mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
restored SSE2 and added AVX optimization of the old haar face detector
This commit is contained in:
parent
dea52eb730
commit
959674618f
@ -178,7 +178,7 @@ struct HWFeatures
|
||||
f.have[CV_CPU_SSE4_1] = (cpuid_data[2] & (1<<19)) != 0;
|
||||
f.have[CV_CPU_SSE4_2] = (cpuid_data[2] & (1<<20)) != 0;
|
||||
f.have[CV_CPU_POPCNT] = (cpuid_data[2] & (1<<23)) != 0;
|
||||
f.have[CV_CPU_AVX] = (cpuid_data[2] & (1<<28)) != 0;
|
||||
f.have[CV_CPU_AVX] = (((cpuid_data[2] & (1<<28)) != 0)&&((cpuid_data[2] & (1<<27)) != 0));//OS uses XSAVE_XRSTORE and CPU support AVX
|
||||
}
|
||||
|
||||
return f;
|
||||
|
@ -43,26 +43,23 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <stdio.h>
|
||||
/*
|
||||
#if CV_SSE2
|
||||
|
||||
|
||||
#if CV_SSE2 || CV_SSE3
|
||||
# if !CV_SSE4_1 && !CV_SSE4_2
|
||||
# define _mm_blendv_pd(a, b, m) _mm_xor_pd(a, _mm_and_pd(_mm_xor_pd(b, a), m))
|
||||
# define _mm_blendv_ps(a, b, m) _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(b, a), m))
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined CV_ICC
|
||||
# if defined CV_AVX
|
||||
# if CV_AVX
|
||||
# define CV_HAAR_USE_AVX 1
|
||||
# else
|
||||
# if defined CV_SSE2 || defined CV_SSE4_1 || defined CV_SSE4_2
|
||||
# if CV_SSE2 || CV_SSE3
|
||||
# define CV_HAAR_USE_SSE 1
|
||||
# else
|
||||
# define CV_HAAR_NO_SIMD 1
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
*/
|
||||
|
||||
/* these settings affect the quality of detection: change with care */
|
||||
#define CV_ADJUST_FEATURES 1
|
||||
#define CV_ADJUST_WEIGHTS 0
|
||||
@ -636,34 +633,163 @@ cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
|
||||
}
|
||||
|
||||
|
||||
//AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
CV_INLINE
|
||||
double icvEvalHidHaarClassifierAVX( CvHidHaarClassifier* classifier,
|
||||
double variance_norm_factor, size_t p_offset )
|
||||
{
|
||||
int CV_DECL_ALIGNED(32) idxV[8] = {0,0,0,0,0,0,0,0};
|
||||
char flags[8] = {0,0,0,0,0,0,0,0};
|
||||
CvHidHaarTreeNode* nodes[8];
|
||||
double res = 0;
|
||||
char exitConditionFlag = 0;
|
||||
for(;;)
|
||||
{
|
||||
float CV_DECL_ALIGNED(32) tmp[8] = {0,0,0,0,0,0,0,0};
|
||||
nodes[0] = classifier ->node + idxV[0];
|
||||
nodes[1] = (classifier+1)->node + idxV[1];
|
||||
nodes[2] = (classifier+2)->node + idxV[2];
|
||||
nodes[3] = (classifier+3)->node + idxV[3];
|
||||
nodes[4] = (classifier+4)->node + idxV[4];
|
||||
nodes[5] = (classifier+5)->node + idxV[5];
|
||||
nodes[6] = (classifier+6)->node + idxV[6];
|
||||
nodes[7] = (classifier+7)->node + idxV[7];
|
||||
|
||||
__m256 t = _mm256_set1_ps(variance_norm_factor);
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,nodes[6]->threshold,nodes[5]->threshold,nodes[4]->threshold,nodes[3]->threshold,nodes[2]->threshold,nodes[1]->threshold,nodes[0]->threshold));
|
||||
|
||||
__m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0],p_offset), calc_sum(nodes[6]->feature.rect[0],p_offset), calc_sum(nodes[5]->feature.rect[0],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[0],p_offset), calc_sum(nodes[3]->feature.rect[0],p_offset), calc_sum(nodes[2]->feature.rect[0],p_offset), calc_sum(nodes[1]->feature.rect[0],
|
||||
p_offset),calc_sum(nodes[0]->feature.rect[0],p_offset));
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, nodes[6]->feature.rect[0].weight, nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight, nodes[3]->feature.rect[0].weight, nodes[2]->feature.rect[0].weight, nodes[1]->feature.rect[0].weight, nodes[0]->feature.rect[0].weight);
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
|
||||
offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1],p_offset),calc_sum(nodes[6]->feature.rect[1],p_offset),calc_sum(nodes[5]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[1],p_offset),calc_sum(nodes[3]->feature.rect[1],p_offset),calc_sum(nodes[2]->feature.rect[1],p_offset),calc_sum(nodes[1]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[0]->feature.rect[1],p_offset));
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, nodes[6]->feature.rect[1].weight, nodes[5]->feature.rect[1].weight, nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight, nodes[2]->feature.rect[1].weight, nodes[1]->feature.rect[1].weight, nodes[0]->feature.rect[1].weight);
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset,weight));
|
||||
|
||||
if( nodes[0]->feature.rect[2].p0 )
|
||||
tmp[0] = calc_sum(nodes[0]->feature.rect[2],p_offset) * nodes[0]->feature.rect[2].weight;
|
||||
if( nodes[1]->feature.rect[2].p0 )
|
||||
tmp[1] = calc_sum(nodes[1]->feature.rect[2],p_offset) * nodes[1]->feature.rect[2].weight;
|
||||
if( nodes[2]->feature.rect[2].p0 )
|
||||
tmp[2] = calc_sum(nodes[2]->feature.rect[2],p_offset) * nodes[2]->feature.rect[2].weight;
|
||||
if( nodes[3]->feature.rect[2].p0 )
|
||||
tmp[3] = calc_sum(nodes[3]->feature.rect[2],p_offset) * nodes[3]->feature.rect[2].weight;
|
||||
if( nodes[4]->feature.rect[2].p0 )
|
||||
tmp[4] = calc_sum(nodes[4]->feature.rect[2],p_offset) * nodes[4]->feature.rect[2].weight;
|
||||
if( nodes[5]->feature.rect[2].p0 )
|
||||
tmp[5] = calc_sum(nodes[5]->feature.rect[2],p_offset) * nodes[5]->feature.rect[2].weight;
|
||||
if( nodes[6]->feature.rect[2].p0 )
|
||||
tmp[6] = calc_sum(nodes[6]->feature.rect[2],p_offset) * nodes[6]->feature.rect[2].weight;
|
||||
if( nodes[7]->feature.rect[2].p0 )
|
||||
tmp[7] = calc_sum(nodes[7]->feature.rect[2],p_offset) * nodes[7]->feature.rect[2].weight;
|
||||
|
||||
sum = _mm256_add_ps(sum,_mm256_load_ps(tmp));
|
||||
|
||||
__m256 left = _mm256_set_ps(nodes[7]->left,nodes[6]->left,nodes[5]->left,nodes[4]->left,nodes[3]->left,nodes[2]->left,nodes[1]->left,nodes[0]->left);
|
||||
__m256 right = _mm256_set_ps(nodes[7]->right,nodes[6]->right,nodes[5]->right,nodes[4]->right,nodes[3]->right,nodes[2]->right,nodes[1]->right,nodes[0]->right);
|
||||
|
||||
_mm256_store_si256((__m256i*)idxV,_mm256_cvttps_epi32(_mm256_blendv_ps(right, left,_mm256_cmp_ps(sum, t, _CMP_LT_OQ ))));
|
||||
|
||||
for(int i = 0; i < 8; i++)
|
||||
{
|
||||
if(idxV[i]<=0)
|
||||
{
|
||||
if(!flags[i])
|
||||
{
|
||||
exitConditionFlag++;
|
||||
flags[i]=1;
|
||||
res+=((classifier+i)->alpha[-idxV[i]]);
|
||||
}
|
||||
idxV[i]=0;
|
||||
}
|
||||
}
|
||||
if(exitConditionFlag==8)
|
||||
return res;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
CV_INLINE
|
||||
double icvEvalHidHaarClassifier( CvHidHaarClassifier* classifier,
|
||||
double variance_norm_factor,
|
||||
size_t p_offset )
|
||||
{
|
||||
int idx = 0;
|
||||
do
|
||||
/*#if CV_HAAR_USE_SSE && !CV_HAAR_USE_AVX
|
||||
if(cv::checkHardwareSupport(CV_CPU_SSE2))//based on old SSE variant. Works slow
|
||||
{
|
||||
double CV_DECL_ALIGNED(16) temp[2];
|
||||
__m128d zero = _mm_setzero_pd();
|
||||
do
|
||||
{
|
||||
CvHidHaarTreeNode* node = classifier->node + idx;
|
||||
__m128d t = _mm_set1_pd((node->threshold)*variance_norm_factor);
|
||||
__m128d left = _mm_set1_pd(node->left);
|
||||
__m128d right = _mm_set1_pd(node->right);
|
||||
|
||||
double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
_sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
_sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
|
||||
__m128d sum = _mm_set1_pd(_sum);
|
||||
t = _mm_cmplt_sd(sum, t);
|
||||
sum = _mm_blendv_pd(right, left, t);
|
||||
|
||||
_mm_store_pd(temp, sum);
|
||||
idx = (int)temp[0];
|
||||
}
|
||||
while(idx > 0 );
|
||||
|
||||
}
|
||||
else
|
||||
#endif*/
|
||||
{
|
||||
CvHidHaarTreeNode* node = classifier->node + idx;
|
||||
double t = node->threshold * variance_norm_factor;
|
||||
do
|
||||
{
|
||||
CvHidHaarTreeNode* node = classifier->node + idx;
|
||||
double t = node->threshold * variance_norm_factor;
|
||||
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
|
||||
if( node->feature.rect[2].p0 )
|
||||
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
|
||||
idx = sum < t ? node->left : node->right;
|
||||
idx = sum < t ? node->left : node->right;
|
||||
}
|
||||
while( idx > 0 );
|
||||
}
|
||||
while( idx > 0 );
|
||||
return classifier->alpha[-idx];
|
||||
}
|
||||
|
||||
|
||||
|
||||
static int
|
||||
cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
|
||||
CvPoint pt, double& stage_sum, int start_stage )
|
||||
{
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
bool haveAVX = false;
|
||||
if(cv::checkHardwareSupport(CV_CPU_AVX))
|
||||
if(_xgetbv(_XCR_XFEATURE_ENABLED_MASK)&0x6)// Check if the OS will save the YMM registers
|
||||
{
|
||||
haveAVX = true;
|
||||
}
|
||||
#else
|
||||
#ifdef CV_HAAR_USE_SSE
|
||||
bool haveSSE2 = cv::checkHardwareSupport(CV_CPU_SSE2);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
int p_offset, pq_offset;
|
||||
int i, j;
|
||||
double mean, variance_norm_factor;
|
||||
@ -702,10 +828,20 @@ cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
|
||||
{
|
||||
stage_sum = 0.0;
|
||||
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
if(haveAVX)
|
||||
{
|
||||
for( ; j < cascade->stage_classifier[i].count-8; j+=8 )
|
||||
{
|
||||
stage_sum += icvEvalHidHaarClassifierAVX(
|
||||
cascade->stage_classifier[i].classifier+j,
|
||||
variance_norm_factor, p_offset );
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for( j = 0; j < ptr->count; j++ )
|
||||
{
|
||||
stage_sum += icvEvalHidHaarClassifier( ptr->classifier + j,
|
||||
variance_norm_factor, p_offset );
|
||||
stage_sum += icvEvalHidHaarClassifier( ptr->classifier + j, variance_norm_factor, p_offset );
|
||||
}
|
||||
|
||||
if( stage_sum >= ptr->threshold )
|
||||
@ -723,99 +859,287 @@ cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
|
||||
}
|
||||
else if( cascade->isStumpBased )
|
||||
{
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
#ifndef CV_HAAR_USE_SSE
|
||||
stage_sum = 0.0;
|
||||
#else
|
||||
__m128d stage_sum = _mm_setzero_pd();
|
||||
#endif
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
if(haveAVX)
|
||||
{
|
||||
CvHidHaarClassifier* classifiers[8];
|
||||
CvHidHaarTreeNode* nodes[8];
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
stage_sum = 0.0;
|
||||
int j = 0;
|
||||
float CV_DECL_ALIGNED(32) buf[8];
|
||||
if( cascade->stage_classifier[i].two_rects )
|
||||
{
|
||||
for( ; j <= cascade->stage_classifier[i].count-8; j+=8 )
|
||||
{
|
||||
//__m256 stage_sumPart = _mm256_setzero_ps();
|
||||
classifiers[0] = cascade->stage_classifier[i].classifier + j;
|
||||
nodes[0] = classifiers[0]->node;
|
||||
classifiers[1] = cascade->stage_classifier[i].classifier + j + 1;
|
||||
nodes[1] = classifiers[1]->node;
|
||||
classifiers[2] = cascade->stage_classifier[i].classifier + j + 2;
|
||||
nodes[2]= classifiers[2]->node;
|
||||
classifiers[3] = cascade->stage_classifier[i].classifier + j + 3;
|
||||
nodes[3] = classifiers[3]->node;
|
||||
classifiers[4] = cascade->stage_classifier[i].classifier + j + 4;
|
||||
nodes[4] = classifiers[4]->node;
|
||||
classifiers[5] = cascade->stage_classifier[i].classifier + j + 5;
|
||||
nodes[5] = classifiers[5]->node;
|
||||
classifiers[6] = cascade->stage_classifier[i].classifier + j + 6;
|
||||
nodes[6] = classifiers[6]->node;
|
||||
classifiers[7] = cascade->stage_classifier[i].classifier + j + 7;
|
||||
nodes[7] = classifiers[7]->node;
|
||||
|
||||
if( cascade->stage_classifier[i].two_rects )
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
__m256 t = _mm256_set1_ps(variance_norm_factor);
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,nodes[6]->threshold,nodes[5]->threshold,nodes[4]->threshold,nodes[3]->threshold,nodes[2]->threshold,nodes[1]->threshold,nodes[0]->threshold));
|
||||
|
||||
#ifndef CV_HAAR_USE_SSE
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
#else
|
||||
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
|
||||
__m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
|
||||
__m128d a = _mm_set_sd(classifier->alpha[0]);
|
||||
__m128d b = _mm_set_sd(classifier->alpha[1]);
|
||||
__m128d sum = _mm_set_sd(calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight +
|
||||
calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight);
|
||||
t = _mm_cmpgt_sd(t, sum);
|
||||
stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));
|
||||
#endif
|
||||
__m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0],p_offset), calc_sum(nodes[6]->feature.rect[0],p_offset), calc_sum(nodes[5]->feature.rect[0],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[0],p_offset), calc_sum(nodes[3]->feature.rect[0],p_offset), calc_sum(nodes[2]->feature.rect[0],p_offset), calc_sum(nodes[1]->feature.rect[0],
|
||||
p_offset),calc_sum(nodes[0]->feature.rect[0],p_offset));
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, nodes[6]->feature.rect[0].weight, nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight, nodes[3]->feature.rect[0].weight, nodes[2]->feature.rect[0].weight, nodes[1]->feature.rect[0].weight, nodes[0]->feature.rect[0].weight);
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
#ifndef CV_HAAR_USE_SSE
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1],p_offset),calc_sum(nodes[6]->feature.rect[1],p_offset),calc_sum(nodes[5]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[1],p_offset),calc_sum(nodes[3]->feature.rect[1],p_offset),calc_sum(nodes[2]->feature.rect[1],p_offset),calc_sum(nodes[1]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[0]->feature.rect[1],p_offset));
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, nodes[6]->feature.rect[1].weight, nodes[5]->feature.rect[1].weight, nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight, nodes[2]->feature.rect[1].weight, nodes[1]->feature.rect[1].weight, nodes[0]->feature.rect[1].weight);
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset,weight));
|
||||
|
||||
__m256 alpha0 = _mm256_set_ps(classifiers[7]->alpha[0],classifiers[6]->alpha[0],classifiers[5]->alpha[0],classifiers[4]->alpha[0],classifiers[3]->alpha[0],
|
||||
classifiers[2]->alpha[0],classifiers[1]->alpha[0],classifiers[0]->alpha[0]);
|
||||
__m256 alpha1 = _mm256_set_ps(classifiers[7]->alpha[1],classifiers[6]->alpha[1],classifiers[5]->alpha[1],classifiers[4]->alpha[1],classifiers[3]->alpha[1],
|
||||
classifiers[2]->alpha[1],classifiers[1]->alpha[1],classifiers[0]->alpha[1]);
|
||||
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
#else
|
||||
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
|
||||
__m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
|
||||
__m128d a = _mm_set_sd(classifier->alpha[0]);
|
||||
__m128d b = _mm_set_sd(classifier->alpha[1]);
|
||||
double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
_sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
_sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
__m128d sum = _mm_set_sd(_sum);
|
||||
_mm256_store_ps(buf, _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ )));
|
||||
stage_sum+=(buf[0]+buf[1]+buf[2]+buf[3]+buf[4]+buf[5]+buf[6]+buf[7]);
|
||||
|
||||
}
|
||||
|
||||
for( ; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
|
||||
t = _mm_cmpgt_sd(t, sum);
|
||||
stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));
|
||||
#endif
|
||||
}
|
||||
}
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( ; j <= (cascade->stage_classifier[i].count)-8; j+=8 )
|
||||
{
|
||||
float CV_DECL_ALIGNED(32) tmp[8] = {0,0,0,0,0,0,0,0};
|
||||
|
||||
#ifndef CV_HAAR_USE_SSE
|
||||
if( stage_sum < cascade->stage_classifier[i].threshold )
|
||||
#else
|
||||
__m128d i_threshold = _mm_set_sd(cascade->stage_classifier[i].threshold);
|
||||
if( _mm_comilt_sd(stage_sum, i_threshold) )
|
||||
#endif
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
else
|
||||
classifiers[0] = cascade->stage_classifier[i].classifier + j;
|
||||
nodes[0] = classifiers[0]->node;
|
||||
classifiers[1] = cascade->stage_classifier[i].classifier + j + 1;
|
||||
nodes[1] = classifiers[1]->node;
|
||||
classifiers[2] = cascade->stage_classifier[i].classifier + j + 2;
|
||||
nodes[2]= classifiers[2]->node;
|
||||
classifiers[3] = cascade->stage_classifier[i].classifier + j + 3;
|
||||
nodes[3] = classifiers[3]->node;
|
||||
classifiers[4] = cascade->stage_classifier[i].classifier + j + 4;
|
||||
nodes[4] = classifiers[4]->node;
|
||||
classifiers[5] = cascade->stage_classifier[i].classifier + j + 5;
|
||||
nodes[5] = classifiers[5]->node;
|
||||
classifiers[6] = cascade->stage_classifier[i].classifier + j + 6;
|
||||
nodes[6] = classifiers[6]->node;
|
||||
classifiers[7] = cascade->stage_classifier[i].classifier + j + 7;
|
||||
nodes[7] = classifiers[7]->node;
|
||||
|
||||
__m256 t = _mm256_set1_ps(variance_norm_factor);
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,nodes[6]->threshold,nodes[5]->threshold,nodes[4]->threshold,nodes[3]->threshold,nodes[2]->threshold,nodes[1]->threshold,nodes[0]->threshold));
|
||||
|
||||
__m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0],p_offset), calc_sum(nodes[6]->feature.rect[0],p_offset), calc_sum(nodes[5]->feature.rect[0],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[0],p_offset), calc_sum(nodes[3]->feature.rect[0],p_offset), calc_sum(nodes[2]->feature.rect[0],p_offset), calc_sum(nodes[1]->feature.rect[0],
|
||||
p_offset),calc_sum(nodes[0]->feature.rect[0],p_offset));
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, nodes[6]->feature.rect[0].weight, nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight, nodes[3]->feature.rect[0].weight, nodes[2]->feature.rect[0].weight, nodes[1]->feature.rect[0].weight, nodes[0]->feature.rect[0].weight);
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
|
||||
offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1],p_offset),calc_sum(nodes[6]->feature.rect[1],p_offset),calc_sum(nodes[5]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[1],p_offset),calc_sum(nodes[3]->feature.rect[1],p_offset),calc_sum(nodes[2]->feature.rect[1],p_offset),calc_sum(nodes[1]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[0]->feature.rect[1],p_offset));
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, nodes[6]->feature.rect[1].weight, nodes[5]->feature.rect[1].weight, nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight, nodes[2]->feature.rect[1].weight, nodes[1]->feature.rect[1].weight, nodes[0]->feature.rect[1].weight);
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset,weight));
|
||||
|
||||
if( nodes[0]->feature.rect[2].p0 )
|
||||
tmp[0] = calc_sum(nodes[0]->feature.rect[2],p_offset) * nodes[0]->feature.rect[2].weight;
|
||||
if( nodes[1]->feature.rect[2].p0 )
|
||||
tmp[1] = calc_sum(nodes[1]->feature.rect[2],p_offset) * nodes[1]->feature.rect[2].weight;
|
||||
if( nodes[2]->feature.rect[2].p0 )
|
||||
tmp[2] = calc_sum(nodes[2]->feature.rect[2],p_offset) * nodes[2]->feature.rect[2].weight;
|
||||
if( nodes[3]->feature.rect[2].p0 )
|
||||
tmp[3] = calc_sum(nodes[3]->feature.rect[2],p_offset) * nodes[3]->feature.rect[2].weight;
|
||||
if( nodes[4]->feature.rect[2].p0 )
|
||||
tmp[4] = calc_sum(nodes[4]->feature.rect[2],p_offset) * nodes[4]->feature.rect[2].weight;
|
||||
if( nodes[5]->feature.rect[2].p0 )
|
||||
tmp[5] = calc_sum(nodes[5]->feature.rect[2],p_offset) * nodes[5]->feature.rect[2].weight;
|
||||
if( nodes[6]->feature.rect[2].p0 )
|
||||
tmp[6] = calc_sum(nodes[6]->feature.rect[2],p_offset) * nodes[6]->feature.rect[2].weight;
|
||||
if( nodes[7]->feature.rect[2].p0 )
|
||||
tmp[7] = calc_sum(nodes[7]->feature.rect[2],p_offset) * nodes[7]->feature.rect[2].weight;
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_load_ps(tmp));
|
||||
|
||||
__m256 alpha0 = _mm256_set_ps(classifiers[7]->alpha[0],classifiers[6]->alpha[0],classifiers[5]->alpha[0],classifiers[4]->alpha[0],classifiers[3]->alpha[0],
|
||||
classifiers[2]->alpha[0],classifiers[1]->alpha[0],classifiers[0]->alpha[0]);
|
||||
__m256 alpha1 = _mm256_set_ps(classifiers[7]->alpha[1],classifiers[6]->alpha[1],classifiers[5]->alpha[1],classifiers[4]->alpha[1],classifiers[3]->alpha[1],
|
||||
classifiers[2]->alpha[1],classifiers[1]->alpha[1],classifiers[0]->alpha[1]);
|
||||
|
||||
__m256 outBuf = _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ ));
|
||||
outBuf = _mm256_hadd_ps(outBuf, outBuf);
|
||||
outBuf = _mm256_hadd_ps(outBuf, outBuf);
|
||||
_mm256_store_ps(buf, outBuf);
|
||||
stage_sum+=(buf[0]+buf[4]);//(buf[0]+buf[1]+buf[2]+buf[3]+buf[4]+buf[5]+buf[6]+buf[7]);
|
||||
}
|
||||
|
||||
for( ; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
if( stage_sum < cascade->stage_classifier[i].threshold )
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
#ifdef CV_HAAR_USE_SSE && !CV_HAAR_USE_AVX //old SSE optimization
|
||||
if(haveSSE2)
|
||||
{
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
__m128d stage_sum = _mm_setzero_pd();
|
||||
if( cascade->stage_classifier[i].two_rects )
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
|
||||
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
|
||||
__m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
|
||||
__m128d a = _mm_set_sd(classifier->alpha[0]);
|
||||
__m128d b = _mm_set_sd(classifier->alpha[1]);
|
||||
__m128d sum = _mm_set_sd(calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight +
|
||||
calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight);
|
||||
t = _mm_cmpgt_sd(t, sum);
|
||||
stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
|
||||
__m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
|
||||
__m128d a = _mm_set_sd(classifier->alpha[0]);
|
||||
__m128d b = _mm_set_sd(classifier->alpha[1]);
|
||||
double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
_sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
_sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
__m128d sum = _mm_set_sd(_sum);
|
||||
|
||||
t = _mm_cmpgt_sd(t, sum);
|
||||
stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));
|
||||
}
|
||||
}
|
||||
__m128d i_threshold = _mm_set1_pd(cascade->stage_classifier[i].threshold);
|
||||
if( _mm_comilt_sd(stage_sum, i_threshold) )
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
stage_sum = 0.0;
|
||||
if( cascade->stage_classifier[i].two_rects )
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
if( stage_sum < cascade->stage_classifier[i].threshold )
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
stage_sum = 0.0;
|
||||
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
stage_sum += icvEvalHidHaarClassifier(
|
||||
cascade->stage_classifier[i].classifier + j,
|
||||
variance_norm_factor, p_offset );
|
||||
}
|
||||
|
||||
int j = 0;
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
if(haveAVX)
|
||||
{
|
||||
for( ; j < cascade->stage_classifier[i].count-8; j+=8 )
|
||||
{
|
||||
stage_sum += icvEvalHidHaarClassifierAVX(
|
||||
cascade->stage_classifier[i].classifier+j,
|
||||
variance_norm_factor, p_offset );
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for(; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
|
||||
stage_sum += icvEvalHidHaarClassifier(
|
||||
cascade->stage_classifier[i].classifier + j,
|
||||
variance_norm_factor, p_offset );
|
||||
}
|
||||
|
||||
if( stage_sum < cascade->stage_classifier[i].threshold )
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
//_mm256_zeroupper();
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int
|
||||
cvRunHaarClassifierCascade( const CvHaarClassifierCascade* _cascade,
|
||||
CvPoint pt, int start_stage )
|
||||
|
Loading…
Reference in New Issue
Block a user