch> >& matches,
|
||||
CV_WRAP virtual void radiusMatch(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
CV_OUT std::vector<std::vector<DMatch> >& matches,
|
||||
float maxDistance,
|
||||
InputArray mask = noArray(),
|
||||
bool compactResult = false) = 0;
|
||||
|
||||
/** @overload
|
||||
*/
|
||||
virtual void radiusMatch(InputArray queryDescriptors,
|
||||
std::vector<std::vector<DMatch> >& matches,
|
||||
CV_WRAP virtual void radiusMatch(InputArray queryDescriptors,
|
||||
CV_OUT std::vector<std::vector<DMatch> >& matches,
|
||||
float maxDistance,
|
||||
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
||||
bool compactResult = false) = 0;
|
||||
@ -338,7 +338,7 @@ public:
|
||||
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
|
||||
returned in the distance increasing order.
|
||||
*/
|
||||
virtual void radiusMatchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
CV_WRAP virtual void radiusMatchAsync(InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
OutputArray matches,
|
||||
float maxDistance,
|
||||
InputArray mask = noArray(),
|
||||
@ -346,7 +346,7 @@ public:
|
||||
|
||||
/** @overload
|
||||
*/
|
||||
virtual void radiusMatchAsync(InputArray queryDescriptors,
|
||||
CV_WRAP virtual void radiusMatchAsync(InputArray queryDescriptors,
|
||||
OutputArray matches,
|
||||
float maxDistance,
|
||||
const std::vector<GpuMat>& masks = std::vector<GpuMat>(),
|
||||
@ -363,7 +363,7 @@ public:
|
||||
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
|
||||
the matches vector does not contain matches for fully masked-out query descriptors.
|
||||
*/
|
||||
virtual void radiusMatchConvert(InputArray gpu_matches,
|
||||
CV_WRAP virtual void radiusMatchConvert(InputArray gpu_matches,
|
||||
std::vector< std::vector<DMatch> >& matches,
|
||||
bool compactResult = false) = 0;
|
||||
};
|
||||
@ -374,10 +374,10 @@ public:
|
||||
|
||||
/** @brief Abstract base class for CUDA asynchronous 2D image feature detectors and descriptor extractors.
|
||||
*/
|
||||
class CV_EXPORTS Feature2DAsync : public cv::Feature2D
|
||||
class CV_EXPORTS_W Feature2DAsync : public cv::Feature2D
|
||||
{
|
||||
public:
|
||||
virtual ~Feature2DAsync();
|
||||
CV_WRAP virtual ~Feature2DAsync();
|
||||
|
||||
/** @brief Detects keypoints in an image.
|
||||
|
||||
@ -387,7 +387,7 @@ public:
|
||||
matrix with non-zero values in the region of interest.
|
||||
@param stream CUDA stream.
|
||||
*/
|
||||
virtual void detectAsync(InputArray image,
|
||||
CV_WRAP virtual void detectAsync(InputArray image,
|
||||
OutputArray keypoints,
|
||||
InputArray mask = noArray(),
|
||||
Stream& stream = Stream::Null());
|
||||
@ -399,13 +399,13 @@ public:
|
||||
@param descriptors Computed descriptors. Row j is the descriptor for j-th keypoint.
|
||||
@param stream CUDA stream.
|
||||
*/
|
||||
virtual void computeAsync(InputArray image,
|
||||
CV_WRAP virtual void computeAsync(InputArray image,
|
||||
OutputArray keypoints,
|
||||
OutputArray descriptors,
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
/** Detects keypoints and computes the descriptors. */
|
||||
virtual void detectAndComputeAsync(InputArray image,
|
||||
CV_WRAP virtual void detectAndComputeAsync(InputArray image,
|
||||
InputArray mask,
|
||||
OutputArray keypoints,
|
||||
OutputArray descriptors,
|
||||
@ -413,7 +413,7 @@ public:
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
/** Converts keypoints array from internal representation to standard vector. */
|
||||
virtual void convert(InputArray gpu_keypoints,
|
||||
CV_WRAP virtual void convert(InputArray gpu_keypoints,
|
||||
std::vector<KeyPoint>& keypoints) = 0;
|
||||
};
|
||||
|
||||
@ -423,7 +423,7 @@ public:
|
||||
|
||||
/** @brief Wrapping class for feature detection using the FAST method.
|
||||
*/
|
||||
class CV_EXPORTS FastFeatureDetector : public Feature2DAsync
|
||||
class CV_EXPORTS_W FastFeatureDetector : public Feature2DAsync
|
||||
{
|
||||
public:
|
||||
enum
|
||||
@ -435,14 +435,14 @@ public:
|
||||
FEATURE_SIZE = 7
|
||||
};
|
||||
|
||||
static Ptr<FastFeatureDetector> create(int threshold=10,
|
||||
CV_WRAP static Ptr<cuda::FastFeatureDetector> create(int threshold=10,
|
||||
bool nonmaxSuppression=true,
|
||||
int type=cv::FastFeatureDetector::TYPE_9_16,
|
||||
int max_npoints = 5000);
|
||||
virtual void setThreshold(int threshold) = 0;
|
||||
CV_WRAP virtual void setThreshold(int threshold) = 0;
|
||||
|
||||
virtual void setMaxNumPoints(int max_npoints) = 0;
|
||||
virtual int getMaxNumPoints() const = 0;
|
||||
CV_WRAP virtual void setMaxNumPoints(int max_npoints) = 0;
|
||||
CV_WRAP virtual int getMaxNumPoints() const = 0;
|
||||
};
|
||||
|
||||
//
|
||||
@ -453,7 +453,7 @@ public:
|
||||
*
|
||||
* @sa cv::ORB
|
||||
*/
|
||||
class CV_EXPORTS ORB : public Feature2DAsync
|
||||
class CV_EXPORTS_W ORB : public Feature2DAsync
|
||||
{
|
||||
public:
|
||||
enum
|
||||
@ -467,7 +467,7 @@ public:
|
||||
ROWS_COUNT
|
||||
};
|
||||
|
||||
static Ptr<ORB> create(int nfeatures=500,
|
||||
CV_WRAP static Ptr<cuda::ORB> create(int nfeatures=500,
|
||||
float scaleFactor=1.2f,
|
||||
int nlevels=8,
|
||||
int edgeThreshold=31,
|
||||
@ -479,8 +479,8 @@ public:
|
||||
bool blurForDescriptor=false);
|
||||
|
||||
//! if true, image will be blurred before descriptors calculation
|
||||
virtual void setBlurForDescriptor(bool blurForDescriptor) = 0;
|
||||
virtual bool getBlurForDescriptor() const = 0;
|
||||
CV_WRAP virtual void setBlurForDescriptor(bool blurForDescriptor) = 0;
|
||||
CV_WRAP virtual bool getBlurForDescriptor() const = 0;
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
@ -145,7 +145,7 @@ E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel or
|
||||
|
||||
The methods support arbitrary permutations of the original channels, including replication.
|
||||
*/
|
||||
CV_EXPORTS_W void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null());
|
||||
CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Routines for correcting image color gamma.
|
||||
|
||||
@ -265,7 +265,7 @@ a four-channel image, all channels are processed separately.
|
||||
*/
|
||||
CV_EXPORTS_W void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
|
||||
/** @overload */
|
||||
CV_EXPORTS void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Calculates a histogram with bins determined by the levels array.
|
||||
|
||||
@ -277,7 +277,7 @@ For a four-channel image, all channels are processed separately.
|
||||
*/
|
||||
CV_EXPORTS_W void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null());
|
||||
/** @overload */
|
||||
CV_EXPORTS void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null());
|
||||
|
||||
//! @} cudaimgproc_hist
|
||||
|
||||
@ -338,7 +338,7 @@ CV_EXPORTS_W Ptr<CannyEdgeDetector> createCannyEdgeDetector(double low_thresh, d
|
||||
|
||||
/** @brief Base class for lines detector algorithm. :
|
||||
*/
|
||||
class CV_EXPORTS HoughLinesDetector : public Algorithm
|
||||
class CV_EXPORTS_W HoughLinesDetector : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Finds lines in a binary image using the classical Hough transform.
|
||||
@ -352,7 +352,7 @@ public:
|
||||
|
||||
@sa HoughLines
|
||||
*/
|
||||
virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;
|
||||
|
||||
/** @brief Downloads results from cuda::HoughLinesDetector::detect to host memory.
|
||||
|
||||
@ -361,22 +361,22 @@ public:
|
||||
@param h_votes Optional output array for line's votes.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray(), Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray(), Stream& stream = Stream::Null()) = 0;
|
||||
|
||||
virtual void setRho(float rho) = 0;
|
||||
virtual float getRho() const = 0;
|
||||
CV_WRAP virtual void setRho(float rho) = 0;
|
||||
CV_WRAP virtual float getRho() const = 0;
|
||||
|
||||
virtual void setTheta(float theta) = 0;
|
||||
virtual float getTheta() const = 0;
|
||||
CV_WRAP virtual void setTheta(float theta) = 0;
|
||||
CV_WRAP virtual float getTheta() const = 0;
|
||||
|
||||
virtual void setThreshold(int threshold) = 0;
|
||||
virtual int getThreshold() const = 0;
|
||||
CV_WRAP virtual void setThreshold(int threshold) = 0;
|
||||
CV_WRAP virtual int getThreshold() const = 0;
|
||||
|
||||
virtual void setDoSort(bool doSort) = 0;
|
||||
virtual bool getDoSort() const = 0;
|
||||
CV_WRAP virtual void setDoSort(bool doSort) = 0;
|
||||
CV_WRAP virtual bool getDoSort() const = 0;
|
||||
|
||||
virtual void setMaxLines(int maxLines) = 0;
|
||||
virtual int getMaxLines() const = 0;
|
||||
CV_WRAP virtual void setMaxLines(int maxLines) = 0;
|
||||
CV_WRAP virtual int getMaxLines() const = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates implementation for cuda::HoughLinesDetector .
|
||||
@ -388,7 +388,7 @@ votes ( \f$>\texttt{threshold}\f$ ).
|
||||
@param doSort Performs lines sort by votes.
|
||||
@param maxLines Maximum number of output lines.
|
||||
*/
|
||||
CV_EXPORTS Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
||||
CV_EXPORTS_W Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
||||
|
||||
|
||||
//////////////////////////////////////
|
||||
@ -396,7 +396,7 @@ CV_EXPORTS Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float the
|
||||
|
||||
/** @brief Base class for line segments detector algorithm. :
|
||||
*/
|
||||
class CV_EXPORTS HoughSegmentDetector : public Algorithm
|
||||
class CV_EXPORTS_W HoughSegmentDetector : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Finds line segments in a binary image using the probabilistic Hough transform.
|
||||
@ -409,22 +409,22 @@ public:
|
||||
|
||||
@sa HoughLinesP
|
||||
*/
|
||||
virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;
|
||||
|
||||
virtual void setRho(float rho) = 0;
|
||||
virtual float getRho() const = 0;
|
||||
CV_WRAP virtual void setRho(float rho) = 0;
|
||||
CV_WRAP virtual float getRho() const = 0;
|
||||
|
||||
virtual void setTheta(float theta) = 0;
|
||||
virtual float getTheta() const = 0;
|
||||
CV_WRAP virtual void setTheta(float theta) = 0;
|
||||
CV_WRAP virtual float getTheta() const = 0;
|
||||
|
||||
virtual void setMinLineLength(int minLineLength) = 0;
|
||||
virtual int getMinLineLength() const = 0;
|
||||
CV_WRAP virtual void setMinLineLength(int minLineLength) = 0;
|
||||
CV_WRAP virtual int getMinLineLength() const = 0;
|
||||
|
||||
virtual void setMaxLineGap(int maxLineGap) = 0;
|
||||
virtual int getMaxLineGap() const = 0;
|
||||
CV_WRAP virtual void setMaxLineGap(int maxLineGap) = 0;
|
||||
CV_WRAP virtual int getMaxLineGap() const = 0;
|
||||
|
||||
virtual void setMaxLines(int maxLines) = 0;
|
||||
virtual int getMaxLines() const = 0;
|
||||
CV_WRAP virtual void setMaxLines(int maxLines) = 0;
|
||||
CV_WRAP virtual int getMaxLines() const = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates implementation for cuda::HoughSegmentDetector .
|
||||
@ -435,14 +435,14 @@ public:
|
||||
@param maxLineGap Maximum allowed gap between points on the same line to link them.
|
||||
@param maxLines Maximum number of output lines.
|
||||
*/
|
||||
CV_EXPORTS Ptr<HoughSegmentDetector> createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
|
||||
CV_EXPORTS_W Ptr<HoughSegmentDetector> createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
|
||||
|
||||
//////////////////////////////////////
|
||||
// HoughCircles
|
||||
|
||||
/** @brief Base class for circles detector algorithm. :
|
||||
*/
|
||||
class CV_EXPORTS HoughCirclesDetector : public Algorithm
|
||||
class CV_EXPORTS_W HoughCirclesDetector : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Finds circles in a grayscale image using the Hough transform.
|
||||
@ -454,28 +454,28 @@ public:
|
||||
|
||||
@sa HoughCircles
|
||||
*/
|
||||
virtual void detect(InputArray src, OutputArray circles, Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void detect(InputArray src, OutputArray circles, Stream& stream = Stream::Null()) = 0;
|
||||
|
||||
virtual void setDp(float dp) = 0;
|
||||
virtual float getDp() const = 0;
|
||||
CV_WRAP virtual void setDp(float dp) = 0;
|
||||
CV_WRAP virtual float getDp() const = 0;
|
||||
|
||||
virtual void setMinDist(float minDist) = 0;
|
||||
virtual float getMinDist() const = 0;
|
||||
CV_WRAP virtual void setMinDist(float minDist) = 0;
|
||||
CV_WRAP virtual float getMinDist() const = 0;
|
||||
|
||||
virtual void setCannyThreshold(int cannyThreshold) = 0;
|
||||
virtual int getCannyThreshold() const = 0;
|
||||
CV_WRAP virtual void setCannyThreshold(int cannyThreshold) = 0;
|
||||
CV_WRAP virtual int getCannyThreshold() const = 0;
|
||||
|
||||
virtual void setVotesThreshold(int votesThreshold) = 0;
|
||||
virtual int getVotesThreshold() const = 0;
|
||||
CV_WRAP virtual void setVotesThreshold(int votesThreshold) = 0;
|
||||
CV_WRAP virtual int getVotesThreshold() const = 0;
|
||||
|
||||
virtual void setMinRadius(int minRadius) = 0;
|
||||
virtual int getMinRadius() const = 0;
|
||||
CV_WRAP virtual void setMinRadius(int minRadius) = 0;
|
||||
CV_WRAP virtual int getMinRadius() const = 0;
|
||||
|
||||
virtual void setMaxRadius(int maxRadius) = 0;
|
||||
virtual int getMaxRadius() const = 0;
|
||||
CV_WRAP virtual void setMaxRadius(int maxRadius) = 0;
|
||||
CV_WRAP virtual int getMaxRadius() const = 0;
|
||||
|
||||
virtual void setMaxCircles(int maxCircles) = 0;
|
||||
virtual int getMaxCircles() const = 0;
|
||||
CV_WRAP virtual void setMaxCircles(int maxCircles) = 0;
|
||||
CV_WRAP virtual int getMaxCircles() const = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates implementation for cuda::HoughCirclesDetector .
|
||||
@ -494,18 +494,18 @@ smaller it is, the more false circles may be detected.
|
||||
@param maxRadius Maximum circle radius.
|
||||
@param maxCircles Maximum number of output circles.
|
||||
*/
|
||||
CV_EXPORTS Ptr<HoughCirclesDetector> createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
||||
CV_EXPORTS_W Ptr<HoughCirclesDetector> createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
||||
|
||||
//////////////////////////////////////
|
||||
// GeneralizedHough
|
||||
|
||||
/** @brief Creates implementation for generalized hough transform from @cite Ballard1981 .
|
||||
*/
|
||||
CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
|
||||
CV_EXPORTS_W Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
|
||||
|
||||
/** @brief Creates implementation for generalized hough transform from @cite Guil1999 .
|
||||
*/
|
||||
CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
|
||||
CV_EXPORTS_W Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
|
||||
|
||||
//! @} cudaimgproc_hough
|
||||
|
||||
@ -516,7 +516,7 @@ CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
|
||||
|
||||
/** @brief Base class for Cornerness Criteria computation. :
|
||||
*/
|
||||
class CV_EXPORTS CornernessCriteria : public Algorithm
|
||||
class CV_EXPORTS_W CornernessCriteria : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Computes the cornerness criteria at each image pixel.
|
||||
@ -526,7 +526,7 @@ public:
|
||||
CV_32FC1 type.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates implementation for Harris cornerness criteria.
|
||||
@ -540,7 +540,7 @@ supported for now.
|
||||
|
||||
@sa cornerHarris
|
||||
*/
|
||||
CV_EXPORTS Ptr<CornernessCriteria> createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
|
||||
CV_EXPORTS_W Ptr<CornernessCriteria> createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
|
||||
|
||||
/** @brief Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
|
||||
cornerness criteria).
|
||||
@ -553,13 +553,13 @@ supported for now.
|
||||
|
||||
@sa cornerMinEigenVal
|
||||
*/
|
||||
CV_EXPORTS Ptr<CornernessCriteria> createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101);
|
||||
CV_EXPORTS_W Ptr<CornernessCriteria> createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101);
|
||||
|
||||
////////////////////////// Corners Detection ///////////////////////////
|
||||
|
||||
/** @brief Base class for Corners Detector. :
|
||||
*/
|
||||
class CV_EXPORTS CornersDetector : public Algorithm
|
||||
class CV_EXPORTS_W CornersDetector : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Determines strong corners on an image.
|
||||
@ -571,7 +571,7 @@ public:
|
||||
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray(), Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray(), Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates implementation for cuda::CornersDetector .
|
||||
@ -592,7 +592,7 @@ pixel neighborhood. See cornerEigenValsAndVecs .
|
||||
or cornerMinEigenVal.
|
||||
@param harrisK Free parameter of the Harris detector.
|
||||
*/
|
||||
CV_EXPORTS Ptr<CornersDetector> createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
|
||||
CV_EXPORTS_W Ptr<CornersDetector> createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
|
||||
int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);
|
||||
|
||||
//! @} cudaimgproc_feature
|
||||
@ -613,7 +613,7 @@ as src .
|
||||
It maps each point of the source image into another point. As a result, you have a new color and new
|
||||
position of each point.
|
||||
*/
|
||||
CV_EXPORTS void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int sr,
|
||||
CV_EXPORTS_W void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int sr,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
@ -632,7 +632,7 @@ src size. The type is CV_16SC2 .
|
||||
|
||||
@sa cuda::meanShiftFiltering
|
||||
*/
|
||||
CV_EXPORTS void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr,
|
||||
CV_EXPORTS_W void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
@ -646,7 +646,7 @@ CV_EXPORTS void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dsts
|
||||
@param criteria Termination criteria. See TermCriteria.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, int sr, int minsize,
|
||||
CV_EXPORTS_W void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, int sr, int minsize,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
@ -654,7 +654,7 @@ CV_EXPORTS void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, i
|
||||
|
||||
/** @brief Base class for Template Matching. :
|
||||
*/
|
||||
class CV_EXPORTS TemplateMatching : public Algorithm
|
||||
class CV_EXPORTS_W TemplateMatching : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Computes a proximity map for a raster template and an image where the template is searched for.
|
||||
@ -665,7 +665,7 @@ public:
|
||||
x h*, then result must be *W-w+1 x H-h+1*.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
virtual void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates implementation for cuda::TemplateMatching .
|
||||
@ -694,7 +694,7 @@ The following methods are supported for the CV_32F images for now:
|
||||
|
||||
@sa matchTemplate
|
||||
*/
|
||||
CV_EXPORTS Ptr<TemplateMatching> createTemplateMatching(int srcType, int method, Size user_block_size = Size());
|
||||
CV_EXPORTS_W Ptr<TemplateMatching> createTemplateMatching(int srcType, int method, Size user_block_size = Size());
|
||||
|
||||
////////////////////////// Bilateral Filter ///////////////////////////
|
||||
|
||||
@ -712,7 +712,7 @@ BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supporte
|
||||
|
||||
@sa bilateralFilter
|
||||
*/
|
||||
CV_EXPORTS void bilateralFilter(InputArray src, OutputArray dst, int kernel_size, float sigma_color, float sigma_spatial,
|
||||
CV_EXPORTS_W void bilateralFilter(InputArray src, OutputArray dst, int kernel_size, float sigma_color, float sigma_spatial,
|
||||
int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());
|
||||
|
||||
///////////////////////////// Blending ////////////////////////////////
|
||||
@ -728,7 +728,7 @@ type.
|
||||
@param result Destination image.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void blendLinear(InputArray img1, InputArray img2, InputArray weights1, InputArray weights2,
|
||||
CV_EXPORTS_W void blendLinear(InputArray img1, InputArray img2, InputArray weights1, InputArray weights2,
|
||||
OutputArray result, Stream& stream = Stream::Null());
|
||||
|
||||
//! @}
|
||||
|
@ -75,7 +75,7 @@ namespace cv { namespace cuda {
|
||||
- (Python) An example applying the HOG descriptor for people detection can be found at
|
||||
opencv_source_code/samples/python/peopledetect.py
|
||||
*/
|
||||
class CV_EXPORTS HOG : public Algorithm
|
||||
class CV_EXPORTS_W HOG : public Algorithm
|
||||
{
|
||||
public:
|
||||
enum
|
||||
@ -92,70 +92,70 @@ public:
|
||||
@param cell_size Cell size. Only (8, 8) is supported for now.
|
||||
@param nbins Number of bins. Only 9 bins per cell are supported for now.
|
||||
*/
|
||||
static Ptr<HOG> create(Size win_size = Size(64, 128),
|
||||
CV_WRAP static Ptr<HOG> create(Size win_size = Size(64, 128),
|
||||
Size block_size = Size(16, 16),
|
||||
Size block_stride = Size(8, 8),
|
||||
Size cell_size = Size(8, 8),
|
||||
int nbins = 9);
|
||||
|
||||
//! Gaussian smoothing window parameter.
|
||||
virtual void setWinSigma(double win_sigma) = 0;
|
||||
virtual double getWinSigma() const = 0;
|
||||
CV_WRAP virtual void setWinSigma(double win_sigma) = 0;
|
||||
CV_WRAP virtual double getWinSigma() const = 0;
|
||||
|
||||
//! L2-Hys normalization method shrinkage.
|
||||
virtual void setL2HysThreshold(double threshold_L2hys) = 0;
|
||||
virtual double getL2HysThreshold() const = 0;
|
||||
CV_WRAP virtual void setL2HysThreshold(double threshold_L2hys) = 0;
|
||||
CV_WRAP virtual double getL2HysThreshold() const = 0;
|
||||
|
||||
//! Flag to specify whether the gamma correction preprocessing is required or not.
|
||||
virtual void setGammaCorrection(bool gamma_correction) = 0;
|
||||
virtual bool getGammaCorrection() const = 0;
|
||||
CV_WRAP virtual void setGammaCorrection(bool gamma_correction) = 0;
|
||||
CV_WRAP virtual bool getGammaCorrection() const = 0;
|
||||
|
||||
//! Maximum number of detection window increases.
|
||||
virtual void setNumLevels(int nlevels) = 0;
|
||||
virtual int getNumLevels() const = 0;
|
||||
CV_WRAP virtual void setNumLevels(int nlevels) = 0;
|
||||
CV_WRAP virtual int getNumLevels() const = 0;
|
||||
|
||||
//! Threshold for the distance between features and SVM classifying plane.
|
||||
//! Usually it is 0 and should be specified in the detector coefficients (as the last free
|
||||
//! coefficient). But if the free coefficient is omitted (which is allowed), you can specify it
|
||||
//! manually here.
|
||||
virtual void setHitThreshold(double hit_threshold) = 0;
|
||||
virtual double getHitThreshold() const = 0;
|
||||
CV_WRAP virtual void setHitThreshold(double hit_threshold) = 0;
|
||||
CV_WRAP virtual double getHitThreshold() const = 0;
|
||||
|
||||
//! Window stride. It must be a multiple of block stride.
|
||||
virtual void setWinStride(Size win_stride) = 0;
|
||||
virtual Size getWinStride() const = 0;
|
||||
CV_WRAP virtual void setWinStride(Size win_stride) = 0;
|
||||
CV_WRAP virtual Size getWinStride() const = 0;
|
||||
|
||||
//! Coefficient of the detection window increase.
|
||||
virtual void setScaleFactor(double scale0) = 0;
|
||||
virtual double getScaleFactor() const = 0;
|
||||
CV_WRAP virtual void setScaleFactor(double scale0) = 0;
|
||||
CV_WRAP virtual double getScaleFactor() const = 0;
|
||||
|
||||
//! Coefficient to regulate the similarity threshold. When detected, some
|
||||
//! objects can be covered by many rectangles. 0 means not to perform grouping.
|
||||
//! See groupRectangles.
|
||||
virtual void setGroupThreshold(int group_threshold) = 0;
|
||||
virtual int getGroupThreshold() const = 0;
|
||||
CV_WRAP virtual void setGroupThreshold(int group_threshold) = 0;
|
||||
CV_WRAP virtual int getGroupThreshold() const = 0;
|
||||
|
||||
//! Descriptor storage format:
|
||||
//! - **DESCR_FORMAT_ROW_BY_ROW** - Row-major order.
|
||||
//! - **DESCR_FORMAT_COL_BY_COL** - Column-major order.
|
||||
virtual void setDescriptorFormat(int descr_format) = 0;
|
||||
virtual int getDescriptorFormat() const = 0;
|
||||
CV_WRAP virtual void setDescriptorFormat(int descr_format) = 0;
|
||||
CV_WRAP virtual int getDescriptorFormat() const = 0;
|
||||
|
||||
/** @brief Returns the number of coefficients required for the classification.
|
||||
*/
|
||||
virtual size_t getDescriptorSize() const = 0;
|
||||
CV_WRAP virtual size_t getDescriptorSize() const = 0;
|
||||
|
||||
/** @brief Returns the block histogram size.
|
||||
*/
|
||||
virtual size_t getBlockHistogramSize() const = 0;
|
||||
CV_WRAP virtual size_t getBlockHistogramSize() const = 0;
|
||||
|
||||
/** @brief Sets coefficients for the linear SVM classifier.
|
||||
*/
|
||||
virtual void setSVMDetector(InputArray detector) = 0;
|
||||
CV_WRAP virtual void setSVMDetector(InputArray detector) = 0;
|
||||
|
||||
/** @brief Returns coefficients of the classifier trained for people detection.
|
||||
*/
|
||||
virtual Mat getDefaultPeopleDetector() const = 0;
|
||||
CV_WRAP virtual Mat getDefaultPeopleDetector() const = 0;
|
||||
|
||||
/** @brief Performs object detection without a multi-scale window.
|
||||
|
||||
@ -183,7 +183,7 @@ public:
|
||||
@param descriptors 2D array of descriptors.
|
||||
@param stream CUDA stream.
|
||||
*/
|
||||
virtual void compute(InputArray img,
|
||||
CV_WRAP virtual void compute(InputArray img,
|
||||
OutputArray descriptors,
|
||||
Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
@ -200,7 +200,7 @@ public:
|
||||
- A Nvidea API specific cascade classifier example can be found at
|
||||
opencv_source_code/samples/gpu/cascadeclassifier_nvidia_api.cpp
|
||||
*/
|
||||
class CV_EXPORTS CascadeClassifier : public Algorithm
|
||||
class CV_EXPORTS_W CascadeClassifier : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Loads the classifier from a file. Cascade type is detected automatically by constructor parameter.
|
||||
@ -209,36 +209,36 @@ public:
|
||||
(trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new
|
||||
type of OpenCV XML cascade supported for LBP. The working haar models can be found at opencv_folder/data/haarcascades_cuda/
|
||||
*/
|
||||
static Ptr<CascadeClassifier> create(const String& filename);
|
||||
CV_WRAP static Ptr<cuda::CascadeClassifier> create(const String& filename);
|
||||
/** @overload
|
||||
*/
|
||||
static Ptr<CascadeClassifier> create(const FileStorage& file);
|
||||
static Ptr<cuda::CascadeClassifier> create(const FileStorage& file);
|
||||
|
||||
//! Maximum possible object size. Objects larger than that are ignored. Used for
|
||||
//! second signature and supported only for LBP cascades.
|
||||
virtual void setMaxObjectSize(Size maxObjectSize) = 0;
|
||||
virtual Size getMaxObjectSize() const = 0;
|
||||
CV_WRAP virtual void setMaxObjectSize(Size maxObjectSize) = 0;
|
||||
CV_WRAP virtual Size getMaxObjectSize() const = 0;
|
||||
|
||||
//! Minimum possible object size. Objects smaller than that are ignored.
|
||||
virtual void setMinObjectSize(Size minSize) = 0;
|
||||
virtual Size getMinObjectSize() const = 0;
|
||||
CV_WRAP virtual void setMinObjectSize(Size minSize) = 0;
|
||||
CV_WRAP virtual Size getMinObjectSize() const = 0;
|
||||
|
||||
//! Parameter specifying how much the image size is reduced at each image scale.
|
||||
virtual void setScaleFactor(double scaleFactor) = 0;
|
||||
virtual double getScaleFactor() const = 0;
|
||||
CV_WRAP virtual void setScaleFactor(double scaleFactor) = 0;
|
||||
CV_WRAP virtual double getScaleFactor() const = 0;
|
||||
|
||||
//! Parameter specifying how many neighbors each candidate rectangle should have
|
||||
//! to retain it.
|
||||
virtual void setMinNeighbors(int minNeighbors) = 0;
|
||||
virtual int getMinNeighbors() const = 0;
|
||||
CV_WRAP virtual void setMinNeighbors(int minNeighbors) = 0;
|
||||
CV_WRAP virtual int getMinNeighbors() const = 0;
|
||||
|
||||
virtual void setFindLargestObject(bool findLargestObject) = 0;
|
||||
virtual bool getFindLargestObject() = 0;
|
||||
CV_WRAP virtual void setFindLargestObject(bool findLargestObject) = 0;
|
||||
CV_WRAP virtual bool getFindLargestObject() = 0;
|
||||
|
||||
virtual void setMaxNumObjects(int maxNumObjects) = 0;
|
||||
virtual int getMaxNumObjects() const = 0;
|
||||
CV_WRAP virtual void setMaxNumObjects(int maxNumObjects) = 0;
|
||||
CV_WRAP virtual int getMaxNumObjects() const = 0;
|
||||
|
||||
virtual Size getClassifierSize() const = 0;
|
||||
CV_WRAP virtual Size getClassifierSize() const = 0;
|
||||
|
||||
/** @brief Detects objects of different sizes in the input image.
|
||||
|
||||
@ -268,7 +268,7 @@ public:
|
||||
|
||||
@sa CascadeClassifier::detectMultiScale
|
||||
*/
|
||||
virtual void detectMultiScale(InputArray image,
|
||||
CV_WRAP virtual void detectMultiScale(InputArray image,
|
||||
OutputArray objects,
|
||||
Stream& stream = Stream::Null()) = 0;
|
||||
|
||||
@ -277,7 +277,7 @@ public:
|
||||
@param gpu_objects Objects array in internal representation.
|
||||
@param objects Resulting array.
|
||||
*/
|
||||
virtual void convert(OutputArray gpu_objects,
|
||||
CV_WRAP virtual void convert(OutputArray gpu_objects,
|
||||
std::vector<Rect>& objects) = 0;
|
||||
};
|
||||
|
||||
|
@ -67,7 +67,7 @@ namespace cv { namespace cuda {
|
||||
|
||||
/** @brief Base interface for dense optical flow algorithms.
|
||||
*/
|
||||
class CV_EXPORTS DenseOpticalFlow : public Algorithm
|
||||
class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Calculates a dense optical flow.
|
||||
@ -77,12 +77,12 @@ public:
|
||||
@param flow computed flow image that has the same size as I0 and type CV_32FC2.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream = Stream::Null()) = 0;
|
||||
};
|
||||
|
||||
/** @brief Base interface for sparse optical flow algorithms.
|
||||
*/
|
||||
class CV_EXPORTS SparseOpticalFlow : public Algorithm
|
||||
class CV_EXPORTS_W SparseOpticalFlow : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Calculates a sparse optical flow.
|
||||
@ -96,7 +96,7 @@ public:
|
||||
@param err Optional output vector that contains error response for each point (inverse confidence).
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
virtual void calc(InputArray prevImg, InputArray nextImg,
|
||||
CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg,
|
||||
InputArray prevPts, InputOutputArray nextPts,
|
||||
OutputArray status,
|
||||
OutputArray err = cv::noArray(),
|
||||
@ -109,31 +109,31 @@ public:
|
||||
|
||||
/** @brief Class computing the optical flow for two images using Brox et al Optical Flow algorithm (@cite Brox2004).
|
||||
*/
|
||||
class CV_EXPORTS BroxOpticalFlow : public DenseOpticalFlow
|
||||
class CV_EXPORTS_W BroxOpticalFlow : public DenseOpticalFlow
|
||||
{
|
||||
public:
|
||||
virtual double getFlowSmoothness() const = 0;
|
||||
virtual void setFlowSmoothness(double alpha) = 0;
|
||||
CV_WRAP virtual double getFlowSmoothness() const = 0;
|
||||
CV_WRAP virtual void setFlowSmoothness(double alpha) = 0;
|
||||
|
||||
virtual double getGradientConstancyImportance() const = 0;
|
||||
virtual void setGradientConstancyImportance(double gamma) = 0;
|
||||
CV_WRAP virtual double getGradientConstancyImportance() const = 0;
|
||||
CV_WRAP virtual void setGradientConstancyImportance(double gamma) = 0;
|
||||
|
||||
virtual double getPyramidScaleFactor() const = 0;
|
||||
virtual void setPyramidScaleFactor(double scale_factor) = 0;
|
||||
CV_WRAP virtual double getPyramidScaleFactor() const = 0;
|
||||
CV_WRAP virtual void setPyramidScaleFactor(double scale_factor) = 0;
|
||||
|
||||
//! number of lagged non-linearity iterations (inner loop)
|
||||
virtual int getInnerIterations() const = 0;
|
||||
virtual void setInnerIterations(int inner_iterations) = 0;
|
||||
CV_WRAP virtual int getInnerIterations() const = 0;
|
||||
CV_WRAP virtual void setInnerIterations(int inner_iterations) = 0;
|
||||
|
||||
//! number of warping iterations (number of pyramid levels)
|
||||
virtual int getOuterIterations() const = 0;
|
||||
virtual void setOuterIterations(int outer_iterations) = 0;
|
||||
CV_WRAP virtual int getOuterIterations() const = 0;
|
||||
CV_WRAP virtual void setOuterIterations(int outer_iterations) = 0;
|
||||
|
||||
//! number of linear system solver iterations
|
||||
virtual int getSolverIterations() const = 0;
|
||||
virtual void setSolverIterations(int solver_iterations) = 0;
|
||||
CV_WRAP virtual int getSolverIterations() const = 0;
|
||||
CV_WRAP virtual void setSolverIterations(int solver_iterations) = 0;
|
||||
|
||||
static Ptr<BroxOpticalFlow> create(
|
||||
CV_WRAP static Ptr<BroxOpticalFlow> create(
|
||||
double alpha = 0.197,
|
||||
double gamma = 50.0,
|
||||
double scale_factor = 0.8,
|
||||
@ -157,22 +157,22 @@ iterative Lucas-Kanade method with pyramids.
|
||||
- An example of the Lucas Kanade optical flow algorithm can be found at
|
||||
opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp
|
||||
*/
|
||||
class CV_EXPORTS SparsePyrLKOpticalFlow : public SparseOpticalFlow
|
||||
class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow
|
||||
{
|
||||
public:
|
||||
virtual Size getWinSize() const = 0;
|
||||
virtual void setWinSize(Size winSize) = 0;
|
||||
CV_WRAP virtual Size getWinSize() const = 0;
|
||||
CV_WRAP virtual void setWinSize(Size winSize) = 0;
|
||||
|
||||
virtual int getMaxLevel() const = 0;
|
||||
virtual void setMaxLevel(int maxLevel) = 0;
|
||||
CV_WRAP virtual int getMaxLevel() const = 0;
|
||||
CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
|
||||
|
||||
virtual int getNumIters() const = 0;
|
||||
virtual void setNumIters(int iters) = 0;
|
||||
CV_WRAP virtual int getNumIters() const = 0;
|
||||
CV_WRAP virtual void setNumIters(int iters) = 0;
|
||||
|
||||
virtual bool getUseInitialFlow() const = 0;
|
||||
virtual void setUseInitialFlow(bool useInitialFlow) = 0;
|
||||
CV_WRAP virtual bool getUseInitialFlow() const = 0;
|
||||
CV_WRAP virtual void setUseInitialFlow(bool useInitialFlow) = 0;
|
||||
|
||||
static Ptr<SparsePyrLKOpticalFlow> create(
|
||||
CV_WRAP static Ptr<cuda::SparsePyrLKOpticalFlow> create(
|
||||
Size winSize = Size(21, 21),
|
||||
int maxLevel = 3,
|
||||
int iters = 30,
|
||||
@ -184,22 +184,22 @@ public:
|
||||
The class can calculate an optical flow for a dense optical flow using the
|
||||
iterative Lucas-Kanade method with pyramids.
|
||||
*/
|
||||
class CV_EXPORTS DensePyrLKOpticalFlow : public DenseOpticalFlow
|
||||
class CV_EXPORTS_W DensePyrLKOpticalFlow : public DenseOpticalFlow
|
||||
{
|
||||
public:
|
||||
virtual Size getWinSize() const = 0;
|
||||
virtual void setWinSize(Size winSize) = 0;
|
||||
CV_WRAP virtual Size getWinSize() const = 0;
|
||||
CV_WRAP virtual void setWinSize(Size winSize) = 0;
|
||||
|
||||
virtual int getMaxLevel() const = 0;
|
||||
virtual void setMaxLevel(int maxLevel) = 0;
|
||||
CV_WRAP virtual int getMaxLevel() const = 0;
|
||||
CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
|
||||
|
||||
virtual int getNumIters() const = 0;
|
||||
virtual void setNumIters(int iters) = 0;
|
||||
CV_WRAP virtual int getNumIters() const = 0;
|
||||
CV_WRAP virtual void setNumIters(int iters) = 0;
|
||||
|
||||
virtual bool getUseInitialFlow() const = 0;
|
||||
virtual void setUseInitialFlow(bool useInitialFlow) = 0;
|
||||
CV_WRAP virtual bool getUseInitialFlow() const = 0;
|
||||
CV_WRAP virtual void setUseInitialFlow(bool useInitialFlow) = 0;
|
||||
|
||||
static Ptr<DensePyrLKOpticalFlow> create(
|
||||
CV_WRAP static Ptr<DensePyrLKOpticalFlow> create(
|
||||
Size winSize = Size(13, 13),
|
||||
int maxLevel = 3,
|
||||
int iters = 30,
|
||||
@ -212,34 +212,34 @@ public:
|
||||
|
||||
/** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
|
||||
*/
|
||||
class CV_EXPORTS FarnebackOpticalFlow : public DenseOpticalFlow
|
||||
class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow
|
||||
{
|
||||
public:
|
||||
virtual int getNumLevels() const = 0;
|
||||
virtual void setNumLevels(int numLevels) = 0;
|
||||
CV_WRAP virtual int getNumLevels() const = 0;
|
||||
CV_WRAP virtual void setNumLevels(int numLevels) = 0;
|
||||
|
||||
virtual double getPyrScale() const = 0;
|
||||
virtual void setPyrScale(double pyrScale) = 0;
|
||||
CV_WRAP virtual double getPyrScale() const = 0;
|
||||
CV_WRAP virtual void setPyrScale(double pyrScale) = 0;
|
||||
|
||||
virtual bool getFastPyramids() const = 0;
|
||||
virtual void setFastPyramids(bool fastPyramids) = 0;
|
||||
CV_WRAP virtual bool getFastPyramids() const = 0;
|
||||
CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0;
|
||||
|
||||
virtual int getWinSize() const = 0;
|
||||
virtual void setWinSize(int winSize) = 0;
|
||||
CV_WRAP virtual int getWinSize() const = 0;
|
||||
CV_WRAP virtual void setWinSize(int winSize) = 0;
|
||||
|
||||
virtual int getNumIters() const = 0;
|
||||
virtual void setNumIters(int numIters) = 0;
|
||||
CV_WRAP virtual int getNumIters() const = 0;
|
||||
CV_WRAP virtual void setNumIters(int numIters) = 0;
|
||||
|
||||
virtual int getPolyN() const = 0;
|
||||
virtual void setPolyN(int polyN) = 0;
|
||||
CV_WRAP virtual int getPolyN() const = 0;
|
||||
CV_WRAP virtual void setPolyN(int polyN) = 0;
|
||||
|
||||
virtual double getPolySigma() const = 0;
|
||||
virtual void setPolySigma(double polySigma) = 0;
|
||||
CV_WRAP virtual double getPolySigma() const = 0;
|
||||
CV_WRAP virtual void setPolySigma(double polySigma) = 0;
|
||||
|
||||
virtual int getFlags() const = 0;
|
||||
virtual void setFlags(int flags) = 0;
|
||||
CV_WRAP virtual int getFlags() const = 0;
|
||||
CV_WRAP virtual void setFlags(int flags) = 0;
|
||||
|
||||
static Ptr<FarnebackOpticalFlow> create(
|
||||
CV_WRAP static Ptr<cuda::FarnebackOpticalFlow> create(
|
||||
int numLevels = 5,
|
||||
double pyrScale = 0.5,
|
||||
bool fastPyramids = false,
|
||||
@ -259,14 +259,14 @@ public:
|
||||
* @sa C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
|
||||
* @sa Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
||||
*/
|
||||
class CV_EXPORTS OpticalFlowDual_TVL1 : public DenseOpticalFlow
|
||||
class CV_EXPORTS_W OpticalFlowDual_TVL1 : public DenseOpticalFlow
|
||||
{
|
||||
public:
|
||||
/**
|
||||
* Time step of the numerical scheme.
|
||||
*/
|
||||
virtual double getTau() const = 0;
|
||||
virtual void setTau(double tau) = 0;
|
||||
CV_WRAP virtual double getTau() const = 0;
|
||||
CV_WRAP virtual void setTau(double tau) = 0;
|
||||
|
||||
/**
|
||||
* Weight parameter for the data term, attachment parameter.
|
||||
@ -274,8 +274,8 @@ public:
|
||||
* The smaller this parameter is, the smoother the solutions we obtain.
|
||||
* It depends on the range of motions of the images, so its value should be adapted to each image sequence.
|
||||
*/
|
||||
virtual double getLambda() const = 0;
|
||||
virtual void setLambda(double lambda) = 0;
|
||||
CV_WRAP virtual double getLambda() const = 0;
|
||||
CV_WRAP virtual void setLambda(double lambda) = 0;
|
||||
|
||||
/**
|
||||
* Weight parameter for (u - v)^2, tightness parameter.
|
||||
@ -283,8 +283,8 @@ public:
|
||||
* In theory, it should have a small value in order to maintain both parts in correspondence.
|
||||
* The method is stable for a large range of values of this parameter.
|
||||
*/
|
||||
virtual double getGamma() const = 0;
|
||||
virtual void setGamma(double gamma) = 0;
|
||||
CV_WRAP virtual double getGamma() const = 0;
|
||||
CV_WRAP virtual void setGamma(double gamma) = 0;
|
||||
|
||||
/**
|
||||
* parameter used for motion estimation. It adds a variable allowing for illumination variations
|
||||
@ -292,14 +292,14 @@ public:
|
||||
* See: Chambolle et al, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging
|
||||
* Journal of Mathematical imaging and vision, may 2011 Vol 40 issue 1, pp 120-145
|
||||
*/
|
||||
virtual double getTheta() const = 0;
|
||||
virtual void setTheta(double theta) = 0;
|
||||
CV_WRAP virtual double getTheta() const = 0;
|
||||
CV_WRAP virtual void setTheta(double theta) = 0;
|
||||
|
||||
/**
|
||||
* Number of scales used to create the pyramid of images.
|
||||
*/
|
||||
virtual int getNumScales() const = 0;
|
||||
virtual void setNumScales(int nscales) = 0;
|
||||
CV_WRAP virtual int getNumScales() const = 0;
|
||||
CV_WRAP virtual void setNumScales(int nscales) = 0;
|
||||
|
||||
/**
|
||||
* Number of warpings per scale.
|
||||
@ -307,29 +307,29 @@ public:
|
||||
* This is a parameter that assures the stability of the method.
|
||||
* It also affects the running time, so it is a compromise between speed and accuracy.
|
||||
*/
|
||||
virtual int getNumWarps() const = 0;
|
||||
virtual void setNumWarps(int warps) = 0;
|
||||
CV_WRAP virtual int getNumWarps() const = 0;
|
||||
CV_WRAP virtual void setNumWarps(int warps) = 0;
|
||||
|
||||
/**
|
||||
* Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
|
||||
* A small value will yield more accurate solutions at the expense of a slower convergence.
|
||||
*/
|
||||
virtual double getEpsilon() const = 0;
|
||||
virtual void setEpsilon(double epsilon) = 0;
|
||||
CV_WRAP virtual double getEpsilon() const = 0;
|
||||
CV_WRAP virtual void setEpsilon(double epsilon) = 0;
|
||||
|
||||
/**
|
||||
* Stopping criterion iterations number used in the numerical scheme.
|
||||
*/
|
||||
virtual int getNumIterations() const = 0;
|
||||
virtual void setNumIterations(int iterations) = 0;
|
||||
CV_WRAP virtual int getNumIterations() const = 0;
|
||||
CV_WRAP virtual void setNumIterations(int iterations) = 0;
|
||||
|
||||
virtual double getScaleStep() const = 0;
|
||||
virtual void setScaleStep(double scaleStep) = 0;
|
||||
CV_WRAP virtual double getScaleStep() const = 0;
|
||||
CV_WRAP virtual void setScaleStep(double scaleStep) = 0;
|
||||
|
||||
virtual bool getUseInitialFlow() const = 0;
|
||||
virtual void setUseInitialFlow(bool useInitialFlow) = 0;
|
||||
CV_WRAP virtual bool getUseInitialFlow() const = 0;
|
||||
CV_WRAP virtual void setUseInitialFlow(bool useInitialFlow) = 0;
|
||||
|
||||
static Ptr<OpticalFlowDual_TVL1> create(
|
||||
CV_WRAP static Ptr<OpticalFlowDual_TVL1> create(
|
||||
double tau = 0.25,
|
||||
double lambda = 0.15,
|
||||
double theta = 0.3,
|
||||
|
@ -69,12 +69,12 @@ namespace cv { namespace cuda {
|
||||
|
||||
@sa StereoBM
|
||||
*/
|
||||
class CV_EXPORTS StereoBM : public cv::StereoBM
|
||||
class CV_EXPORTS_W StereoBM : public cv::StereoBM
|
||||
{
|
||||
public:
|
||||
using cv::StereoBM::compute;
|
||||
|
||||
virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;
|
||||
CV_WRAP virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates StereoBM object.
|
||||
@ -87,7 +87,7 @@ shifted by changing the minimum disparity.
|
||||
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
|
||||
chance for algorithm to find a wrong correspondence.
|
||||
*/
|
||||
CV_EXPORTS Ptr<cuda::StereoBM> createStereoBM(int numDisparities = 64, int blockSize = 19);
|
||||
CV_EXPORTS_W Ptr<cuda::StereoBM> createStereoBM(int numDisparities = 64, int blockSize = 19);
|
||||
|
||||
/////////////////////////////////////////
|
||||
// StereoBeliefPropagation
|
||||
@ -125,13 +125,13 @@ requirement:
|
||||
|
||||
@sa StereoMatcher
|
||||
*/
|
||||
class CV_EXPORTS StereoBeliefPropagation : public cv::StereoMatcher
|
||||
class CV_EXPORTS_W StereoBeliefPropagation : public cv::StereoMatcher
|
||||
{
|
||||
public:
|
||||
using cv::StereoMatcher::compute;
|
||||
|
||||
/** @overload */
|
||||
virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;
|
||||
CV_WRAP virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;
|
||||
|
||||
/** @brief Enables the stereo correspondence operator that finds the disparity for the specified data cost.
|
||||
|
||||
@ -142,40 +142,40 @@ public:
|
||||
fractional bits.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
virtual void compute(InputArray data, OutputArray disparity, Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void compute(InputArray data, OutputArray disparity, Stream& stream = Stream::Null()) = 0;
|
||||
|
||||
//! number of BP iterations on each level
|
||||
virtual int getNumIters() const = 0;
|
||||
virtual void setNumIters(int iters) = 0;
|
||||
CV_WRAP virtual int getNumIters() const = 0;
|
||||
CV_WRAP virtual void setNumIters(int iters) = 0;
|
||||
|
||||
//! number of levels
|
||||
virtual int getNumLevels() const = 0;
|
||||
virtual void setNumLevels(int levels) = 0;
|
||||
CV_WRAP virtual int getNumLevels() const = 0;
|
||||
CV_WRAP virtual void setNumLevels(int levels) = 0;
|
||||
|
||||
//! truncation of data cost
|
||||
virtual double getMaxDataTerm() const = 0;
|
||||
virtual void setMaxDataTerm(double max_data_term) = 0;
|
||||
CV_WRAP virtual double getMaxDataTerm() const = 0;
|
||||
CV_WRAP virtual void setMaxDataTerm(double max_data_term) = 0;
|
||||
|
||||
//! data weight
|
||||
virtual double getDataWeight() const = 0;
|
||||
virtual void setDataWeight(double data_weight) = 0;
|
||||
CV_WRAP virtual double getDataWeight() const = 0;
|
||||
CV_WRAP virtual void setDataWeight(double data_weight) = 0;
|
||||
|
||||
//! truncation of discontinuity cost
|
||||
virtual double getMaxDiscTerm() const = 0;
|
||||
virtual void setMaxDiscTerm(double max_disc_term) = 0;
|
||||
CV_WRAP virtual double getMaxDiscTerm() const = 0;
|
||||
CV_WRAP virtual void setMaxDiscTerm(double max_disc_term) = 0;
|
||||
|
||||
//! discontinuity single jump
|
||||
virtual double getDiscSingleJump() const = 0;
|
||||
virtual void setDiscSingleJump(double disc_single_jump) = 0;
|
||||
CV_WRAP virtual double getDiscSingleJump() const = 0;
|
||||
CV_WRAP virtual void setDiscSingleJump(double disc_single_jump) = 0;
|
||||
|
||||
//! type for messages (CV_16SC1 or CV_32FC1)
|
||||
virtual int getMsgType() const = 0;
|
||||
virtual void setMsgType(int msg_type) = 0;
|
||||
CV_WRAP virtual int getMsgType() const = 0;
|
||||
CV_WRAP virtual void setMsgType(int msg_type) = 0;
|
||||
|
||||
/** @brief Uses a heuristic method to compute the recommended parameters ( ndisp, iters and levels ) for the
|
||||
specified image size ( width and height ).
|
||||
*/
|
||||
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
|
||||
CV_WRAP static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
|
||||
};
|
||||
|
||||
/** @brief Creates StereoBeliefPropagation object.
|
||||
@ -185,7 +185,7 @@ public:
|
||||
@param levels Number of levels.
|
||||
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported.
|
||||
*/
|
||||
CV_EXPORTS Ptr<cuda::StereoBeliefPropagation>
|
||||
CV_EXPORTS_W Ptr<cuda::StereoBeliefPropagation>
|
||||
createStereoBeliefPropagation(int ndisp = 64, int iters = 5, int levels = 5, int msg_type = CV_32F);
|
||||
|
||||
/////////////////////////////////////////
|
||||
@ -214,20 +214,20 @@ requirement:
|
||||
\f[10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX\f]
|
||||
|
||||
*/
|
||||
class CV_EXPORTS StereoConstantSpaceBP : public cuda::StereoBeliefPropagation
|
||||
class CV_EXPORTS_W StereoConstantSpaceBP : public cuda::StereoBeliefPropagation
|
||||
{
|
||||
public:
|
||||
//! number of active disparity on the first level
|
||||
virtual int getNrPlane() const = 0;
|
||||
virtual void setNrPlane(int nr_plane) = 0;
|
||||
CV_WRAP virtual int getNrPlane() const = 0;
|
||||
CV_WRAP virtual void setNrPlane(int nr_plane) = 0;
|
||||
|
||||
virtual bool getUseLocalInitDataCost() const = 0;
|
||||
virtual void setUseLocalInitDataCost(bool use_local_init_data_cost) = 0;
|
||||
CV_WRAP virtual bool getUseLocalInitDataCost() const = 0;
|
||||
CV_WRAP virtual void setUseLocalInitDataCost(bool use_local_init_data_cost) = 0;
|
||||
|
||||
/** @brief Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified
|
||||
image size (widthand height).
|
||||
*/
|
||||
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
|
||||
CV_WRAP static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
|
||||
};
|
||||
|
||||
/** @brief Creates StereoConstantSpaceBP object.
|
||||
@ -238,7 +238,7 @@ public:
|
||||
@param nr_plane Number of disparity levels on the first level.
|
||||
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported.
|
||||
*/
|
||||
CV_EXPORTS Ptr<cuda::StereoConstantSpaceBP>
|
||||
CV_EXPORTS_W Ptr<cuda::StereoConstantSpaceBP>
|
||||
createStereoConstantSpaceBP(int ndisp = 128, int iters = 8, int levels = 4, int nr_plane = 4, int msg_type = CV_32F);
|
||||
|
||||
/////////////////////////////////////////
|
||||
@ -248,7 +248,7 @@ CV_EXPORTS Ptr<cuda::StereoConstantSpaceBP>
|
||||
|
||||
The class implements @cite Yang2010 algorithm.
|
||||
*/
|
||||
class CV_EXPORTS DisparityBilateralFilter : public cv::Algorithm
|
||||
class CV_EXPORTS_W DisparityBilateralFilter : public cv::Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Refines a disparity map using joint bilateral filtering.
|
||||
@ -258,28 +258,28 @@ public:
|
||||
@param dst Destination disparity map. It has the same size and type as disparity .
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
virtual void apply(InputArray disparity, InputArray image, OutputArray dst, Stream& stream = Stream::Null()) = 0;
|
||||
CV_WRAP virtual void apply(InputArray disparity, InputArray image, OutputArray dst, Stream& stream = Stream::Null()) = 0;
|
||||
|
||||
virtual int getNumDisparities() const = 0;
|
||||
virtual void setNumDisparities(int numDisparities) = 0;
|
||||
CV_WRAP virtual int getNumDisparities() const = 0;
|
||||
CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
|
||||
|
||||
virtual int getRadius() const = 0;
|
||||
virtual void setRadius(int radius) = 0;
|
||||
CV_WRAP virtual int getRadius() const = 0;
|
||||
CV_WRAP virtual void setRadius(int radius) = 0;
|
||||
|
||||
virtual int getNumIters() const = 0;
|
||||
virtual void setNumIters(int iters) = 0;
|
||||
CV_WRAP virtual int getNumIters() const = 0;
|
||||
CV_WRAP virtual void setNumIters(int iters) = 0;
|
||||
|
||||
//! truncation of data continuity
|
||||
virtual double getEdgeThreshold() const = 0;
|
||||
virtual void setEdgeThreshold(double edge_threshold) = 0;
|
||||
CV_WRAP virtual double getEdgeThreshold() const = 0;
|
||||
CV_WRAP virtual void setEdgeThreshold(double edge_threshold) = 0;
|
||||
|
||||
//! truncation of disparity continuity
|
||||
virtual double getMaxDiscThreshold() const = 0;
|
||||
virtual void setMaxDiscThreshold(double max_disc_threshold) = 0;
|
||||
CV_WRAP virtual double getMaxDiscThreshold() const = 0;
|
||||
CV_WRAP virtual void setMaxDiscThreshold(double max_disc_threshold) = 0;
|
||||
|
||||
//! filter range sigma
|
||||
virtual double getSigmaRange() const = 0;
|
||||
virtual void setSigmaRange(double sigma_range) = 0;
|
||||
CV_WRAP virtual double getSigmaRange() const = 0;
|
||||
CV_WRAP virtual void setSigmaRange(double sigma_range) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates DisparityBilateralFilter object.
|
||||
@ -288,7 +288,7 @@ public:
|
||||
@param radius Filter radius.
|
||||
@param iters Number of iterations.
|
||||
*/
|
||||
CV_EXPORTS Ptr<cuda::DisparityBilateralFilter>
|
||||
CV_EXPORTS_W Ptr<cuda::DisparityBilateralFilter>
|
||||
createDisparityBilateralFilter(int ndisp = 64, int radius = 3, int iters = 1);
|
||||
|
||||
/////////////////////////////////////////
|
||||
@ -308,7 +308,7 @@ disparity map.
|
||||
|
||||
@sa reprojectImageTo3D
|
||||
*/
|
||||
CV_EXPORTS void reprojectImageTo3D(InputArray disp, OutputArray xyzw, InputArray Q, int dst_cn = 4, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void reprojectImageTo3D(InputArray disp, OutputArray xyzw, InputArray Q, int dst_cn = 4, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Colors a disparity image.
|
||||
|
||||
@ -324,7 +324,7 @@ This function draws a colored disparity map by converting disparity values from
|
||||
first to HSV color space (where different disparity values correspond to different hues) and then
|
||||
converting the pixels to RGB for visualization.
|
||||
*/
|
||||
CV_EXPORTS void drawColorDisp(InputArray src_disp, OutputArray dst_disp, int ndisp, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void drawColorDisp(InputArray src_disp, OutputArray dst_disp, int ndisp, Stream& stream = Stream::Null());
|
||||
|
||||
//! @}
|
||||
|
||||
|
@ -83,7 +83,7 @@ Values of pixels with non-integer coordinates are computed using the bilinear in
|
||||
|
||||
@sa remap
|
||||
*/
|
||||
CV_EXPORTS void remap(InputArray src, OutputArray dst, InputArray xmap, InputArray ymap,
|
||||
CV_EXPORTS_W void remap(InputArray src, OutputArray dst, InputArray xmap, InputArray ymap,
|
||||
int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(),
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
@ -105,7 +105,7 @@ supported for now.
|
||||
|
||||
@sa resize
|
||||
*/
|
||||
CV_EXPORTS void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Applies an affine transformation to an image.
|
||||
|
||||
@ -123,7 +123,7 @@ INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC interpolation methods are support
|
||||
|
||||
@sa warpAffine
|
||||
*/
|
||||
CV_EXPORTS void warpAffine(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags = INTER_LINEAR,
|
||||
CV_EXPORTS_W void warpAffine(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags = INTER_LINEAR,
|
||||
int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Builds transformation maps for affine transformation.
|
||||
@ -137,7 +137,7 @@ CV_EXPORTS void warpAffine(InputArray src, OutputArray dst, InputArray M, Size d
|
||||
|
||||
@sa cuda::warpAffine , cuda::remap
|
||||
*/
|
||||
CV_EXPORTS void buildWarpAffineMaps(InputArray M, bool inverse, Size dsize, OutputArray xmap, OutputArray ymap, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void buildWarpAffineMaps(InputArray M, bool inverse, Size dsize, OutputArray xmap, OutputArray ymap, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Applies a perspective transformation to an image.
|
||||
|
||||
@ -155,7 +155,7 @@ INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC interpolation methods are support
|
||||
|
||||
@sa warpPerspective
|
||||
*/
|
||||
CV_EXPORTS void warpPerspective(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags = INTER_LINEAR,
|
||||
CV_EXPORTS_W void warpPerspective(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags = INTER_LINEAR,
|
||||
int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Builds transformation maps for perspective transformation.
|
||||
@ -169,7 +169,7 @@ CV_EXPORTS void warpPerspective(InputArray src, OutputArray dst, InputArray M, S
|
||||
|
||||
@sa cuda::warpPerspective , cuda::remap
|
||||
*/
|
||||
CV_EXPORTS void buildWarpPerspectiveMaps(InputArray M, bool inverse, Size dsize, OutputArray xmap, OutputArray ymap, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void buildWarpPerspectiveMaps(InputArray M, bool inverse, Size dsize, OutputArray xmap, OutputArray ymap, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Rotates an image around the origin (0,0) and then shifts it.
|
||||
|
||||
@ -186,7 +186,7 @@ are supported.
|
||||
|
||||
@sa cuda::warpAffine
|
||||
*/
|
||||
CV_EXPORTS void rotate(InputArray src, OutputArray dst, Size dsize, double angle, double xShift = 0, double yShift = 0,
|
||||
CV_EXPORTS_W void rotate(InputArray src, OutputArray dst, Size dsize, double angle, double xShift = 0, double yShift = 0,
|
||||
int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Smoothes an image and downsamples it.
|
||||
@ -198,7 +198,7 @@ type as src .
|
||||
|
||||
@sa pyrDown
|
||||
*/
|
||||
CV_EXPORTS void pyrDown(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void pyrDown(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Upsamples an image and then smoothes it.
|
||||
|
||||
@ -207,7 +207,7 @@ CV_EXPORTS void pyrDown(InputArray src, OutputArray dst, Stream& stream = Stream
|
||||
src .
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void pyrUp(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS_W void pyrUp(InputArray src, OutputArray dst, Stream& stream = Stream::Null());
|
||||
|
||||
//! @}
|
||||
|
||||
|
@ -829,55 +829,55 @@ enum MarkerTypes
|
||||
};
|
||||
|
||||
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
|
||||
class CV_EXPORTS GeneralizedHough : public Algorithm
|
||||
class CV_EXPORTS_W GeneralizedHough : public Algorithm
|
||||
{
|
||||
public:
|
||||
//! set template to search
|
||||
virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0;
|
||||
virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
|
||||
CV_WRAP virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0;
|
||||
CV_WRAP virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
|
||||
|
||||
//! find template on image
|
||||
virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0;
|
||||
virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0;
|
||||
CV_WRAP virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0;
|
||||
CV_WRAP virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0;
|
||||
|
||||
//! Canny low threshold.
|
||||
virtual void setCannyLowThresh(int cannyLowThresh) = 0;
|
||||
virtual int getCannyLowThresh() const = 0;
|
||||
CV_WRAP virtual void setCannyLowThresh(int cannyLowThresh) = 0;
|
||||
CV_WRAP virtual int getCannyLowThresh() const = 0;
|
||||
|
||||
//! Canny high threshold.
|
||||
virtual void setCannyHighThresh(int cannyHighThresh) = 0;
|
||||
virtual int getCannyHighThresh() const = 0;
|
||||
CV_WRAP virtual void setCannyHighThresh(int cannyHighThresh) = 0;
|
||||
CV_WRAP virtual int getCannyHighThresh() const = 0;
|
||||
|
||||
//! Minimum distance between the centers of the detected objects.
|
||||
virtual void setMinDist(double minDist) = 0;
|
||||
virtual double getMinDist() const = 0;
|
||||
CV_WRAP virtual void setMinDist(double minDist) = 0;
|
||||
CV_WRAP virtual double getMinDist() const = 0;
|
||||
|
||||
//! Inverse ratio of the accumulator resolution to the image resolution.
|
||||
virtual void setDp(double dp) = 0;
|
||||
virtual double getDp() const = 0;
|
||||
CV_WRAP virtual void setDp(double dp) = 0;
|
||||
CV_WRAP virtual double getDp() const = 0;
|
||||
|
||||
//! Maximal size of inner buffers.
|
||||
virtual void setMaxBufferSize(int maxBufferSize) = 0;
|
||||
virtual int getMaxBufferSize() const = 0;
|
||||
CV_WRAP virtual void setMaxBufferSize(int maxBufferSize) = 0;
|
||||
CV_WRAP virtual int getMaxBufferSize() const = 0;
|
||||
};
|
||||
|
||||
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
|
||||
//! Detects position only without translation and rotation
|
||||
class CV_EXPORTS GeneralizedHoughBallard : public GeneralizedHough
|
||||
class CV_EXPORTS_W GeneralizedHoughBallard : public GeneralizedHough
|
||||
{
|
||||
public:
|
||||
//! R-Table levels.
|
||||
virtual void setLevels(int levels) = 0;
|
||||
virtual int getLevels() const = 0;
|
||||
CV_WRAP virtual void setLevels(int levels) = 0;
|
||||
CV_WRAP virtual int getLevels() const = 0;
|
||||
|
||||
//! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.
|
||||
virtual void setVotesThreshold(int votesThreshold) = 0;
|
||||
virtual int getVotesThreshold() const = 0;
|
||||
CV_WRAP virtual void setVotesThreshold(int votesThreshold) = 0;
|
||||
CV_WRAP virtual int getVotesThreshold() const = 0;
|
||||
};
|
||||
|
||||
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
|
||||
//! Detects position, translation and rotation
|
||||
class CV_EXPORTS GeneralizedHoughGuil : public GeneralizedHough
|
||||
class CV_EXPORTS_W GeneralizedHoughGuil : public GeneralizedHough
|
||||
{
|
||||
public:
|
||||
//! Angle difference in degrees between two points in feature.
|
||||
|
@ -534,13 +534,13 @@ class FuncVariant(object):
|
||||
|
||||
|
||||
class FuncInfo(object):
|
||||
def __init__(self, classname, name, cname, isconstructor, namespace, isclassmethod):
|
||||
def __init__(self, classname, name, cname, isconstructor, namespace, is_static):
|
||||
self.classname = classname
|
||||
self.name = name
|
||||
self.cname = cname
|
||||
self.isconstructor = isconstructor
|
||||
self.namespace = namespace
|
||||
self.isclassmethod = isclassmethod
|
||||
self.is_static = is_static
|
||||
self.variants = []
|
||||
|
||||
def add_variant(self, decl, isphantom=False):
|
||||
@ -555,8 +555,8 @@ class FuncInfo(object):
|
||||
else:
|
||||
classname = ""
|
||||
|
||||
if self.isclassmethod:
|
||||
name += "_cls"
|
||||
if self.is_static:
|
||||
name += "_static"
|
||||
|
||||
return "pyopencv_" + self.namespace.replace('.','_') + '_' + classname + name
|
||||
|
||||
@ -615,7 +615,7 @@ class FuncInfo(object):
|
||||
|
||||
return Template(' {"$py_funcname", CV_PY_FN_WITH_KW_($wrap_funcname, $flags), "$py_docstring"},\n'
|
||||
).substitute(py_funcname = self.variants[0].wname, wrap_funcname=self.get_wrapper_name(),
|
||||
flags = 'METH_CLASS' if self.isclassmethod else '0', py_docstring = full_docstring)
|
||||
flags = 'METH_STATIC' if self.is_static else '0', py_docstring = full_docstring)
|
||||
|
||||
def gen_code(self, codegen):
|
||||
all_classes = codegen.classes
|
||||
@ -632,7 +632,7 @@ class FuncInfo(object):
|
||||
selfinfo = all_classes[self.classname]
|
||||
if not self.isconstructor:
|
||||
amp = "&" if selfinfo.issimple else ""
|
||||
if self.isclassmethod:
|
||||
if self.is_static:
|
||||
pass
|
||||
elif selfinfo.isalgorithm:
|
||||
code += gen_template_check_self_algo.substitute(name=selfinfo.name, cname=selfinfo.cname, amp=amp)
|
||||
@ -652,7 +652,7 @@ class FuncInfo(object):
|
||||
all_cargs = []
|
||||
parse_arglist = []
|
||||
|
||||
if v.isphantom and ismethod and not self.isclassmethod:
|
||||
if v.isphantom and ismethod and not self.is_static:
|
||||
code_args += "_self_"
|
||||
|
||||
# declare all the C function arguments,
|
||||
@ -740,7 +740,7 @@ class FuncInfo(object):
|
||||
if v.rettype:
|
||||
code_decl += " " + v.rettype + " retval;\n"
|
||||
code_fcall += "retval = "
|
||||
if ismethod and not self.isclassmethod:
|
||||
if ismethod and not self.is_static:
|
||||
code_fcall += "_self_->" + self.cname
|
||||
else:
|
||||
code_fcall += self.cname
|
||||
@ -821,7 +821,7 @@ class FuncInfo(object):
|
||||
#if dump: pprint(vars(classinfo))
|
||||
if self.isconstructor:
|
||||
py_name = 'cv.' + classinfo.wname
|
||||
elif self.isclassmethod:
|
||||
elif self.is_static:
|
||||
py_name = '.'.join([self.namespace, classinfo.sname + '_' + self.variants[0].wname])
|
||||
else:
|
||||
cname = classinfo.cname + '::' + cname
|
||||
@ -929,12 +929,12 @@ class PythonWrapperGenerator(object):
|
||||
namespace = '.'.join(namespace)
|
||||
|
||||
isconstructor = name == bareclassname
|
||||
isclassmethod = False
|
||||
is_static = False
|
||||
isphantom = False
|
||||
mappable = None
|
||||
for m in decl[2]:
|
||||
if m == "/S":
|
||||
isclassmethod = True
|
||||
is_static = True
|
||||
elif m == "/phantom":
|
||||
isphantom = True
|
||||
cname = cname.replace("::", "_")
|
||||
@ -948,10 +948,10 @@ class PythonWrapperGenerator(object):
|
||||
if isconstructor:
|
||||
name = "_".join(classes[:-1]+[name])
|
||||
|
||||
if isclassmethod:
|
||||
if is_static:
|
||||
# Add it as a method to the class
|
||||
func_map = self.classes[classname].methods
|
||||
func = func_map.setdefault(name, FuncInfo(classname, name, cname, isconstructor, namespace, isclassmethod))
|
||||
func = func_map.setdefault(name, FuncInfo(classname, name, cname, isconstructor, namespace, is_static))
|
||||
func.add_variant(decl, isphantom)
|
||||
|
||||
# Add it as global function
|
||||
@ -966,7 +966,7 @@ class PythonWrapperGenerator(object):
|
||||
else:
|
||||
func_map = self.namespaces.setdefault(namespace, Namespace()).funcs
|
||||
|
||||
func = func_map.setdefault(name, FuncInfo(classname, name, cname, isconstructor, namespace, isclassmethod))
|
||||
func = func_map.setdefault(name, FuncInfo(classname, name, cname, isconstructor, namespace, is_static))
|
||||
func.add_variant(decl, isphantom)
|
||||
|
||||
if classname and isconstructor:
|
||||
|
@ -14,32 +14,235 @@ from tests_common import NewOpenCVTests
|
||||
|
||||
class cuda_test(NewOpenCVTests):
|
||||
def setUp(self):
|
||||
super(cuda_test, self).setUp()
|
||||
if not cv.cuda.getCudaEnabledDeviceCount():
|
||||
self.skipTest("No CUDA-capable device is detected")
|
||||
|
||||
def test_cuda_upload_download(self):
|
||||
npMat = (np.random.random((200, 200, 3)) * 255).astype(np.uint8)
|
||||
gpuMat = cv.cuda_GpuMat()
|
||||
gpuMat.upload(npMat)
|
||||
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
||||
cuMat = cv.cuda_GpuMat()
|
||||
cuMat.upload(npMat)
|
||||
|
||||
self.assertTrue(np.allclose(gpuMat.download(), npMat))
|
||||
self.assertTrue(np.allclose(cuMat.download(), npMat))
|
||||
|
||||
def test_cuda_imgproc_cvtColor(self):
|
||||
npMat = (np.random.random((200, 200, 3)) * 255).astype(np.uint8)
|
||||
gpuMat = cv.cuda_GpuMat()
|
||||
gpuMat.upload(npMat)
|
||||
gpuMat2 = cv.cuda.cvtColor(gpuMat, cv.COLOR_BGR2HSV)
|
||||
def test_cudaarithm_arithmetic(self):
|
||||
npMat1 = np.random.random((128, 128, 3)) - 0.5
|
||||
npMat2 = np.random.random((128, 128, 3)) - 0.5
|
||||
|
||||
self.assertTrue(np.allclose(gpuMat2.download(), cv.cvtColor(npMat, cv.COLOR_BGR2HSV)))
|
||||
cuMat1 = cv.cuda_GpuMat()
|
||||
cuMat2 = cv.cuda_GpuMat()
|
||||
cuMat1.upload(npMat1)
|
||||
cuMat2.upload(npMat2)
|
||||
|
||||
def test_cuda_filter_laplacian(self):
|
||||
npMat = (np.random.random((200, 200)) * 255).astype(np.uint16)
|
||||
gpuMat = cv.cuda_GpuMat()
|
||||
gpuMat.upload(npMat)
|
||||
gpuMat = cv.cuda.createLaplacianFilter(cv.CV_16UC1, -1, ksize=3).apply(gpuMat)
|
||||
self.assertTrue(np.allclose(cv.cuda.add(cuMat1, cuMat2).download(),
|
||||
cv.add(npMat1, npMat2)))
|
||||
|
||||
self.assertTrue(np.allclose(gpuMat.download(), cv.Laplacian(npMat, cv.CV_16UC1, ksize=3)))
|
||||
self.assertTrue(np.allclose(cv.cuda.subtract(cuMat1, cuMat2).download(),
|
||||
cv.subtract(npMat1, npMat2)))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.multiply(cuMat1, cuMat2).download(),
|
||||
cv.multiply(npMat1, npMat2)))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.divide(cuMat1, cuMat2).download(),
|
||||
cv.divide(npMat1, npMat2)))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.absdiff(cuMat1, cuMat2).download(),
|
||||
cv.absdiff(npMat1, npMat2)))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.compare(cuMat1, cuMat2, cv.CMP_GE).download(),
|
||||
cv.compare(npMat1, npMat2, cv.CMP_GE)))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.abs(cuMat1).download(),
|
||||
np.abs(npMat1)))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.sqrt(cv.cuda.sqr(cuMat1)).download(),
|
||||
cv.cuda.abs(cuMat1).download()))
|
||||
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.log(cv.cuda.exp(cuMat1)).download(),
|
||||
npMat1))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.pow(cuMat1, 2).download(),
|
||||
cv.pow(npMat1, 2)))
|
||||
|
||||
def test_cudaarithm_logical(self):
|
||||
npMat1 = (np.random.random((128, 128)) * 255).astype(np.uint8)
|
||||
npMat2 = (np.random.random((128, 128)) * 255).astype(np.uint8)
|
||||
|
||||
cuMat1 = cv.cuda_GpuMat()
|
||||
cuMat2 = cv.cuda_GpuMat()
|
||||
cuMat1.upload(npMat1)
|
||||
cuMat2.upload(npMat2)
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.bitwise_or(cuMat1, cuMat2).download(),
|
||||
cv.bitwise_or(npMat1, npMat2)))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.bitwise_and(cuMat1, cuMat2).download(),
|
||||
cv.bitwise_and(npMat1, npMat2)))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.bitwise_xor(cuMat1, cuMat2).download(),
|
||||
cv.bitwise_xor(npMat1, npMat2)))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.bitwise_not(cuMat1).download(),
|
||||
cv.bitwise_not(npMat1)))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.min(cuMat1, cuMat2).download(),
|
||||
cv.min(npMat1, npMat2)))
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.max(cuMat1, cuMat2).download(),
|
||||
cv.max(npMat1, npMat2)))
|
||||
|
||||
def test_cudabgsegm_existence(self):
|
||||
#Test at least the existence of wrapped functions for now
|
||||
|
||||
bgsub = cv.cuda.createBackgroundSubtractorMOG()
|
||||
bgsub = cv.cuda.createBackgroundSubtractorMOG2()
|
||||
|
||||
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
||||
|
||||
def test_cudacodec_existence(self):
|
||||
#Test at least the existence of wrapped functions for now
|
||||
|
||||
try:
|
||||
writer = cv.cudacodec.createVideoWriter("tmp", (128, 128), 30)
|
||||
reader = cv.cudacodec.createVideoReader("tmp")
|
||||
except cv.error as e:
|
||||
self.assertEqual(e.code, cv.Error.StsNotImplemented)
|
||||
self.skipTest("NVCUVENC is not installed")
|
||||
|
||||
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
||||
|
||||
def test_cudafeatures2d(self):
|
||||
npMat1 = self.get_sample("samples/data/right01.jpg")
|
||||
npMat2 = self.get_sample("samples/data/right02.jpg")
|
||||
|
||||
cuMat1 = cv.cuda_GpuMat()
|
||||
cuMat2 = cv.cuda_GpuMat()
|
||||
cuMat1.upload(npMat1)
|
||||
cuMat2.upload(npMat2)
|
||||
|
||||
cuMat1 = cv.cuda.cvtColor(cuMat1, cv.COLOR_RGB2GRAY)
|
||||
cuMat2 = cv.cuda.cvtColor(cuMat2, cv.COLOR_RGB2GRAY)
|
||||
|
||||
fast = cv.cuda_FastFeatureDetector.create()
|
||||
kps = fast.detectAsync(cuMat1)
|
||||
|
||||
orb = cv.cuda_ORB.create()
|
||||
kps1, descs1 = orb.detectAndComputeAsync(cuMat1, None)
|
||||
kps2, descs2 = orb.detectAndComputeAsync(cuMat2, None)
|
||||
|
||||
bf = cv.cuda_DescriptorMatcher.createBFMatcher(cv.NORM_HAMMING)
|
||||
matches = bf.match(descs1, descs2)
|
||||
self.assertGreater(len(matches), 0)
|
||||
matches = bf.knnMatch(descs1, descs2, 2)
|
||||
self.assertGreater(len(matches), 0)
|
||||
matches = bf.radiusMatch(descs1, descs2, 0.1)
|
||||
self.assertGreater(len(matches), 0)
|
||||
|
||||
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
||||
|
||||
def test_cudafilters_existence(self):
|
||||
#Test at least the existence of wrapped functions for now
|
||||
|
||||
filter = cv.cuda.createBoxFilter(cv.CV_8UC1, -1, (3, 3))
|
||||
filter = cv.cuda.createLinearFilter(cv.CV_8UC4, -1, np.eye(3))
|
||||
filter = cv.cuda.createLaplacianFilter(cv.CV_16UC1, -1, ksize=3)
|
||||
filter = cv.cuda.createSeparableLinearFilter(cv.CV_8UC1, -1, np.eye(3), np.eye(3))
|
||||
filter = cv.cuda.createDerivFilter(cv.CV_8UC1, -1, 1, 1, 3)
|
||||
filter = cv.cuda.createSobelFilter(cv.CV_8UC1, -1, 1, 1)
|
||||
filter = cv.cuda.createScharrFilter(cv.CV_8UC1, -1, 1, 0)
|
||||
filter = cv.cuda.createGaussianFilter(cv.CV_8UC1, -1, (3, 3), 16)
|
||||
filter = cv.cuda.createMorphologyFilter(cv.MORPH_DILATE, cv.CV_32FC1, np.eye(3))
|
||||
filter = cv.cuda.createBoxMaxFilter(cv.CV_8UC1, (3, 3))
|
||||
filter = cv.cuda.createBoxMinFilter(cv.CV_8UC1, (3, 3))
|
||||
filter = cv.cuda.createRowSumFilter(cv.CV_8UC1, cv.CV_32FC1, 3)
|
||||
filter = cv.cuda.createColumnSumFilter(cv.CV_8UC1, cv.CV_32FC1, 3)
|
||||
filter = cv.cuda.createMedianFilter(cv.CV_8UC1, 3)
|
||||
|
||||
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
||||
|
||||
def test_cudafilters_laplacian(self):
|
||||
npMat = (np.random.random((128, 128)) * 255).astype(np.uint16)
|
||||
cuMat = cv.cuda_GpuMat()
|
||||
cuMat.upload(npMat)
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.createLaplacianFilter(cv.CV_16UC1, -1, ksize=3).apply(cuMat).download(),
|
||||
cv.Laplacian(npMat, cv.CV_16UC1, ksize=3)))
|
||||
|
||||
def test_cudaimgproc(self):
|
||||
npC1 = (np.random.random((128, 128)) * 255).astype(np.uint8)
|
||||
npC3 = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
||||
npC4 = (np.random.random((128, 128, 4)) * 255).astype(np.uint8)
|
||||
cuC1 = cv.cuda_GpuMat()
|
||||
cuC3 = cv.cuda_GpuMat()
|
||||
cuC4 = cv.cuda_GpuMat()
|
||||
cuC1.upload(npC1)
|
||||
cuC3.upload(npC3)
|
||||
cuC4.upload(npC4)
|
||||
|
||||
cv.cuda.cvtColor(cuC3, cv.COLOR_RGB2HSV)
|
||||
cv.cuda.demosaicing(cuC1, cv.cuda.COLOR_BayerGR2BGR_MHT)
|
||||
cv.cuda.gammaCorrection(cuC3)
|
||||
cv.cuda.alphaComp(cuC4, cuC4, cv.cuda.ALPHA_XOR)
|
||||
cv.cuda.calcHist(cuC1)
|
||||
cv.cuda.equalizeHist(cuC1)
|
||||
cv.cuda.evenLevels(3, 0, 255)
|
||||
cv.cuda.meanShiftFiltering(cuC4, 10, 5)
|
||||
cv.cuda.meanShiftProc(cuC4, 10, 5)
|
||||
cv.cuda.bilateralFilter(cuC3, 3, 16, 3)
|
||||
cv.cuda.blendLinear
|
||||
|
||||
cv.cuda.meanShiftSegmentation(cuC4, 10, 5, 5).download()
|
||||
|
||||
clahe = cv.cuda.createCLAHE()
|
||||
clahe.apply(cuC1, cv.cuda_Stream.Null());
|
||||
|
||||
histLevels = cv.cuda.histEven(cuC3, 20, 0, 255)
|
||||
cv.cuda.histRange(cuC1, histLevels)
|
||||
|
||||
detector = cv.cuda.createCannyEdgeDetector(0, 100)
|
||||
detector.detect(cuC1)
|
||||
|
||||
detector = cv.cuda.createHoughLinesDetector(3, np.pi / 180, 20)
|
||||
detector.detect(cuC1)
|
||||
|
||||
detector = cv.cuda.createHoughSegmentDetector(3, np.pi / 180, 20, 5)
|
||||
detector.detect(cuC1)
|
||||
|
||||
detector = cv.cuda.createHoughCirclesDetector(3, 20, 10, 10, 20, 100)
|
||||
detector.detect(cuC1)
|
||||
|
||||
detector = cv.cuda.createGeneralizedHoughBallard()
|
||||
#BUG: detect accept only Mat!
|
||||
#Even if generate_gpumat_decls is set to True, it only wraps overload CUDA functions.
|
||||
#The problem is that Mat and GpuMat are not fully compatible to enable system-wide overloading
|
||||
#detector.detect(cuC1, cuC1, cuC1)
|
||||
|
||||
detector = cv.cuda.createGeneralizedHoughGuil()
|
||||
#BUG: same as above..
|
||||
#detector.detect(cuC1, cuC1, cuC1)
|
||||
|
||||
detector = cv.cuda.createHarrisCorner(cv.CV_8UC1, 15, 5, 1)
|
||||
detector.compute(cuC1)
|
||||
|
||||
detector = cv.cuda.createMinEigenValCorner(cv.CV_8UC1, 15, 5, 1)
|
||||
detector.compute(cuC1)
|
||||
|
||||
detector = cv.cuda.createGoodFeaturesToTrackDetector(cv.CV_8UC1)
|
||||
detector.detect(cuC1)
|
||||
|
||||
matcher = cv.cuda.createTemplateMatching(cv.CV_8UC1, cv.TM_CCOEFF_NORMED)
|
||||
matcher.match(cuC3, cuC3)
|
||||
|
||||
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
||||
|
||||
def test_cudaimgproc_cvtColor(self):
|
||||
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
||||
cuMat = cv.cuda_GpuMat()
|
||||
cuMat.upload(npMat)
|
||||
|
||||
self.assertTrue(np.allclose(cv.cuda.cvtColor(cuMat, cv.COLOR_BGR2HSV).download(),
|
||||
cv.cvtColor(npMat, cv.COLOR_BGR2HSV)))
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
||||
|
Loading…
Reference in New Issue
Block a user