Update unit test coverage to include perspective-distorted cases

This commit is contained in:
jonas 2025-03-14 18:27:53 +01:00
parent c26776b515
commit 92a24f0499
2 changed files with 220 additions and 124 deletions

View File

@ -313,7 +313,7 @@ static void _detectInitialCandidates(const Mat &grey, vector<vector<Point2f> > &
* the border bits
*/
static Mat _extractBits(InputArray _image, const vector<Point2f>& corners, int markerSize,
int markerBorderBits, int cellSize, double cellMarginRate, double minStdDevOtsu, OutputArray _whitePixRatio = noArray()) {
int markerBorderBits, int cellSize, double cellMarginRate, double minStdDevOtsu, OutputArray _cellPixelRatio = noArray()) {
CV_Assert(_image.getMat().channels() == 1);
CV_Assert(corners.size() == 4ull);
CV_Assert(markerBorderBits > 0 && cellSize > 0 && cellMarginRate >= 0 && cellMarginRate <= 0.5);
@ -339,7 +339,7 @@ static Mat _extractBits(InputArray _image, const vector<Point2f>& corners, int m
// output image containing the bits
Mat bits(markerSizeWithBorders, markerSizeWithBorders, CV_8UC1, Scalar::all(0));
Mat whitePixRatio(markerSizeWithBorders, markerSizeWithBorders, CV_32FC1, Scalar::all(0));
Mat cellPixelRatio(markerSizeWithBorders, markerSizeWithBorders, CV_32FC1, Scalar::all(0));
// check if standard deviation is enough to apply Otsu
// if not enough, it probably means all bits are the same color (black or white)
@ -352,13 +352,13 @@ static Mat _extractBits(InputArray _image, const vector<Point2f>& corners, int m
// all black or all white, depending on mean value
if(mean.ptr< double >(0)[0] > 127){
bits.setTo(1);
whitePixRatio.setTo(1);
cellPixelRatio.setTo(1);
}
else {
bits.setTo(0);
whitePixRatio.setTo(0);
cellPixelRatio.setTo(0);
}
if(_whitePixRatio.needed()) whitePixRatio.copyTo(_whitePixRatio);
if(_cellPixelRatio.needed()) cellPixelRatio.copyTo(_cellPixelRatio);
return bits;
}
@ -376,7 +376,8 @@ static Mat _extractBits(InputArray _image, const vector<Point2f>& corners, int m
size_t nZ = (size_t) countNonZero(square);
if(nZ > square.total() / 2) bits.at<unsigned char>(y, x) = 1;
if(_whitePixRatio.needed()){
// define the cell pixel ratio as the ratio of the white pixels. For inverted markers, the ratio will be inverted.
if(_cellPixelRatio.needed()){
// Get white pixel ratio from the complete cell
if(cellMarginPixels > 0){
@ -397,16 +398,16 @@ static Mat _extractBits(InputArray _image, const vector<Point2f>& corners, int m
nZMarginPixels += (size_t) countNonZero(rightRect);
totalMarginPixels += rightRect.total();
whitePixRatio.at<float>(y, x) = (nZ + nZMarginPixels) / (float)(square.total() + totalMarginPixels);
cellPixelRatio.at<float>(y, x) = (nZ + nZMarginPixels) / (float)(square.total() + totalMarginPixels);
}
else {
whitePixRatio.at<float>(y, x) = (nZ / (float)square.total());
cellPixelRatio.at<float>(y, x) = (nZ / (float)square.total());
}
}
}
}
if(_whitePixRatio.needed()) whitePixRatio.copyTo(_whitePixRatio);
if(_cellPixelRatio.needed()) cellPixelRatio.copyTo(_cellPixelRatio);
return bits;
}
@ -443,29 +444,29 @@ static int _getBorderErrors(const Mat &bits, int markerSize, int borderSize) {
* The uncertainty is defined as percentage of incorrect pixel detections, with 0 describing a pixel perfect detection.
* The rotation is set to 0,1,2,3 for [0, 90, 180, 270] deg CCW rotations.
*/
static float _getMarkerUnc(const Dictionary& dictionary, const Mat &whitePixRatio, const int id,
static float _getMarkerUnc(const Dictionary& dictionary, const Mat &cellPixelRatio, const int id,
const int rotation, const int borderSize) {
CV_Assert(id >= 0 && id < dictionary.bytesList.rows);
const int markerSize = dictionary.markerSize;
const int sizeWithBorders = markerSize + 2 * borderSize;
CV_Assert(markerSize > 0 && whitePixRatio.cols == sizeWithBorders && whitePixRatio.rows == sizeWithBorders);
CV_Assert(markerSize > 0 && cellPixelRatio.cols == sizeWithBorders && cellPixelRatio.rows == sizeWithBorders);
// Get border uncertainty. Assuming black borders, the uncertainty is the ratio of white pixels.
// Get border uncertainty. cellPixelRatio has the opposite color as the borders --> it is the uncertainty.
float tempBorderUnc = 0.f;
for(int y = 0; y < sizeWithBorders; y++) {
for(int k = 0; k < borderSize; k++) {
// Left and right vertical sides
tempBorderUnc += whitePixRatio.ptr<float>(y)[k];
tempBorderUnc += whitePixRatio.ptr<float>(y)[sizeWithBorders - 1 - k];
tempBorderUnc += cellPixelRatio.ptr<float>(y)[k];
tempBorderUnc += cellPixelRatio.ptr<float>(y)[sizeWithBorders - 1 - k];
}
}
for(int x = borderSize; x < sizeWithBorders - borderSize; x++) {
for(int k = 0; k < borderSize; k++) {
// Top and bottom horizontal sides
tempBorderUnc += whitePixRatio.ptr<float>(k)[x];
tempBorderUnc += whitePixRatio.ptr<float>(sizeWithBorders - 1 - k)[x];
tempBorderUnc += cellPixelRatio.ptr<float>(k)[x];
tempBorderUnc += cellPixelRatio.ptr<float>(sizeWithBorders - 1 - k)[x];
}
}
@ -492,7 +493,7 @@ static float _getMarkerUnc(const Dictionary& dictionary, const Mat &whitePixRati
float tempInnerUnc = 0.f;
for(int y = borderSize; y < markerSize + borderSize; y++) {
for(int x = borderSize; x < markerSize + borderSize; x++) {
tempInnerUnc += abs(groundTruthbits.ptr<unsigned char>(y - borderSize)[x - borderSize] - whitePixRatio.ptr<float>(y)[x]);
tempInnerUnc += abs(groundTruthbits.ptr<unsigned char>(y - borderSize)[x - borderSize] - cellPixelRatio.ptr<float>(y)[x]);
}
}
@ -524,12 +525,12 @@ static uint8_t _identifyOneCandidate(const Dictionary& dictionary, const Mat& _i
scaled_corners[i].y = _corners[i].y * scale;
}
Mat whitePixRatio;
Mat cellPixelRatio;
Mat candidateBits =
_extractBits(_image, scaled_corners, dictionary.markerSize, params.markerBorderBits,
params.perspectiveRemovePixelPerCell,
params.perspectiveRemoveIgnoredMarginPerCell, params.minOtsuStdDev,
whitePixRatio);
cellPixelRatio);
// analyze border bits
int maximumErrorsInBorder =
@ -542,11 +543,11 @@ static uint8_t _identifyOneCandidate(const Dictionary& dictionary, const Mat& _i
// to get from 255 to 1
Mat invertedImg = ~candidateBits-254;
int invBError = _getBorderErrors(invertedImg, dictionary.markerSize, params.markerBorderBits);
cellPixelRatio = -1.0 * cellPixelRatio + 1;
// white marker
if(invBError<borderErrors){
borderErrors = invBError;
invertedImg.copyTo(candidateBits);
whitePixRatio = -1.0 * whitePixRatio + 1;
typ=2;
}
}
@ -558,18 +559,12 @@ static uint8_t _identifyOneCandidate(const Dictionary& dictionary, const Mat& _i
candidateBits.rows - params.markerBorderBits)
.colRange(params.markerBorderBits, candidateBits.cols - params.markerBorderBits);
Mat onlyWhitePixRatio =
whitePixRatio.rowRange(params.markerBorderBits,
whitePixRatio.rows - params.markerBorderBits)
.colRange(params.markerBorderBits, whitePixRatio.cols - params.markerBorderBits);
// try to indentify the marker
if(!dictionary.identify(onlyBits, idx, rotation, params.errorCorrectionRate))
return 0;
// compute the candidate's uncertainty
markerUnc = _getMarkerUnc(dictionary, whitePixRatio, idx, rotation, params.markerBorderBits);
markerUnc = _getMarkerUnc(dictionary, cellPixelRatio, idx, rotation, params.markerBorderBits);
return typ;
}

View File

@ -321,17 +321,125 @@ void CV_ArucoDetectionPerspective::run(int) {
}
}
// Helper struc and functions for CV_ArucoDetectionUnc
struct ArucoUncTestConfig {
// Number of bits (per dimension) for each cell of the marker when removing the perspective (default 4).
int perspectiveRemovePixelPerCell;
// Width of the margin of pixels on each cell not considered for the determination of the cell bit.
// This parameter is relative to the total size of the cell.
// For instance if the cell size is 40 pixels and the value of this parameter is 0.1, a margin of 40*0.1=4 pixels is ignored in the cells.
float perspectiveRemoveIgnoredMarginPerCell;
// Number of bits of the marker border, i.e. marker border width (default 1).
int markerBorderBits;
// Fraction of tempered (inverted) pixels per cell (area ratio, e.g. 0.02 for 2%)
float invertPixelPercent;
// Percentage of offset used for perspective distortion, bigger means more distorted
float distortionRatio;
};
struct MarkerCreationConfig {
int id; // Unique marker ID (will be offset per test run)
int markerSidePixels; // Marker size (in pixels)
int rotation; // Rotation of the marker in degrees (0, 90, 180, 270)
};
/**
* @brief Draw 2D synthetic markers, temper with some pixels, detect them and compute their uncertainty.
* @brief Create a synthetic image of a marker
* Applies an optional rotation and an optional perspective warp to simulate a distorted marker.
* Inverts a square region within each cell (including borders) to simulate uncertainty in detection.
* Computes the ground-truth uncertainty as the ratio of inverted area to the total marker area.
*/
Mat generateMarkerImage(const MarkerCreationConfig &markerConfig, const ArucoUncTestConfig &detectorConfig,
const aruco::Dictionary &dictionary, double &groundTruthUnc)
{
Mat marker;
// Generate the synthetic marker image
aruco::generateImageMarker(dictionary, markerConfig.id, markerConfig.markerSidePixels,
marker, detectorConfig.markerBorderBits);
// Rotate the marker if needed.
if (markerConfig.rotation == 90) {
cv::transpose(marker, marker);
cv::flip(marker, marker, 0);
} else if (markerConfig.rotation == 180) {
cv::flip(marker, marker, -1);
} else if (markerConfig.rotation == 270) {
cv::transpose(marker, marker);
cv::flip(marker, marker, 1);
}
// Compute the number of cells in one dimension.
const int markerSizeWithBorders = dictionary.markerSize + 2 * detectorConfig.markerBorderBits;
const int cellSidePixelsSize = markerConfig.markerSidePixels / markerSizeWithBorders;
// We want the inverted square area to have an area ratio equal to invertPixelPercent.
// That is: (cellSidePixelsInvert/cellSidePixelsSize)^2 = invertPixelPercent.
int cellSidePixelsInvert = int(cellSidePixelsSize * std::sqrt(detectorConfig.invertPixelPercent));
int cellMarginPixels = (cellSidePixelsSize - cellSidePixelsInvert) / 2;
int numCellsInverted = 0;
// Loop over each cell in the marker grid.
if (cellSidePixelsInvert > 0) {
for (int row = 0; row < markerSizeWithBorders; row++) {
for (int col = 0; col < markerSizeWithBorders; col++) {
int xStart = col * cellSidePixelsSize + cellMarginPixels;
int yStart = row * cellSidePixelsSize + cellMarginPixels;
Rect cellRect(xStart, yStart, cellSidePixelsInvert, cellSidePixelsInvert);
Mat cellROI = marker(cellRect);
bitwise_not(cellROI, cellROI);
numCellsInverted++;
}
}
}
// Compute ground-truth uncertainty as (inverted area)/(total marker area).
groundTruthUnc = (numCellsInverted * cellSidePixelsInvert * cellSidePixelsInvert) /
static_cast<double>(markerConfig.markerSidePixels * markerConfig.markerSidePixels);
// Optionally apply a distortion (a perspective warp) to simulate a non-ideal capture.
if (detectorConfig.distortionRatio > 0.f) {
vector<Point2f> src = { {0, 0},
{static_cast<float>(marker.cols), 0},
{static_cast<float>(marker.cols), static_cast<float>(marker.rows)},
{0, static_cast<float>(marker.rows)} };
float offset = marker.cols * detectorConfig.distortionRatio; // distortionRatio % offset for distortion
vector<Point2f> dst = { {offset, offset},
{marker.cols - offset, 0},
{marker.cols - offset, marker.rows - offset},
{0, marker.rows - offset} };
Mat M = getPerspectiveTransform(src, dst);
warpPerspective(marker, marker, M, marker.size(), INTER_LINEAR, BORDER_CONSTANT, Scalar(255));
}
return marker;
}
/**
* @brief Copies a marker image into a larger image at the given top-left position.
*/
void placeMarker(Mat &img, const Mat &marker, const Point2f &topLeft)
{
Rect roi(Point(static_cast<int>(topLeft.x), static_cast<int>(topLeft.y)), marker.size());
marker.copyTo(img(roi));
}
/**
* @brief Test the marker uncertainty computations.
* Loops over a set of detector configurations (expected uncertainty, distortion, DetectorParameters such as markerBorderBits)
* For each configuration, it creates a synthetic image containing four markers arranged in a 2x2 grid.
* Each marker is generated with its own configuration (id, size, rotation).
* Finally, it runs the detector and checks that each marker is detected and
* that its computed uncertainty is close to the ground truth value.
*/
class CV_ArucoDetectionUnc : public cvtest::BaseTest {
public:
CV_ArucoDetectionUnc(ArucoAlgParams arucoAlgParam) : arucoAlgParams(arucoAlgParam) {}
// The parameter arucoAlgParam allows switching between detecting normal and inverted markers.
CV_ArucoDetectionUnc(ArucoAlgParams algParam) : arucoAlgParam(algParam) {}
protected:
void run(int);
ArucoAlgParams arucoAlgParams;
ArucoAlgParams arucoAlgParam;
};
@ -340,123 +448,116 @@ void CV_ArucoDetectionUnc::run(int) {
aruco::DetectorParameters params;
aruco::ArucoDetector detector(aruco::getPredefinedDictionary(aruco::DICT_6X6_250), params);
// Params to test
const float ingnoreMarginPerCell[3] = {0.0f, 0.1f, 0.2f};
const int borderBitsTest[3] = {1,2,3};
const bool detectInvertedMarker = (arucoAlgParam == ArucoAlgParams::DETECT_INVERTED_MARKER);
const int markerSidePixels = 150;
const int imageSize = (markerSidePixels * 2) + 3 * (markerSidePixels / 2);
// Define several detector configurations to test different settings.
// perspectiveRemovePixelPerCell, perspectiveRemoveIgnoredMarginPerCell, markerBorderBits, invertPixelPercent, distortionRatio
vector<ArucoUncTestConfig> detectorConfigs = {
// No margins, No distortion
{8, 0.0f, 1, 0.0f, 0.f},
{8, 0.0f, 1, 0.01f, 0.f},
{8, 0.0f, 2, 0.05f, 0.f},
{8, 0.0f, 1, 0.1f, 0.f},
// Margins, No distortion
{8, 0.05f, 1, 0.0f, 0.f},
{8, 0.05f, 2, 0.01f, 0.f},
{8, 0.1f, 3, 0.05f, 0.f},
{8, 0.15f, 1, 0.1f, 0.f},
// No margins, distortion
{8, 0.0f, 1, 0.0f, 0.01f},
{8, 0.0f, 1, 0.01f, 0.02f},
{8, 0.0f, 2, 0.05f, 0.05f},
{8, 0.0f, 1, 0.1f, 0.1f},
{8, 0.0f, 2, 0.1f, 0.2f},
// Margins, distortion
{8, 0.05f, 2, 0.0f, 0.01f},
{8, 0.05f, 1, 0.01f, 0.02f},
{8, 0.1f, 2, 0.05f, 0.05f},
{8, 0.15f, 1, 0.1f, 0.1f},
{8, 0.0f, 1, 0.1f, 0.2f},
};
// 25 images containing 4 markers.
for(int i = 0; i < 25; i++) {
// Define marker configurations for the 4 markers.
const int markerSidePixels = 480;
// id, markerSidePixels, rotation
vector<MarkerCreationConfig> markerCreationConfig = {
{0, markerSidePixels, 90, },
{1, markerSidePixels, 270,},
{2, markerSidePixels, 0, },
{3, markerSidePixels, 180,}
};
// Modify default params
params.perspectiveRemovePixelPerCell = 6 + i;
params.perspectiveRemoveIgnoredMarginPerCell = ingnoreMarginPerCell[i % 3];
params.markerBorderBits = borderBitsTest[i % 3];
// Loop over each detector configuration.
for (size_t cfgIdx = 0; cfgIdx < detectorConfigs.size(); cfgIdx++) {
ArucoUncTestConfig detCfg = detectorConfigs[cfgIdx];
// draw synthetic image
vector<float > groundTruthUncs;
// Update detector parameters.
params.perspectiveRemovePixelPerCell = detCfg.perspectiveRemovePixelPerCell;
params.perspectiveRemoveIgnoredMarginPerCell = detCfg.perspectiveRemoveIgnoredMarginPerCell;
params.markerBorderBits = detCfg.markerBorderBits;
params.detectInvertedMarker = detectInvertedMarker;
detector.setDetectorParameters(params);
// Create a blank image large enough to hold 4 markers in a 2x2 grid.
const int margin = markerSidePixels / 2;
const int imageSize = (markerSidePixels * 2) + margin * 3;
Mat img(imageSize, imageSize, CV_8UC1, Scalar(255));
vector<double> groundTruthUncs;
vector<int> groundTruthIds;
Mat img = Mat(imageSize, imageSize, CV_8UC1, Scalar::all(255));
const aruco::Dictionary &dictionary = detector.getDictionary();
// Invert the pixel value of a % of each cell [0%, 2%, 4%, ..., 48%]
const float invertPixelPercent = 2 * i / 100.f;
const int markerSizeWithBorders = 6 + 2 * params.markerBorderBits;
const int cellSidePixelsSize = markerSidePixels / markerSizeWithBorders;
const int cellSidePixelsInvert = int(sqrt(invertPixelPercent) * cellSidePixelsSize);
const int cellMarginPixels = (cellSidePixelsSize - cellSidePixelsInvert) / 2; // Invert center of the cell
// Place each marker into the image.
for (int row = 0; row < 2; row++) {
for (int col = 0; col < 2; col++) {
int index = row * 2 + col;
MarkerCreationConfig markerCfg = markerCreationConfig[index];
// Adjust marker id to be unique for each detector configuration.
markerCfg.id += static_cast<int>(cfgIdx * markerCreationConfig.size());
groundTruthIds.push_back(markerCfg.id);
float groundTruthUnc;
double gtUnc = 0.0;
Mat markerImg = generateMarkerImage(markerCfg, detCfg, dictionary, gtUnc);
groundTruthUncs.push_back(gtUnc);
// Generate 4 markers
for(int y = 0; y < 2; y++) {
for(int x = 0; x < 2; x++) {
Mat marker;
const int id = i * 4 + y * 2 + x;
groundTruthIds.push_back(id);
// Generate marker
aruco::generateImageMarker(detector.getDictionary(), id, markerSidePixels, marker, params.markerBorderBits);
// Test all 4 rotations: [0, 90, 180, 270]
if(y == 0 && x == 0){
// Rotate 90 deg CCW
cv::transpose(marker, marker);
cv::flip(marker, marker,0);
} else if (y == 0 && x == 1){
// Rotate 90 deg CW
cv::transpose(marker, marker);
cv::flip(marker, marker,1);
} else if (y == 1 && x == 0){
// Rotate 180 deg CCW
cv::flip(marker, marker,-1);
}
// Invert the pixel value of a % of each cell [0%, 2%, 4%, ..., 48%]
if(cellSidePixelsInvert > 0){
// loop over each cell
for(int k = 0; k < markerSizeWithBorders; k++) {
for(int p = 0; p < markerSizeWithBorders; p++) {
const int Xstart = p * (cellSidePixelsSize) + cellMarginPixels;
const int Ystart = k * (cellSidePixelsSize) + cellMarginPixels;
Mat square(marker, Rect(Xstart, Ystart, cellSidePixelsInvert, cellSidePixelsInvert));
square = ~square;
}
}
}
// Assume a perfect marker detection and thus a ground truth equal to the percentage of inverted pixels.
groundTruthUnc = markerSizeWithBorders * markerSizeWithBorders * cellSidePixelsInvert * cellSidePixelsInvert / (float)(markerSidePixels * markerSidePixels);
groundTruthUncs.push_back(groundTruthUnc);
// Make sure that the marker is still detected when it was highly tempered.
if(groundTruthUnc >= 0.2) params.perspectiveRemoveIgnoredMarginPerCell = 0;
// Copy marker into full image
Point2f firstCorner =
Point2f(markerSidePixels / 2.f + x * (1.5f * markerSidePixels),
markerSidePixels / 2.f + y * (1.5f * markerSidePixels));
Mat aux = img.colRange((int)firstCorner.x, (int)firstCorner.x + markerSidePixels)
.rowRange((int)firstCorner.y, (int)firstCorner.y + markerSidePixels);
marker.copyTo(aux);
// Place marker in the image.
Point2f topLeft(margin + col * (markerSidePixels + margin),
margin + row * (markerSidePixels + margin));
placeMarker(img, markerImg, topLeft);
}
}
// Test inverted markers
if(ArucoAlgParams::DETECT_INVERTED_MARKER == arucoAlgParams){
img = ~img;
params.detectInvertedMarker = true;
// If testing inverted markers globally, invert the whole image.
if (detectInvertedMarker) {
bitwise_not(img, img);
}
detector.setDetectorParameters(params);
// detect markers and compute uncertainty
vector<vector<Point2f> > corners, rejected;
// Run detection.
vector<vector<Point2f>> corners, rejected;
vector<int> ids;
vector<float> markerUnc;
detector.detectMarkersWithUnc(img, corners, ids, rejected, markerUnc);
// check detection results
for(unsigned int m = 0; m < groundTruthIds.size(); m++) {
int idx = -1;
for(unsigned int k = 0; k < ids.size(); k++) {
if(groundTruthIds[m] == ids[k]) {
idx = (int)k;
// Verify that every marker is detected and its uncertainty is within tolerance.
for (size_t m = 0; m < groundTruthIds.size(); m++) {
int detectedIdx = -1;
for (size_t k = 0; k < ids.size(); k++) {
if (groundTruthIds[m] == ids[k]) {
detectedIdx = static_cast<int>(k);
break;
}
}
if(idx == -1) {
ts->printf(cvtest::TS::LOG, "Marker not detected");
if (detectedIdx == -1) {
ts->printf(cvtest::TS::LOG, "Marker id %d: not detected (detector config %zu)\n",
groundTruthIds[m], cfgIdx);
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return;
}
double dist = (double)cv::abs(groundTruthUncs[m] - markerUnc[idx]); // TODO cvtest
if(dist > 0.05) {
ts->printf(cvtest::TS::LOG, "Marker: %d is incorrect: uncertainty: %.2f (GT: %.2f) ", m, markerUnc[idx], groundTruthUncs[m]);
ts->printf(cvtest::TS::LOG, "");
double diff = fabs(groundTruthUncs[m] - markerUnc[detectedIdx]);
if (diff > 0.05) {
ts->printf(cvtest::TS::LOG,
"Marker id %d: computed uncertainty %.2f differs from ground truth %.2f (diff=%.2f) (detector config %zu)\n",
groundTruthIds[m], markerUnc[detectedIdx], groundTruthUncs[m], diff, cfgIdx);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}