Merge pull request #17851 from anton-potapov:sole_tbb_executor

* TBB executor for GAPI

 - the sole executor
 - unit tests for it
 - no usage in the GAPI at the momnet

* TBB executor for GAPI

 - introduced new overload of execute to explicitly accept tbb::arena
   argument
 - added more basic tests
 - moved arena creation code into tests
 -

* TBB executor for GAPI

 - fixed compie errors & warnings

* TBB executor for GAPI

 - split all-in-one execute() function into logicaly independant parts

* TBB executor for GAPI

 - used util::variant in in the tile_node

* TBB executor for GAPI

 - moved copy_through_move to separate header
 - rearranged details staff in proper namespaces
 - moved all implementation into detail namespace

* TBB executor for GAPI

 - fixed build error with TBB 4.4.
 - fixed build warnings

* TBB executor for GAPI

 - aligned strings width
 - fixed spaces in expressions
 - fixed english grammar
 - minor improvements

* TBB executor for GAPI

 - added more comments
 - minor improvements

* TBB executor for GAPI

 - changed ITT_ prefix for macroses to GAPI_ITT

* TBB executor for GAPI

 - no more "unused" warning for GAPI_DbgAssert
 - changed local assert macro to man onto GAPI_DbgAssert

* TBB executor for GAPI

 - file renamings
 - changed local assert macro to man onto GAPI_DbgAsse

* TBB executor for GAPI

 - test file renamed
 - add more comments

* TBB executor for GAPI

 - minor clenups and cosmetic changes

* TBB executor for GAPI

 - minor clenups and cosmetic changes

* TBB executor for GAPI

 - changed spaces and curly braces alignment

* TBB executor for GAPI

 - minor cleanups

* TBB executor for GAPI

 - minor cleanups
This commit is contained in:
Anton Potapov 2020-11-30 16:15:13 +03:00 committed by GitHub
parent 7521f207b1
commit 95ce8f45ea
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 833 additions and 3 deletions

View File

@ -107,6 +107,7 @@ set(gapi_srcs
# Executor
src/executor/gexecutor.cpp
src/executor/gtbbexecutor.cpp
src/executor/gstreamingexecutor.cpp
src/executor/gasync.cpp
@ -196,6 +197,10 @@ if(TARGET opencv_test_gapi)
target_link_libraries(opencv_test_gapi PRIVATE ade)
endif()
if(HAVE_TBB AND TARGET opencv_test_gapi)
ocv_target_link_libraries(opencv_test_gapi PRIVATE tbb)
endif()
if(HAVE_FREETYPE)
ocv_target_compile_definitions(${the_module} PRIVATE -DHAVE_FREETYPE)
if(TARGET opencv_test_gapi)

View File

@ -2,16 +2,28 @@
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_OWN_ASSERT_HPP
#define OPENCV_GAPI_OWN_ASSERT_HPP
#include <opencv2/gapi/util/compiler_hints.hpp>
#define GAPI_DbgAssertNoOp(expr) { \
constexpr bool _assert_tmp = false && (expr); \
cv::util::suppress_unused_warning(_assert_tmp); \
}
#if !defined(GAPI_STANDALONE)
#include <opencv2/core/base.hpp>
#define GAPI_Assert CV_Assert
#define GAPI_DbgAssert CV_DbgAssert
#if defined _DEBUG || defined CV_STATIC_ANALYSIS
# define GAPI_DbgAssert CV_DbgAssert
#else
# define GAPI_DbgAssert(expr) GAPI_DbgAssertNoOp(expr)
#endif
#else
#include <stdexcept>
@ -33,7 +45,7 @@ namespace detail
#ifdef NDEBUG
# define GAPI_DbgAssert(expr)
# define GAPI_DbgAssert(expr) GAPI_DbgAssertNoOp(expr)
#else
# define GAPI_DbgAssert(expr) GAPI_Assert(expr)
#endif

View File

@ -0,0 +1,34 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_UTIL_COPY_THROUGH_MOVE_HPP
#define OPENCV_GAPI_UTIL_COPY_THROUGH_MOVE_HPP
#include <opencv2/gapi/util/type_traits.hpp> //decay_t
namespace cv
{
namespace util
{
//This is a tool to move initialize captures of a lambda in C++11
template<typename T>
struct copy_through_move_t{
T value;
const T& get() const {return value;}
T& get() {return value;}
copy_through_move_t(T&& g) : value(std::move(g)) {}
copy_through_move_t(copy_through_move_t&&) = default;
copy_through_move_t(copy_through_move_t const& lhs) : copy_through_move_t(std::move(const_cast<copy_through_move_t&>(lhs))) {}
};
template<typename T>
copy_through_move_t<util::decay_t<T>> copy_through_move(T&& t){
return std::forward<T>(t);
}
} // namespace util
} // namespace cv
#endif /* OPENCV_GAPI_UTIL_COPY_THROUGH_MOVE_HPP */

View File

@ -0,0 +1,59 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_GAPI_ITT_HPP
#define OPENCV_GAPI_GAPI_ITT_HPP
//for ITT_NAMED_TRACE_GUARD
#include <type_traits>
#include <memory>
// FIXME: It seems that this macro is not propagated here by the OpenCV cmake (as this is not core module).
// (Consider using OpenCV's trace.hpp )
#ifdef OPENCV_WITH_ITT
#include <ittnotify.h>
#endif
#include <opencv2/gapi/util/compiler_hints.hpp>
namespace cv {
namespace util {
template< class T >
using remove_reference_t = typename std::remove_reference<T>::type;
// Home brew ScopeGuard
// D will be called automatically with p as argument when ScopeGuard goes out of scope.
// call release() on the ScopeGuard object to revoke guard action
template<typename T, typename D>
auto make_ptr_guard(T* p, D&& d) -> std::unique_ptr<T, util::remove_reference_t<D>> {
return {p, std::forward<D>(d)};
}
} // namespace util
// FIXME: make it more reusable (and move to other place and other namespace)
namespace gimpl { namespace parallel {
#ifdef OPENCV_WITH_ITT
extern const __itt_domain* gapi_itt_domain;
namespace {
auto make_itt_guard = [](__itt_string_handle* h) {
__itt_task_begin(gapi_itt_domain, __itt_null, __itt_null, (h));
return util::make_ptr_guard(reinterpret_cast<int*>(1), [](int* ) { __itt_task_end(gapi_itt_domain); });
};
} // namespace
#define GAPI_ITT_NAMED_TRACE_GUARD(name, h) auto name = cv::gimpl::parallel::make_itt_guard(h); cv::util::suppress_unused_warning(name)
#else
struct dumb_guard {void reset(){}};
#define GAPI_ITT_NAMED_TRACE_GUARD(name, h) cv::gimpl::parallel::dumb_guard name; cv::util::suppress_unused_warning(name)
#endif
#define GAPI_ITT_AUTO_TRACE_GUARD_IMPL_(LINE, h) GAPI_ITT_NAMED_TRACE_GUARD(itt_trace_guard_##LINE, h)
#define GAPI_ITT_AUTO_TRACE_GUARD_IMPL(LINE, h) GAPI_ITT_AUTO_TRACE_GUARD_IMPL_(LINE, h)
#define GAPI_ITT_AUTO_TRACE_GUARD(h) GAPI_ITT_AUTO_TRACE_GUARD_IMPL(__LINE__, h)
}} //gimpl::parallel
} //namespace cv
#endif /* OPENCV_GAPI_GAPI_ITT_HPP */

View File

@ -0,0 +1,445 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#include "gtbbexecutor.hpp"
#if defined(HAVE_TBB)
#include "gapi_itt.hpp"
#include <opencv2/gapi/own/assert.hpp>
#include <opencv2/gapi/util/copy_through_move.hpp>
#include "logger.hpp" // GAPI_LOG
#include <tbb/task.h>
#include <memory> // unique_ptr
#include <atomic>
#include <condition_variable>
#include <chrono>
#define ASSERT(expr) GAPI_DbgAssert(expr)
#define LOG_INFO(tag, ...) GAPI_LOG_INFO(tag, __VA_ARGS__)
#define LOG_WARNING(tag, ...) GAPI_LOG_WARNING(tag, __VA_ARGS__)
#define LOG_DEBUG(tag, ...) GAPI_LOG_DEBUG(tag, __VA_ARGS__)
#ifdef OPENCV_WITH_ITT
const __itt_domain* cv::gimpl::parallel::gapi_itt_domain = __itt_domain_create("GAPI Context");
#endif
namespace cv { namespace gimpl { namespace parallel {
namespace detail {
// some helper staff to deal with tbb::task related entities
namespace tasking {
enum class use_tbb_scheduler_bypass {
NO,
YES
};
inline void assert_graph_is_running(tbb::task* root) {
// tbb::task::wait_for_all block calling thread until task ref_count is dropped to 1
// So if the root task ref_count is greater than 1 graph still has a job to do and
// according wait_for_all() has not yet returned
ASSERT(root->ref_count() > 1);
}
// made template to break circular dependencies
template<typename body_t>
struct functor_task : tbb::task {
body_t body;
template<typename arg_t>
functor_task(arg_t&& a) : body(std::forward<arg_t>(a)) {}
tbb::task * execute() override {
assert_graph_is_running(parent());
auto reuse_current_task = body();
// if needed, say TBB to execute current task once again
return (use_tbb_scheduler_bypass::YES == reuse_current_task) ? (recycle_as_continuation(), this) : nullptr;
}
~functor_task() {
assert_graph_is_running(parent());
}
};
template<typename body_t>
auto allocate_task(tbb::task* root, body_t const& body) -> functor_task<body_t>* {
return new(tbb::task::allocate_additional_child_of(*root)) functor_task<body_t>{body};
}
template<typename body_t>
void spawn_no_assert(tbb::task* root, body_t const& body) {
tbb::task::spawn(* allocate_task(root, body));
}
#ifdef OPENCV_WITH_ITT
namespace {
static __itt_string_handle* ittTbbAddReadyBlocksToQueue = __itt_string_handle_create("add ready blocks to queue");
static __itt_string_handle* ittTbbSpawnReadyBlocks = __itt_string_handle_create("spawn ready blocks");
static __itt_string_handle* ittTbbEnqueueSpawnReadyBlocks = __itt_string_handle_create("enqueueing a spawn of ready blocks");
static __itt_string_handle* ittTbbUnlockMasterThread = __itt_string_handle_create("Unlocking master thread");
}
#endif // OPENCV_WITH_ITT
template<typename body_t>
void batch_spawn(size_t count, tbb::task* root, body_t const& body, bool do_assert_graph_is_running = true) {
GAPI_ITT_AUTO_TRACE_GUARD(ittTbbSpawnReadyBlocks);
if (do_assert_graph_is_running) {
assert_graph_is_running(root);
}
for (size_t i=0; i<count; i++) {
spawn_no_assert(root, body);
}
}
struct destroy_tbb_task {
void operator()(tbb::task* t) const { if (t) tbb::task::destroy(*t);};
};
using root_t = std::unique_ptr<tbb::task, destroy_tbb_task>;
root_t inline create_root(tbb::task_group_context& ctx) {
root_t root{new (tbb::task::allocate_root(ctx)) tbb::empty_task};
root->set_ref_count(1); // required by wait_for_all, as it waits until counter drops to 1
return root;
}
std::size_t inline tg_context_traits() {
// Specify tbb::task_group_context::concurrent_wait in the traits to ask TBB scheduler not to change
// ref_count of the task we wait on (root) when wait is complete.
return tbb::task_group_context::default_traits | tbb::task_group_context::concurrent_wait;
}
} // namespace tasking
namespace async {
struct async_tasks_t {
std::atomic<size_t> count {0};
std::condition_variable cv;
std::mutex mtx;
};
enum class wake_tbb_master {
NO,
YES
};
void inline wake_master(async_tasks_t& async_tasks, wake_tbb_master wake_master) {
// TODO: seems that this can be relaxed
auto active_async_tasks = --async_tasks.count;
if ((active_async_tasks == 0) || (wake_master == wake_tbb_master::YES)) {
// Was the last async task or asked to wake TBB master up(e.g. there are new TBB tasks to execute)
GAPI_ITT_AUTO_TRACE_GUARD(ittTbbUnlockMasterThread);
// While decrement of async_tasks_t::count is atomic, it might occur after the waiting
// thread has read its value but _before_ it actually starts waiting on the condition variable.
// So, lock acquire is needed to guarantee that current condition check (if any) in the waiting thread
// (possibly ran in parallel to async_tasks_t::count decrement above) is completed _before_ signal is issued.
// Therefore when notify_one is called, waiting thread is either sleeping on the condition variable or
// running a new check which is guaranteed to pick the new value and return from wait().
// There is no need to _hold_ the lock while signaling, only to acquire it.
std::unique_lock<std::mutex> {async_tasks.mtx}; // Acquire and release the lock.
async_tasks.cv.notify_one();
}
}
struct master_thread_sleep_lock_t
{
struct sleep_unlock {
void operator()(async_tasks_t* t) const {
ASSERT(t);
wake_master(*t, wake_tbb_master::NO);
}
};
std::unique_ptr<async_tasks_t, sleep_unlock> guard;
master_thread_sleep_lock_t() = default;
master_thread_sleep_lock_t(async_tasks_t* async_tasks_ptr) : guard(async_tasks_ptr) {
// TODO: seems that this can be relaxed
++(guard->count);
}
void unlock(wake_tbb_master wake) {
if (auto* p = guard.release()) {
wake_master(*p, wake);
}
}
};
master_thread_sleep_lock_t inline lock_sleep_master(async_tasks_t& async_tasks) {
return {&async_tasks};
}
enum class is_tbb_work_present {
NO,
YES
};
//RAII object to block TBB master thread (one that does wait_for_all())
//N.B. :wait_for_all() return control when root ref_count drops to 1,
struct root_wait_lock_t {
struct root_decrement_ref_count{
void operator()(tbb::task* t) const {
ASSERT(t);
auto result = t->decrement_ref_count();
ASSERT(result >= 1);
}
};
std::unique_ptr<tbb::task, root_decrement_ref_count> guard;
root_wait_lock_t() = default;
root_wait_lock_t(tasking::root_t& root, is_tbb_work_present& previous_state) : guard{root.get()} {
// Block the master thread while the *this object is alive.
auto new_root_ref_count = root->add_ref_count(1);
previous_state = (new_root_ref_count == 2) ? is_tbb_work_present::NO : is_tbb_work_present::YES;
}
};
root_wait_lock_t inline lock_wait_master(tasking::root_t& root, is_tbb_work_present& previous_state) {
return root_wait_lock_t{root, previous_state};
}
} // namespace async
inline tile_node* pop(prio_items_queue_t& q) {
tile_node* node = nullptr;
bool popped = q.try_pop(node);
ASSERT(popped && "queue should be non empty as we push items to it before we spawn");
return node;
}
namespace graph {
// Returns : number of items actually pushed into the q
std::size_t inline push_ready_dependants(prio_items_queue_t& q, tile_node* node) {
GAPI_ITT_AUTO_TRACE_GUARD(ittTbbAddReadyBlocksToQueue);
std::size_t ready_items = 0;
// enable dependent tasks
for (auto* dependant : node->dependants) {
// fetch_and_sub returns previous value
if (1 == dependant->dependency_count.fetch_sub(1)) {
// tile node is ready for execution, add it to the queue
q.push(dependant);
++ready_items;
}
}
return ready_items;
}
struct exec_ctx {
tbb::task_arena& arena;
prio_items_queue_t& q;
tbb::task_group_context tg_ctx;
tasking::root_t root;
detail::async::async_tasks_t async_tasks;
std::atomic<size_t> executed {0};
exec_ctx(tbb::task_arena& arena_, prio_items_queue_t& q_)
: arena(arena_), q(q_),
// As the traits is last argument, explicitly specify (default) value for first argument
tg_ctx{tbb::task_group_context::bound, tasking::tg_context_traits()},
root(tasking::create_root(tg_ctx))
{}
};
// At the moment there are no suitable tools to manage TBB priorities on task by task basis.
// Instead priority queue is used to respect tile_node priorities.
// As well, TBB task is not bound to any particular tile_node until actually executed.
// Strictly speaking there are two graphs here:
// - G-API one, described by the connected tile_node instances.
// This graph is :
// - Known beforehand, and do not change during the execution (i.e. static)
// - Contains both TBB non-TBB parts
// - prioritized, (i.e. all nodes has assigned priority of execution)
//
// - TBB task tree, which is :
// - flat (Has only two levels : root and leaves)
// - dynamic, i.e. new leaves are added on demand when new tbb tasks are spawned
// - describes only TBB/CPU part of the whole graph
// - non-prioritized (i.e. all tasks are created equal)
// Class below represents TBB task payload.
//
// Each instance basically does the three things :
// 1. Gets the tile_node item from the top of the queue
// 2. Executes its body
// 3. Pushes dependent tile_nodes to the queue once they are ready
//
struct task_body {
exec_ctx& ctx;
std::size_t push_ready_dependants(tile_node* node) const {
return graph::push_ready_dependants(ctx.q, node);
}
void spawn_clones(std::size_t items) const {
tasking::batch_spawn(items, ctx.root.get(), *this);
}
task_body(exec_ctx& ctx_) : ctx(ctx_) {}
tasking::use_tbb_scheduler_bypass operator()() const {
ASSERT(!ctx.q.empty() && "Spawned task with no job to do ? ");
tile_node* node = detail::pop(ctx.q);
auto result = tasking::use_tbb_scheduler_bypass::NO;
// execute the task
if (auto p = util::get_if<tile_node::sync_task_body>(&(node->task_body))) {
// synchronous task
p->body();
std::size_t ready_items = push_ready_dependants(node);
if (ready_items > 0) {
// spawn one less tasks and say TBB to reuse(recycle) current task
spawn_clones(ready_items - 1);
result = tasking::use_tbb_scheduler_bypass::YES;
}
}
else {
LOG_DEBUG(NULL, "Async task");
using namespace detail::async;
using util::copy_through_move;
auto block_master = copy_through_move(lock_sleep_master(ctx.async_tasks));
auto self_copy = *this;
auto callback = [node, block_master, self_copy] () mutable /*due to block_master.get().unlock()*/ {
LOG_DEBUG(NULL, "Async task callback is called");
// Implicitly unlock master right in the end of callback
auto master_sleep_lock = std::move(block_master);
std::size_t ready_items = self_copy.push_ready_dependants(node);
if (ready_items > 0) {
auto master_was_active = is_tbb_work_present::NO;
{
GAPI_ITT_AUTO_TRACE_GUARD(ittTbbEnqueueSpawnReadyBlocks);
// Force master thread (one that does wait_for_all()) to (actively) wait for enqueued tasks
// and unlock it right after all dependent tasks are spawned.
auto root_wait_lock = copy_through_move(lock_wait_master(self_copy.ctx.root, master_was_active));
// TODO: add test to cover proper holding of root_wait_lock
// As the calling thread most likely is not TBB one, instead of spawning TBB tasks directly we
// enqueue a task which will spawn them.
// For master thread to not leave wait_for_all() prematurely,
// hold the root_wait_lock until need tasks are actually spawned.
self_copy.ctx.arena.enqueue([ready_items, self_copy, root_wait_lock]() {
self_copy.spawn_clones(ready_items);
// TODO: why we need this? Either write a descriptive comment or remove it
volatile auto unused = root_wait_lock.get().guard.get();
util::suppress_unused_warning(unused);
});
}
// Wake master thread (if any) to pick up the enqueued tasks iff:
// 1. there is new TBB work to do, and
// 2. Master thread was sleeping on condition variable waiting for async tasks to complete
// (There was no active work before (i.e. root->ref_count() was == 1))
auto wake_master = (master_was_active == is_tbb_work_present::NO) ?
wake_tbb_master::YES : wake_tbb_master::NO;
master_sleep_lock.get().unlock(wake_master);
}
};
auto& body = util::get<tile_node::async_task_body>(node->task_body).body;
body(std::move(callback), node->total_order_index);
}
ctx.executed++;
// reset dependecy_count to initial state to simplify re-execution of the same graph
node->dependency_count = node->dependencies;
return result;
}
};
}
} // namespace detail
}}} // namespace cv::gimpl::parallel
void cv::gimpl::parallel::execute(prio_items_queue_t& q) {
// get the reference to current task_arena (i.e. one we are running in)
#if TBB_INTERFACE_VERSION > 9002
using attach_t = tbb::task_arena::attach;
#else
using attach_t = tbb::internal::attach;
#endif
tbb::task_arena arena{attach_t{}};
execute(q, arena);
}
void cv::gimpl::parallel::execute(prio_items_queue_t& q, tbb::task_arena& arena) {
using namespace detail;
graph::exec_ctx ctx{arena, q};
arena.execute(
[&]() {
// Passed in queue is assumed to contain starting tasks, i.e. ones with no (or resolved) dependencies
auto num_start_tasks = q.size();
// TODO: use recursive spawning and task soft affinity for faster task distribution
// As graph is starting and no task has been spawned yet
// assert_graph_is_running(root) will not hold, so spawn without assert
tasking::batch_spawn(num_start_tasks, ctx.root.get(), graph::task_body{ctx}, /* assert_graph_is_running*/false);
using namespace std::chrono;
high_resolution_clock timer;
auto tbb_work_done = [&ctx]() { return 1 == ctx.root->ref_count(); };
auto async_work_done = [&ctx]() { return 0 == ctx.async_tasks.count; };
do {
// First participate in execution of TBB graph till there are no more ready tasks.
ctx.root->wait_for_all();
if (!async_work_done()) { // Wait on the conditional variable iff there is active async work
auto start = timer.now();
std::unique_lock<std::mutex> lk(ctx.async_tasks.mtx);
// Wait (probably by sleeping) until all async tasks are completed or new TBB tasks are created.
// FIXME: Use TBB resumable tasks here to avoid blocking TBB thread
ctx.async_tasks.cv.wait(lk, [&]{return async_work_done() || !tbb_work_done() ;});
LOG_INFO(NULL, "Slept for " << duration_cast<milliseconds>(timer.now() - start).count() << " ms \n");
}
}
while(!tbb_work_done() || !async_work_done());
ASSERT(tbb_work_done() && async_work_done() && "Graph is still running?");
}
);
LOG_INFO(NULL, "Done. Executed " << ctx.executed << " tasks");
}
std::ostream& cv::gimpl::parallel::operator<<(std::ostream& o, tile_node const& n) {
o << "("
<< " at:" << &n << ","
<< "indx: " << n.total_order_index << ","
<< "deps #:" << n.dependency_count.value << ", "
<< "prods:" << n.dependants.size();
o << "[";
for (auto* d: n.dependants) {
o << d << ",";
}
o << "]";
o << ")";
return o;
}
#endif // HAVE_TBB

View File

@ -0,0 +1,103 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_TBB_EXECUTOR_HPP
#define OPENCV_GAPI_TBB_EXECUTOR_HPP
#if !defined(GAPI_STANDALONE)
#include <opencv2/cvconfig.h>
#endif
#if defined(HAVE_TBB)
#include <atomic>
#include <vector>
#include <functional>
#include <iosfwd>
#include <tbb/concurrent_priority_queue.h>
#include <tbb/task_arena.h>
#include <opencv2/gapi/util/variant.hpp>
namespace cv { namespace gimpl { namespace parallel {
// simple wrapper to allow copies of std::atomic
template<typename count_t>
struct atomic_copyable_wrapper {
std::atomic<count_t> value;
atomic_copyable_wrapper(count_t val) : value(val) {}
atomic_copyable_wrapper(atomic_copyable_wrapper const& lhs) : value (lhs.value.load(std::memory_order_relaxed)) {}
atomic_copyable_wrapper& operator=(count_t val) {
value.store(val, std::memory_order_relaxed);
return *this;
}
count_t fetch_sub(count_t val) {
return value.fetch_sub(val);
}
count_t fetch_add(count_t val) {
return value.fetch_add(val);
}
};
struct async_tag {};
constexpr async_tag async;
// Class describing a piece of work in the node in the tasks graph.
// Most of the fields are set only once during graph compilation and never changes.
// (However at the moment they can not be made const due to two phase initialization
// of the tile_node objects)
// FIXME: refactor the code to make the const?
struct tile_node {
// place in totally ordered queue of tasks to execute. Inverse to priority, i.e.
// lower index means higher priority
size_t total_order_index = 0;
// FIXME: use templates here instead of std::function
struct sync_task_body {
std::function<void()> body;
};
struct async_task_body {
std::function<void(std::function<void()>&& callback, size_t total_order_index)> body;
};
util::variant<sync_task_body, async_task_body> task_body;
// number of dependencies according to a dependency graph (i.e. number of "input" edges).
size_t dependencies = 0;
// number of unsatisfied dependencies. When drops to zero task is ready for execution.
// Initially equal to "dependencies"
atomic_copyable_wrapper<size_t> dependency_count = 0;
std::vector<tile_node*> dependants;
tile_node(decltype(sync_task_body::body)&& f) : task_body(sync_task_body{std::move(f)}) {};
tile_node(async_tag, decltype(async_task_body::body)&& f) : task_body(async_task_body{std::move(f)}) {};
};
std::ostream& operator<<(std::ostream& o, tile_node const& n);
struct tile_node_indirect_priority_comparator {
bool operator()(tile_node const * lhs, tile_node const * rhs) const {
return lhs->total_order_index > rhs->total_order_index;
}
};
using prio_items_queue_t = tbb::concurrent_priority_queue<tile_node*, tile_node_indirect_priority_comparator>;
void execute(prio_items_queue_t& q);
void execute(prio_items_queue_t& q, tbb::task_arena& arena);
}}} // namespace cv::gimpl::parallel
#endif // HAVE_TBB
#endif // OPENCV_GAPI_TBB_EXECUTOR_HPP

View File

@ -0,0 +1,172 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
// Deliberately include .cpp file instead of header as we use non exported function (execute)
#include <executor/gtbbexecutor.cpp>
#if defined(HAVE_TBB)
#include "../test_precomp.hpp"
#include <tbb/task_arena.h>
#include <thread>
namespace {
tbb::task_arena create_task_arena(int max_concurrency = tbb::task_arena::automatic /* set to 1 for single thread */) {
unsigned int reserved_for_master_threads = 1;
if (max_concurrency == 1) {
// Leave no room for TBB worker threads, by reserving all to masters.
// TBB runtime guarantees that no worker threads will join the arena
// if max_concurrency is equal to reserved_for_master_threads
// except 1:1 + use of enqueued tasks for safety guarantee.
// So deliberately make it 2:2 to force TBB not to create extra thread.
//
// N.B. one slot will left empty as only one master thread(one that
// calls root->wait_for_all()) will join the arena.
// FIXME: strictly speaking master can take any free slot, not the first one.
// However at the moment master seems to pick 0 slot all the time.
max_concurrency = 2;
reserved_for_master_threads = 2;
}
return tbb::task_arena{max_concurrency, reserved_for_master_threads};
}
}
namespace opencv_test {
TEST(TBBExecutor, Basic) {
using namespace cv::gimpl::parallel;
bool executed = false;
prio_items_queue_t q;
tile_node n([&]() {
executed = true;
});
q.push(&n);
execute(q);
EXPECT_EQ(true, executed);
}
TEST(TBBExecutor, SerialExecution) {
using namespace cv::gimpl::parallel;
const int n = 10;
prio_items_queue_t q;
std::vector<tile_node> nodes; nodes.reserve(n+1);
std::vector<std::thread::id> thread_id(n);
for (int i=0; i <n; i++) {
nodes.push_back(tile_node([&, i]() {
thread_id[i] = std::this_thread::get_id();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}));
q.push(&nodes.back());
}
auto serial_arena = create_task_arena(1);
execute(q, serial_arena);
auto print_thread_ids = [&] {
std::stringstream str;
for (auto& i : thread_id) { str << i <<" ";}
return str.str();
};
EXPECT_NE(thread_id[0], std::thread::id{}) << print_thread_ids();
EXPECT_EQ(thread_id.size(), static_cast<size_t>(std::count(thread_id.begin(), thread_id.end(), thread_id[0])))
<< print_thread_ids();
}
TEST(TBBExecutor, AsyncBasic) {
using namespace cv::gimpl::parallel;
std::atomic<bool> callback_ready {false};
std::function<void()> callback;
std::atomic<bool> callback_called {false};
std::atomic<bool> master_is_waiting {true};
std::atomic<bool> master_was_blocked_until_callback_called {false};
auto async_thread = std::thread([&] {
bool slept = false;
while (!callback_ready) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
slept = true;
}
if (!slept) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
callback();
callback_called = true;
master_was_blocked_until_callback_called = (master_is_waiting == true);
});
auto async_task_body = [&](std::function<void()>&& cb, size_t /*total_order_index*/) {
callback = std::move(cb);
callback_ready = true;
};
tile_node n(async, std::move(async_task_body));
prio_items_queue_t q;
q.push(&n);
execute(q);
master_is_waiting = false;
async_thread.join();
EXPECT_EQ(true, callback_called);
EXPECT_EQ(true, master_was_blocked_until_callback_called);
}
TEST(TBBExecutor, Dependencies) {
using namespace cv::gimpl::parallel;
const int n = 10;
bool serial = true;
std::atomic<int> counter {0};
prio_items_queue_t q;
std::vector<tile_node> nodes; nodes.reserve(n+1);
const int invalid_order = -10;
std::vector<int> tiles_exec_order(n, invalid_order);
auto add_dependency_to = [](tile_node& node, tile_node& dependency) {
dependency.dependants.push_back(&node);
node.dependencies++;
node.dependency_count.fetch_add(1);
};
for (int i=0; i <n; i++) {
nodes.push_back(tile_node([&, i]() {
tiles_exec_order[i] = counter++;
if (!serial) {
//sleep gives a better chance for other threads to take part in the execution
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}));
if (i >0) {
auto last_node = nodes.end() - 1;
add_dependency_to(*last_node, *(last_node -1));
}
}
q.push(&nodes.front());
auto arena = serial ? create_task_arena(1) : create_task_arena();
execute(q, arena);
auto print_execution_order = [&] {
std::stringstream str;
for (auto& i : tiles_exec_order) { str << i <<" ";}
return str.str();
};
ASSERT_EQ(0, std::count(tiles_exec_order.begin(), tiles_exec_order.end(), invalid_order))
<< "Not all " << n << " task executed ?\n"
<<" execution order : " << print_execution_order();
for (size_t i=0; i <nodes.size(); i++) {
auto node_exec_order = tiles_exec_order[i];
for (auto* dependee : nodes[i].dependants) {
auto index = std::distance(&nodes.front(), dependee);
auto dependee_execution_order = tiles_exec_order[index];
ASSERT_LT(node_exec_order, dependee_execution_order) << "node number " << index << " is executed earlier than it's dependency " << i;
}
}
}
} // namespace opencv_test
#endif //HAVE_TBB