mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Merge pull request #11728 from dkurt:dnn_update_tf_ssd
This commit is contained in:
commit
929d39f69a
@ -158,13 +158,19 @@ PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe)
|
||||
Mat(cv::Size(300, 300), CV_32FC3));
|
||||
}
|
||||
|
||||
// TODO: update MobileNet model.
|
||||
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_TensorFlow)
|
||||
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE ||
|
||||
backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
throw SkipTestException("");
|
||||
processNet("dnn/ssd_mobilenet_v1_coco.pb", "ssd_mobilenet_v1_coco.pbtxt", "",
|
||||
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "ssd_mobilenet_v1_coco_2017_11_17.pbtxt", "",
|
||||
Mat(cv::Size(300, 300), CV_32FC3));
|
||||
}
|
||||
|
||||
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
throw SkipTestException("");
|
||||
processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "ssd_mobilenet_v2_coco_2018_03_29.pbtxt", "",
|
||||
Mat(cv::Size(300, 300), CV_32FC3));
|
||||
}
|
||||
|
||||
@ -217,9 +223,7 @@ PERF_TEST_P_(DNNTestNetwork, opencv_face_detector)
|
||||
|
||||
PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE ||
|
||||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) ||
|
||||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16))
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
throw SkipTestException("");
|
||||
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "ssd_inception_v2_coco_2017_11_17.pbtxt", "",
|
||||
Mat(cv::Size(300, 300), CV_32FC3));
|
||||
|
@ -38,7 +38,7 @@ public:
|
||||
void processNet(std::string weights, std::string proto,
|
||||
Mat inp, const std::string& outputLayer = "",
|
||||
std::string halideScheduler = "",
|
||||
double l1 = 0.0, double lInf = 0.0)
|
||||
double l1 = 0.0, double lInf = 0.0, double detectionConfThresh = 0.2)
|
||||
{
|
||||
if (backend == DNN_BACKEND_OPENCV && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
||||
{
|
||||
@ -87,7 +87,7 @@ public:
|
||||
}
|
||||
Mat out = net.forward(outputLayer).clone();
|
||||
|
||||
check(outDefault, out, outputLayer, l1, lInf, "First run");
|
||||
check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "First run");
|
||||
|
||||
// Test 2: change input.
|
||||
float* inpData = (float*)inp.data;
|
||||
@ -101,10 +101,11 @@ public:
|
||||
net.setInput(inp);
|
||||
outDefault = netDefault.forward(outputLayer).clone();
|
||||
out = net.forward(outputLayer).clone();
|
||||
check(outDefault, out, outputLayer, l1, lInf, "Second run");
|
||||
check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "Second run");
|
||||
}
|
||||
|
||||
void check(Mat& ref, Mat& out, const std::string& outputLayer, double l1, double lInf, const char* msg)
|
||||
void check(Mat& ref, Mat& out, const std::string& outputLayer, double l1, double lInf,
|
||||
double detectionConfThresh, const char* msg)
|
||||
{
|
||||
if (outputLayer == "detection_out")
|
||||
{
|
||||
@ -119,7 +120,7 @@ public:
|
||||
}
|
||||
out = out.rowRange(0, numDetections);
|
||||
}
|
||||
normAssertDetections(ref, out, msg, 0.2, l1, lInf);
|
||||
normAssertDetections(ref, out, msg, detectionConfThresh, l1, lInf);
|
||||
}
|
||||
else
|
||||
normAssert(ref, out, msg, l1, lInf);
|
||||
@ -188,20 +189,30 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe)
|
||||
inp, "detection_out", "", l1, lInf);
|
||||
}
|
||||
|
||||
// TODO: update MobileNet model.
|
||||
TEST_P(DNNTestNetwork, MobileNet_SSD_TensorFlow)
|
||||
TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE ||
|
||||
backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
throw SkipTestException("");
|
||||
Mat sample = imread(findDataFile("dnn/street.png", false));
|
||||
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
|
||||
float l1 = (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ? 0.008 : 0.0;
|
||||
float lInf = (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ? 0.06 : 0.0;
|
||||
processNet("dnn/ssd_mobilenet_v1_coco.pb", "dnn/ssd_mobilenet_v1_coco.pbtxt",
|
||||
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.011 : 0.0;
|
||||
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.06 : 0.0;
|
||||
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt",
|
||||
inp, "detection_out", "", l1, lInf);
|
||||
}
|
||||
|
||||
TEST_P(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
throw SkipTestException("");
|
||||
Mat sample = imread(findDataFile("dnn/street.png", false));
|
||||
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
|
||||
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.011 : 0.0;
|
||||
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.06 : 0.0;
|
||||
processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "dnn/ssd_mobilenet_v2_coco_2018_03_29.pbtxt",
|
||||
inp, "detection_out", "", l1, lInf, 0.25);
|
||||
}
|
||||
|
||||
TEST_P(DNNTestNetwork, SSD_VGG16)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU)
|
||||
@ -265,9 +276,7 @@ TEST_P(DNNTestNetwork, opencv_face_detector)
|
||||
|
||||
TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE ||
|
||||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) ||
|
||||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16))
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
throw SkipTestException("");
|
||||
Mat sample = imread(findDataFile("dnn/street.png", false));
|
||||
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false);
|
||||
|
@ -877,6 +877,7 @@ TEST_P(Layer_Test_DWconv_Prelu, Accuracy)
|
||||
int shape[] = {1, num_input, 16, 16};
|
||||
Mat in_blob(4, &shape[0], CV_32FC1, Scalar(1));
|
||||
|
||||
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
||||
net.setInput(in_blob);
|
||||
Mat out = net.forward();
|
||||
|
||||
|
@ -160,27 +160,40 @@ graph_def.node[1].input.append(weights)
|
||||
# Create SSD postprocessing head ###############################################
|
||||
|
||||
# Concatenate predictions of classes, predictions of bounding boxes and proposals.
|
||||
def tensorMsg(values):
|
||||
if all([isinstance(v, float) for v in values]):
|
||||
dtype = 'DT_FLOAT'
|
||||
field = 'float_val'
|
||||
elif all([isinstance(v, int) for v in values]):
|
||||
dtype = 'DT_INT32'
|
||||
field = 'int_val'
|
||||
else:
|
||||
raise Exception('Wrong values types')
|
||||
|
||||
concatAxis = NodeDef()
|
||||
concatAxis.name = 'concat/axis_flatten'
|
||||
concatAxis.op = 'Const'
|
||||
text_format.Merge(
|
||||
'tensor {'
|
||||
' dtype: DT_INT32'
|
||||
' tensor_shape { }'
|
||||
' int_val: -1'
|
||||
'}', concatAxis.attr["value"])
|
||||
graph_def.node.extend([concatAxis])
|
||||
msg = 'tensor { dtype: ' + dtype + ' tensor_shape { dim { size: %d } }' % len(values)
|
||||
for value in values:
|
||||
msg += '%s: %s ' % (field, str(value))
|
||||
return msg + '}'
|
||||
|
||||
def addConcatNode(name, inputs):
|
||||
def addConstNode(name, values):
|
||||
node = NodeDef()
|
||||
node.name = name
|
||||
node.op = 'Const'
|
||||
text_format.Merge(tensorMsg(values), node.attr["value"])
|
||||
graph_def.node.extend([node])
|
||||
|
||||
def addConcatNode(name, inputs, axisNodeName):
|
||||
concat = NodeDef()
|
||||
concat.name = name
|
||||
concat.op = 'ConcatV2'
|
||||
for inp in inputs:
|
||||
concat.input.append(inp)
|
||||
concat.input.append(concatAxis.name)
|
||||
concat.input.append(axisNodeName)
|
||||
graph_def.node.extend([concat])
|
||||
|
||||
addConstNode('concat/axis_flatten', [-1])
|
||||
addConstNode('PriorBox/concat/axis', [-2])
|
||||
|
||||
for label in ['ClassPredictor', 'BoxEncodingPredictor']:
|
||||
concatInputs = []
|
||||
for i in range(args.num_layers):
|
||||
@ -193,19 +206,14 @@ for label in ['ClassPredictor', 'BoxEncodingPredictor']:
|
||||
|
||||
concatInputs.append(flatten.name)
|
||||
graph_def.node.extend([flatten])
|
||||
addConcatNode('%s/concat' % label, concatInputs)
|
||||
addConcatNode('%s/concat' % label, concatInputs, 'concat/axis_flatten')
|
||||
|
||||
# Add layers that generate anchors (bounding boxes proposals).
|
||||
scales = [args.min_scale + (args.max_scale - args.min_scale) * i / (args.num_layers - 1)
|
||||
for i in range(args.num_layers)] + [1.0]
|
||||
|
||||
def tensorMsg(values):
|
||||
msg = 'tensor { dtype: DT_FLOAT tensor_shape { dim { size: %d } }' % len(values)
|
||||
for value in values:
|
||||
msg += 'float_val: %f ' % value
|
||||
return msg + '}'
|
||||
|
||||
priorBoxes = []
|
||||
addConstNode('reshape_prior_boxes_to_4d', [1, 2, -1, 1])
|
||||
for i in range(args.num_layers):
|
||||
priorBox = NodeDef()
|
||||
priorBox.name = 'PriorBox_%d' % i
|
||||
@ -232,9 +240,18 @@ for i in range(args.num_layers):
|
||||
text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), priorBox.attr["variance"])
|
||||
|
||||
graph_def.node.extend([priorBox])
|
||||
priorBoxes.append(priorBox.name)
|
||||
|
||||
addConcatNode('PriorBox/concat', priorBoxes)
|
||||
# Reshape from 1x2xN to 1x2xNx1
|
||||
reshape = NodeDef()
|
||||
reshape.name = priorBox.name + '/4d'
|
||||
reshape.op = 'Reshape'
|
||||
reshape.input.append(priorBox.name)
|
||||
reshape.input.append('reshape_prior_boxes_to_4d')
|
||||
graph_def.node.extend([reshape])
|
||||
|
||||
priorBoxes.append(reshape.name)
|
||||
|
||||
addConcatNode('PriorBox/concat', priorBoxes, 'PriorBox/concat/axis')
|
||||
|
||||
# Sigmoid for classes predictions and DetectionOutput layer
|
||||
sigmoid = NodeDef()
|
||||
|
Loading…
Reference in New Issue
Block a user