mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 11:10:21 +08:00
Overloaded PCA constructor and ( ) operator to implement Feature#2287 - PCA that retains a specified amount of variance from the data. A sample was added to samples/cpp to demonstrate the new functionality. Docs and Tests were also updated
This commit is contained in:
parent
a74a2302aa
commit
93155c6ae0
@ -2359,8 +2359,10 @@ public:
|
||||
PCA();
|
||||
//! the constructor that performs PCA
|
||||
PCA(InputArray data, InputArray mean, int flags, int maxComponents=0);
|
||||
PCA(InputArray data, InputArray mean, int flags, double retainedVariance);
|
||||
//! operator that performs PCA. The previously stored data, if any, is released
|
||||
PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents=0);
|
||||
PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance);
|
||||
//! projects vector from the original space to the principal components subspace
|
||||
Mat project(InputArray vec) const;
|
||||
//! projects vector from the original space to the principal components subspace
|
||||
@ -2378,6 +2380,9 @@ public:
|
||||
CV_EXPORTS_W void PCACompute(InputArray data, CV_OUT InputOutputArray mean,
|
||||
OutputArray eigenvectors, int maxComponents=0);
|
||||
|
||||
CV_EXPORTS_W void PCACompute(InputArray data, CV_OUT InputOutputArray mean,
|
||||
OutputArray eigenvectors, double retainedVariance);
|
||||
|
||||
CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean,
|
||||
InputArray eigenvectors, OutputArray result);
|
||||
|
||||
|
@ -2811,6 +2811,11 @@ PCA::PCA(InputArray data, InputArray _mean, int flags, int maxComponents)
|
||||
operator()(data, _mean, flags, maxComponents);
|
||||
}
|
||||
|
||||
PCA::PCA(InputArray data, InputArray _mean, int flags, double retainedVariance)
|
||||
{
|
||||
operator()(data, _mean, flags, retainedVariance);
|
||||
}
|
||||
|
||||
PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComponents)
|
||||
{
|
||||
Mat data = _data.getMat(), _mean = __mean.getMat();
|
||||
@ -2895,6 +2900,109 @@ PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComp
|
||||
return *this;
|
||||
}
|
||||
|
||||
PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, double retainedVariance)
|
||||
{
|
||||
Mat data = _data.getMat(), _mean = __mean.getMat();
|
||||
int covar_flags = CV_COVAR_SCALE;
|
||||
int i, len, in_count;
|
||||
Size mean_sz;
|
||||
|
||||
CV_Assert( data.channels() == 1 );
|
||||
if( flags & CV_PCA_DATA_AS_COL )
|
||||
{
|
||||
len = data.rows;
|
||||
in_count = data.cols;
|
||||
covar_flags |= CV_COVAR_COLS;
|
||||
mean_sz = Size(1, len);
|
||||
}
|
||||
else
|
||||
{
|
||||
len = data.cols;
|
||||
in_count = data.rows;
|
||||
covar_flags |= CV_COVAR_ROWS;
|
||||
mean_sz = Size(len, 1);
|
||||
}
|
||||
|
||||
CV_Assert( retainedVariance > 0 && retainedVariance <= 1 );
|
||||
|
||||
int count = std::min(len, in_count);
|
||||
|
||||
// "scrambled" way to compute PCA (when cols(A)>rows(A)):
|
||||
// B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y
|
||||
if( len <= in_count )
|
||||
covar_flags |= CV_COVAR_NORMAL;
|
||||
|
||||
int ctype = std::max(CV_32F, data.depth());
|
||||
mean.create( mean_sz, ctype );
|
||||
|
||||
Mat covar( count, count, ctype );
|
||||
|
||||
if( _mean.data )
|
||||
{
|
||||
CV_Assert( _mean.size() == mean_sz );
|
||||
_mean.convertTo(mean, ctype);
|
||||
}
|
||||
|
||||
calcCovarMatrix( data, covar, mean, covar_flags, ctype );
|
||||
eigen( covar, eigenvalues, eigenvectors );
|
||||
|
||||
if( !(covar_flags & CV_COVAR_NORMAL) )
|
||||
{
|
||||
// CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A
|
||||
// CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A'
|
||||
Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols);
|
||||
if( data.type() != ctype || tmp_mean.data == mean.data )
|
||||
{
|
||||
data.convertTo( tmp_data, ctype );
|
||||
subtract( tmp_data, tmp_mean, tmp_data );
|
||||
}
|
||||
else
|
||||
{
|
||||
subtract( data, tmp_mean, tmp_mean );
|
||||
tmp_data = tmp_mean;
|
||||
}
|
||||
|
||||
Mat evects1(count, len, ctype);
|
||||
gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1,
|
||||
(flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0);
|
||||
eigenvectors = evects1;
|
||||
|
||||
// normalize all eigenvectors
|
||||
for( i = 0; i < eigenvectors.rows; i++ )
|
||||
{
|
||||
Mat vec = eigenvectors.row(i);
|
||||
normalize(vec, vec);
|
||||
}
|
||||
}
|
||||
|
||||
// compute the cumulative energy content for each eigenvector
|
||||
Mat g(eigenvalues.size(), ctype);
|
||||
|
||||
for(int ig = 0; ig < g.rows; ig++)
|
||||
{
|
||||
g.at<float>(ig,0) = 0;
|
||||
for(int im = 0; im <= ig; im++)
|
||||
{
|
||||
g.at<float>(ig,0) += eigenvalues.at<float>(im,0);
|
||||
}
|
||||
}
|
||||
|
||||
int L;
|
||||
for(L = 0; L < eigenvalues.rows; L++)
|
||||
{
|
||||
double energy = g.at<float>(L, 0) / g.at<float>(g.rows - 1, 0);
|
||||
if(energy > retainedVariance)
|
||||
break;
|
||||
}
|
||||
|
||||
L = std::max(2, L);
|
||||
|
||||
// use clone() to physically copy the data and thus deallocate the original matrices
|
||||
eigenvalues = eigenvalues.rowRange(0,L).clone();
|
||||
eigenvectors = eigenvectors.rowRange(0,L).clone();
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
void PCA::project(InputArray _data, OutputArray result) const
|
||||
{
|
||||
@ -2965,6 +3073,15 @@ void cv::PCACompute(InputArray data, InputOutputArray mean,
|
||||
pca.eigenvectors.copyTo(eigenvectors);
|
||||
}
|
||||
|
||||
void cv::PCACompute(InputArray data, InputOutputArray mean,
|
||||
OutputArray eigenvectors, double retainedVariance)
|
||||
{
|
||||
PCA pca;
|
||||
pca(data, mean, 0, retainedVariance);
|
||||
pca.mean.copyTo(mean);
|
||||
pca.eigenvectors.copyTo(eigenvectors);
|
||||
}
|
||||
|
||||
void cv::PCAProject(InputArray data, InputArray mean,
|
||||
InputArray eigenvectors, OutputArray result)
|
||||
{
|
||||
|
@ -297,6 +297,7 @@ protected:
|
||||
prjEps, backPrjEps,
|
||||
evalEps, evecEps;
|
||||
int maxComponents = 100;
|
||||
double retainedVariance = 0.95;
|
||||
Mat rPoints(sz, CV_32FC1), rTestPoints(sz, CV_32FC1);
|
||||
RNG& rng = ts->get_rng();
|
||||
|
||||
@ -423,9 +424,33 @@ protected:
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
// 3. check C++ PCA w/retainedVariance
|
||||
cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, retainedVariance );
|
||||
diffPrjEps = 1, diffBackPrjEps = 1;
|
||||
Mat rvPrjTestPoints = cPCA.project(rTestPoints.t());
|
||||
|
||||
if( cPCA.eigenvectors.rows > maxComponents)
|
||||
err = norm(cv::abs(rvPrjTestPoints.rowRange(0,maxComponents)), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 );
|
||||
else
|
||||
err = norm(cv::abs(rvPrjTestPoints), cv::abs(rPrjTestPoints.colRange(0,cPCA.eigenvectors.rows).t()), CV_RELATIVE_L2 );
|
||||
|
||||
if( err > diffPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_COL); retainedVariance=0.95; err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
err = norm(cPCA.backProject(rvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 );
|
||||
if( err > diffBackPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); retainedVariance=0.95; err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
#ifdef CHECK_C
|
||||
// 3. check C PCA & ROW
|
||||
// 4. check C PCA & ROW
|
||||
_points = rPoints;
|
||||
_testPoints = rTestPoints;
|
||||
_avg = avg;
|
||||
@ -455,7 +480,7 @@ protected:
|
||||
return;
|
||||
}
|
||||
|
||||
// 3. check C PCA & COL
|
||||
// 5. check C PCA & COL
|
||||
_points = cPoints;
|
||||
_testPoints = cTestPoints;
|
||||
avg = avg.t(); _avg = avg;
|
||||
@ -871,4 +896,4 @@ TEST(Core_Mat, reshape_1942)
|
||||
cn = M.channels();
|
||||
);
|
||||
ASSERT_EQ(1, cn);
|
||||
}
|
||||
}
|
||||
|
184
samples/cpp/pca.cpp
Normal file
184
samples/cpp/pca.cpp
Normal file
@ -0,0 +1,184 @@
|
||||
/*
|
||||
* pca.cpp
|
||||
*
|
||||
* Author:
|
||||
* Kevin Hughes <kevinhughes27[at]gmail[dot]com>
|
||||
*
|
||||
* Special Thanks to:
|
||||
* Philipp Wagner <bytefish[at]gmx[dot]de>
|
||||
*
|
||||
* This program demonstrates how to use OpenCV PCA with a
|
||||
* specified amount of variance to retain. The effect
|
||||
* is illustrated further by using a trackbar to
|
||||
* change the value for retained varaince.
|
||||
*
|
||||
* The program takes as input a text file with each line
|
||||
* begin the full path to an image. PCA will be performed
|
||||
* on this list of images. The author recommends using
|
||||
* the first 15 faces of the AT&T face data set:
|
||||
* http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
|
||||
*
|
||||
* so for example your input text file would look like this:
|
||||
*
|
||||
* <path_to_at&t_faces>/orl_faces/s1/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s2/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s3/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s4/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s5/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s6/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s7/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s8/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s9/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s10/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s11/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s12/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s13/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s14/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s15/1.pgm
|
||||
*
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
///////////////////////
|
||||
// Functions
|
||||
void read_imgList(const string& filename, vector<Mat>& images) {
|
||||
std::ifstream file(filename.c_str(), ifstream::in);
|
||||
if (!file) {
|
||||
string error_message = "No valid input file was given, please check the given filename.";
|
||||
CV_Error(CV_StsBadArg, error_message);
|
||||
}
|
||||
string line;
|
||||
while (getline(file, line)) {
|
||||
images.push_back(imread(line, 0));
|
||||
}
|
||||
}
|
||||
|
||||
Mat formatImagesForPCA(const vector<Mat> &data)
|
||||
{
|
||||
Mat dst(data.size(), data[0].rows*data[0].cols, CV_32F);
|
||||
for(unsigned int i = 0; i < data.size(); i++)
|
||||
{
|
||||
Mat image_row = data[i].clone().reshape(1,1);
|
||||
Mat row_i = dst.row(i);
|
||||
image_row.convertTo(row_i,CV_32F);
|
||||
}
|
||||
return dst;
|
||||
}
|
||||
|
||||
Mat toGrayscale(InputArray _src) {
|
||||
Mat src = _src.getMat();
|
||||
// only allow one channel
|
||||
if(src.channels() != 1) {
|
||||
CV_Error(CV_StsBadArg, "Only Matrices with one channel are supported");
|
||||
}
|
||||
// create and return normalized image
|
||||
Mat dst;
|
||||
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
|
||||
return dst;
|
||||
}
|
||||
|
||||
struct params
|
||||
{
|
||||
Mat data;
|
||||
int ch;
|
||||
int rows;
|
||||
PCA pca;
|
||||
string winName;
|
||||
};
|
||||
|
||||
void onTrackbar(int pos, void* ptr)
|
||||
{
|
||||
cout << "Retained Variance = " << pos << "% ";
|
||||
cout << "re-calculating PCA..." << std::flush;
|
||||
|
||||
double var = pos / 100.0;
|
||||
|
||||
struct params *p = (struct params *)ptr;
|
||||
|
||||
p->pca = PCA(p->data, cv::Mat(), CV_PCA_DATA_AS_ROW, var);
|
||||
|
||||
Mat point = p->pca.project(p->data.row(0));
|
||||
Mat reconstruction = p->pca.backProject(point);
|
||||
reconstruction = reconstruction.reshape(p->ch, p->rows);
|
||||
reconstruction = toGrayscale(reconstruction);
|
||||
|
||||
imshow(p->winName, reconstruction);
|
||||
cout << "done! # of principal components: " << p->pca.eigenvectors.rows << endl;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////
|
||||
// Main
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
if (argc != 2) {
|
||||
cout << "usage: " << argv[0] << " <image_list.txt>" << endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// Get the path to your CSV.
|
||||
string imgList = string(argv[1]);
|
||||
|
||||
// vector to hold the images
|
||||
vector<Mat> images;
|
||||
|
||||
// Read in the data. This can fail if not valid
|
||||
try {
|
||||
read_imgList(imgList, images);
|
||||
} catch (cv::Exception& e) {
|
||||
cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
// Quit if there are not enough images for this demo.
|
||||
if(images.size() <= 1) {
|
||||
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
|
||||
CV_Error(CV_StsError, error_message);
|
||||
}
|
||||
|
||||
// Reshape and stack images into a rowMatrix
|
||||
Mat data = formatImagesForPCA(images);
|
||||
|
||||
// perform PCA
|
||||
PCA pca(data, cv::Mat(), CV_PCA_DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance
|
||||
|
||||
// Demonstration of the effect of retainedVariance on the first image
|
||||
Mat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point"
|
||||
Mat reconstruction = pca.backProject(point); // re-create the image from the "point"
|
||||
reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shape
|
||||
reconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes
|
||||
|
||||
// init highgui window
|
||||
string winName = "Reconstruction | press 'q' to quit";
|
||||
namedWindow(winName, CV_WINDOW_NORMAL);
|
||||
|
||||
// params struct to pass to the trackbar handler
|
||||
params p;
|
||||
p.data = data;
|
||||
p.ch = images[0].channels();
|
||||
p.rows = images[0].rows;
|
||||
p.pca = pca;
|
||||
p.winName = winName;
|
||||
|
||||
// create the tracbar
|
||||
int pos = 95;
|
||||
createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p);
|
||||
|
||||
// display until user presses q
|
||||
imshow(winName, reconstruction);
|
||||
|
||||
char key = 0;
|
||||
while(key != 'q')
|
||||
key = waitKey();
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user