Multiple inputs for TensorFlow models

This commit is contained in:
Dmitry Kurtaev 2018-06-26 13:32:28 +03:00
parent ab8022f74e
commit 9510551c63
2 changed files with 36 additions and 8 deletions

View File

@ -375,6 +375,8 @@ private:
// and may be used to build the network using binary format only as a weights storage.
// This approach is similar to Caffe's `.prorotxt` and `.caffemodel`.
tensorflow::GraphDef netTxt;
std::vector<String> netInputsNames;
};
TFImporter::TFImporter(const char *model, const char *config)
@ -442,7 +444,14 @@ void TFImporter::connect(const std::map<String, int>& layers_name_id_map, Net& n
std::map<String, int>::const_iterator it = layers_name_id_map.find(outPin.name);
if (it == layers_name_id_map.end())
CV_Error(Error::StsError, "Input layer not found: " + outPin.name);
network.connect(it->second, outPin.blobIndex, input_layer_id, input_blob_id);
std::vector<String>::iterator inpNameIt = std::find(netInputsNames.begin(), netInputsNames.end(), outPin.name);
int blobIndex;
if (inpNameIt == netInputsNames.end())
blobIndex = outPin.blobIndex;
else
blobIndex = inpNameIt - netInputsNames.begin();
network.connect(it->second, blobIndex, input_layer_id, input_blob_id);
}
void TFImporter::connectToAllBlobs(const std::map<String, int>& layer_id, Net& network, const Pin& outPin,
@ -778,7 +787,7 @@ void TFImporter::populateNet(Net dstNet)
Pin inp = parsePin(layer.input(ii));
if (layer_id.find(inp.name) == layer_id.end())
CV_Error(Error::StsError, "Input layer not found: " + inp.name);
dstNet.connect(layer_id.at(inp.name), inp.blobIndex, id, ii);
connect(layer_id, dstNet, inp, id, ii);
}
}
}
@ -1028,7 +1037,7 @@ void TFImporter::populateNet(Net dstNet)
Pin inp = parsePin(layer.input(ii));
if (layer_id.find(inp.name) == layer_id.end())
CV_Error(Error::StsError, "Input layer not found: " + inp.name);
dstNet.connect(layer_id.at(inp.name), inp.blobIndex, id, ii - from);
connect(layer_id, dstNet, inp, id, ii - from);
}
}
else if (type == "MaxPool")
@ -1060,10 +1069,12 @@ void TFImporter::populateNet(Net dstNet)
}
else if (type == "Placeholder")
{
std::vector<String> netInputs(1);
netInputs[0] = name;
layer_id[name] = 0;
dstNet.setInputsNames(netInputs);
if (!hasLayerAttr(layer, "dtype") ||
getLayerAttr(layer, "dtype").type() != tensorflow::DT_BOOL) // If input is not a train/test flag.
{
netInputsNames.push_back(name);
layer_id[name] = 0;
}
}
else if (type == "Split") {
// TODO: determining axis index remapping by input dimensions order of input blob
@ -1201,7 +1212,7 @@ void TFImporter::populateNet(Net dstNet)
Pin inp = parsePin(layer.input(ii));
if (layer_id.find(inp.name) == layer_id.end())
CV_Error(Error::StsError, "Input layer not found: " + inp.name);
dstNet.connect(layer_id.at(inp.name), inp.blobIndex, id, ii);
connect(layer_id, dstNet, inp, id, ii);
}
}
}
@ -1719,6 +1730,7 @@ void TFImporter::populateNet(Net dstNet)
}
}
}
dstNet.setInputsNames(netInputsNames);
}
} // namespace

View File

@ -440,4 +440,20 @@ TEST(Test_TensorFlow, resize_bilinear)
runTensorFlowNet("resize_bilinear_factor");
}
TEST(Test_TensorFlow, two_inputs)
{
Net net = readNet(path("two_inputs_net.pbtxt"));
net.setPreferableBackend(DNN_BACKEND_OPENCV);
Mat firstInput(2, 3, CV_32FC1), secondInput(2, 3, CV_32FC1);
randu(firstInput, -1, 1);
randu(secondInput, -1, 1);
net.setInput(firstInput, "first_input");
net.setInput(secondInput, "second_input");
Mat out = net.forward();
normAssert(out, firstInput + secondInput);
}
}