Update on the class to reflect the review. Split the class into virtual and implementation. change of name to LineSegmentDetector, using Input/Output-Arrays, general clean ups.

This commit is contained in:
Daniel Angelov 2013-07-21 01:31:51 +03:00
parent 694d9ff2eb
commit 965b3759b1
4 changed files with 439 additions and 353 deletions

View File

@ -835,34 +835,16 @@ protected:
Point2f bottomRight;
};
class CV_EXPORTS_W LSD
class LineSegmentDetector : public Algorithm
{
public:
/**
* Create an LSD object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows:
*
* @param _refine How should the lines found be refined?
* LSD_REFINE_NONE - No refinement applied.
* LSD_REFINE_STD - Standard refinement is applied. E.g. breaking arches into smaller line approximations.
* LSD_REFINE_ADV - Advanced refinement. Number of false alarms is calculated,
* lines are refined through increase of precision, decrement in size, etc.
* @param _scale The scale of the image that will be used to find the lines. Range (0..1].
* @param _sigma_scale Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale.
* @param _quant Bound to the quantization error on the gradient norm.
* @param _ang_th Gradient angle tolerance in degrees.
* @param _log_eps Detection threshold: -log10(NFA) > _log_eps
* @param _density_th Minimal density of aligned region points in rectangle.
* @param _n_bins Number of bins in pseudo-ordering of gradient modulus.
*/
LSD(int _refine = LSD_REFINE_STD, double _scale = 0.8,
double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
/**
* Detect lines in the input image with the specified ROI.
*
* @param _image A grayscale(CV_8UC1) input image.
* If only a roi needs to be selected, use
* lsd_ptr->detect(image(roi), ..., lines);
* lines += Scalar(roi.x, roi.y, roi.x, roi.y);
* @param _lines Return: A vector of Vec4i elements specifying the beginning and ending point of a line.
* Where Vec4i is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
* Returned lines are strictly oriented depending on the gradient.
@ -875,10 +857,11 @@ public:
* * -1 corresponds to 10 mean false alarms
* * 0 corresponds to 1 mean false alarm
* * 1 corresponds to 0.1 mean false alarms
* This vector will be calculated _only_ when the objects type is REFINE_ADV
*/
void detect(const cv::InputArray _image, cv::OutputArray _lines, cv::Rect _roi = cv::Rect(),
cv::OutputArray width = cv::noArray(), cv::OutputArray prec = cv::noArray(),
cv::OutputArray nfa = cv::noArray());
virtual void detect(const InputArray _image, OutputArray _lines,
OutputArray width = noArray(), OutputArray prec = noArray(),
OutputArray nfa = noArray()) = 0;
/**
* Draw lines on the given canvas.
@ -887,7 +870,7 @@ public:
* Should have the size of the image, where the lines were found
* @param lines The lines that need to be drawn
*/
static void drawSegments(cv::Mat& image, const std::vector<cv::Vec4i>& lines);
virtual void drawSegments(InputOutputArray image, const InputArray lines) = 0;
/**
* Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
@ -898,163 +881,23 @@ public:
* @param lines2 The second lines that need to be drawn. Color - Red.
* @return The number of mismatching pixels between lines1 and lines2.
*/
static int compareSegments(const cv::Size& size, const std::vector<cv::Vec4i>& lines1, const std::vector<cv::Vec4i> lines2, cv::Mat* image = 0);
virtual int compareSegments(const Size& size, const InputArray lines1, const InputArray lines2, Mat* image = 0) = 0;
private:
cv::Mat image;
cv::Mat_<double> scaled_image;
double *scaled_image_data;
cv::Mat_<double> angles; // in rads
double *angles_data;
cv::Mat_<double> modgrad;
double *modgrad_data;
cv::Mat_<uchar> used;
int img_width;
int img_height;
double LOG_NT;
cv::Rect roi;
int roix, roiy;
const double SCALE;
const int doRefine;
const double SIGMA_SCALE;
const double QUANT;
const double ANG_TH;
const double LOG_EPS;
const double DENSITY_TH;
const int N_BINS;
struct RegionPoint {
int x;
int y;
uchar* used;
double angle;
double modgrad;
};
struct coorlist
{
cv::Point2i p;
struct coorlist* next;
};
struct rect
{
double x1, y1, x2, y2; // first and second point of the line segment
double width; // rectangle width
double x, y; // center of the rectangle
double theta; // angle
double dx,dy; // (dx,dy) is vector oriented as the line segment
double prec; // tolerance angle
double p; // probability of a point with angle within 'prec'
};
/**
* Detect lines in the whole input image.
*
* @param lines Return: A vector of Vec4i elements specifying the beginning and ending point of a line.
* Where Vec4i is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
* Returned lines are strictly oriented depending on the gradient.
* @param widths Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
* @param precisions Return: Vector of precisions with which the lines are found.
* @param nfas Return: Vector containing number of false alarms in the line region, with precision of 10%.
* The bigger the value, logarithmically better the detection.
* * -1 corresponds to 10 mean false alarms
* * 0 corresponds to 1 mean false alarm
* * 1 corresponds to 0.1 mean false alarms
*/
void flsd(std::vector<cv::Vec4i>& lines,
std::vector<double>* widths, std::vector<double>* precisions,
std::vector<double>* nfas);
/**
* Finds the angles and the gradients of the image. Generates a list of pseudo ordered points.
*
* @param threshold The minimum value of the angle that is considered defined, otherwise NOTDEF
* @param n_bins The number of bins with which gradients are ordered by, using bucket sort.
* @param list Return: Vector of coordinate points that are pseudo ordered by magnitude.
* Pixels would be ordered by norm value, up to a precision given by max_grad/n_bins.
*/
void ll_angle(const double& threshold, const unsigned int& n_bins, std::vector<coorlist>& list);
/**
* Grow a region starting from point s with a defined precision,
* returning the containing points size and the angle of the gradients.
*
* @param s Starting point for the region.
* @param reg Return: Vector of points, that are part of the region
* @param reg_size Return: The size of the region.
* @param reg_angle Return: The mean angle of the region.
* @param prec The precision by which each region angle should be aligned to the mean.
*/
void region_grow(const cv::Point2i& s, std::vector<RegionPoint>& reg,
int& reg_size, double& reg_angle, const double& prec);
/**
* Finds the bounding rotated rectangle of a region.
*
* @param reg The region of points, from which the rectangle to be constructed from.
* @param reg_size The number of points in the region.
* @param reg_angle The mean angle of the region.
* @param prec The precision by which points were found.
* @param p Probability of a point with angle within 'prec'.
* @param rec Return: The generated rectangle.
*/
void region2rect(const std::vector<RegionPoint>& reg, const int reg_size, const double reg_angle,
const double prec, const double p, rect& rec) const;
/**
* Compute region's angle as the principal inertia axis of the region.
* @return Regions angle.
*/
double get_theta(const std::vector<RegionPoint>& reg, const int& reg_size, const double& x,
const double& y, const double& reg_angle, const double& prec) const;
/**
* An estimation of the angle tolerance is performed by the standard deviation of the angle at points
* near the region's starting point. Then, a new region is grown starting from the same point, but using the
* estimated angle tolerance. If this fails to produce a rectangle with the right density of region points,
* 'reduce_region_radius' is called to try to satisfy this condition.
*/
bool refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
const double prec, double p, rect& rec, const double& density_th);
/**
* Reduce the region size, by elimination the points far from the starting point, until that leads to
* rectangle with the right density of region points or to discard the region if too small.
*/
bool reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
const double prec, double p, rect& rec, double density, const double& density_th);
/**
* Try some rectangles variations to improve NFA value. Only if the rectangle is not meaningful (i.e., log_nfa <= log_eps).
* @return The new NFA value.
*/
double rect_improve(rect& rec) const;
/**
* Calculates the number of correctly aligned points within the rectangle.
* @return The new NFA value.
*/
double rect_nfa(const rect& rec) const;
/**
* Computes the NFA values based on the total number of points, points that agree.
* n, k, p are the binomial parameters.
* @return The new NFA value.
*/
double nfa(const int& n, const int& k, const double& p) const;
/**
* Is the point at place 'address' aligned to angle theta, up to precision 'prec'?
* @return Whether the point is aligned.
*/
bool isAligned(const int& address, const double& theta, const double& prec) const;
~LineSegmentDetector() {};
protected:
LineSegmentDetector() {};
};
//! Returns a pointer to a LineSegmentDetector class.
CV_EXPORTS Ptr<LineSegmentDetector> createLineSegmentDetectorSmrtPtr(
int _refine = LSD_REFINE_STD, double _scale = 0.8,
double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
CV_EXPORTS LineSegmentDetector* createLineSegmentDetectorPtr(
int _refine = LSD_REFINE_STD, double _scale = 0.8,
double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
//! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients.
CV_EXPORTS int getKernelType(InputArray kernel, Point anchor);

View File

@ -40,11 +40,8 @@
//M*/
#include "precomp.hpp"
#include <vector>
using namespace cv;
/////////////////////////////////////////////////////////////////////////////////////////
// Default LSD parameters
// SIGMA_SCALE 0.6 - Sigma for Gaussian filter is computed as sigma = sigma_scale/scale.
@ -54,10 +51,6 @@ using namespace cv;
// DENSITY_TH 0.7 - Minimal density of region points in rectangle.
// N_BINS 1024 - Number of bins in pseudo-ordering of gradient modulus.
// PI
#ifndef M_PI
#define M_PI CV_PI
#endif
#define M_3_2_PI (3 * CV_PI) / 2 // 3/2 pi
#define M_2__PI (2 * CV_PI) // 2 pi
@ -72,7 +65,7 @@ using namespace cv;
#define RELATIVE_ERROR_FACTOR 100.0
const double DEG_TO_RADS = M_PI / 180;
const double DEG_TO_RADS = CV_PI / 180;
#define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x))
@ -84,12 +77,14 @@ struct edge
/////////////////////////////////////////////////////////////////////////////////////////
inline double distSq(const double x1, const double y1, const double x2, const double y2)
inline double distSq(const double x1, const double y1,
const double x2, const double y2)
{
return (x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1);
}
inline double dist(const double x1, const double y1, const double x2, const double y2)
inline double dist(const double x1, const double y1,
const double x2, const double y2)
{
return sqrt(distSq(x1, y1, x2, y2));
}
@ -163,7 +158,256 @@ inline double log_gamma_lanczos(const double& x)
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
LSD::LSD(int _refine, double _scale, double _sigma_scale, double _quant,
namespace cv{
class LineSegmentDetectorImpl : public LineSegmentDetector
{
public:
/**
* Create a LineSegmentDetectorImpl object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows:
*
* @param _refine How should the lines found be refined?
* LSD_REFINE_NONE - No refinement applied.
* LSD_REFINE_STD - Standard refinement is applied. E.g. breaking arches into smaller line approximations.
* LSD_REFINE_ADV - Advanced refinement. Number of false alarms is calculated,
* lines are refined through increase of precision, decrement in size, etc.
* @param _scale The scale of the image that will be used to find the lines. Range (0..1].
* @param _sigma_scale Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale.
* @param _quant Bound to the quantization error on the gradient norm.
* @param _ang_th Gradient angle tolerance in degrees.
* @param _log_eps Detection threshold: -log10(NFA) > _log_eps
* @param _density_th Minimal density of aligned region points in rectangle.
* @param _n_bins Number of bins in pseudo-ordering of gradient modulus.
*/
LineSegmentDetectorImpl(int _refine = LSD_REFINE_STD, double _scale = 0.8,
double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
/**
* Detect lines in the input image with the specified ROI.
*
* @param _image A grayscale(CV_8UC1) input image.
* If only a roi needs to be selected, use
* lsd_ptr->detect(image(roi), ..., lines);
* lines += Scalar(roi.x, roi.y, roi.x, roi.y);
* @param _lines Return: A vector of Vec4i elements specifying the beginning and ending point of a line.
* Where Vec4i is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
* Returned lines are strictly oriented depending on the gradient.
* @param _roi Return: ROI of the image, where lines are to be found. If specified, the returning
* lines coordinates are image wise.
* @param width Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
* @param prec Return: Vector of precisions with which the lines are found.
* @param nfa Return: Vector containing number of false alarms in the line region, with precision of 10%.
* The bigger the value, logarithmically better the detection.
* * -1 corresponds to 10 mean false alarms
* * 0 corresponds to 1 mean false alarm
* * 1 corresponds to 0.1 mean false alarms
* This vector will be calculated _only_ when the objects type is REFINE_ADV
*/
void detect(const InputArray _image, OutputArray _lines,
OutputArray width = noArray(), OutputArray prec = noArray(),
OutputArray nfa = noArray());
/**
* Draw lines on the given canvas.
*
* @param image The image, where lines will be drawn.
* Should have the size of the image, where the lines were found
* @param lines The lines that need to be drawn
*/
void drawSegments(InputOutputArray image, const InputArray lines);
/**
* Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
*
* @param image The image, where lines will be drawn.
* Should have the size of the image, where the lines were found
* @param lines1 The first lines that need to be drawn. Color - Blue.
* @param lines2 The second lines that need to be drawn. Color - Red.
* @return The number of mismatching pixels between lines1 and lines2.
*/
int compareSegments(const Size& size, const InputArray lines1, const InputArray lines2, Mat* image = 0);
private:
Mat image;
Mat_<double> scaled_image;
double *scaled_image_data;
Mat_<double> angles; // in rads
double *angles_data;
Mat_<double> modgrad;
double *modgrad_data;
Mat_<uchar> used;
int img_width;
int img_height;
double LOG_NT;
bool w_needed;
bool p_needed;
bool n_needed;
const double SCALE;
const int doRefine;
const double SIGMA_SCALE;
const double QUANT;
const double ANG_TH;
const double LOG_EPS;
const double DENSITY_TH;
const int N_BINS;
struct RegionPoint {
int x;
int y;
uchar* used;
double angle;
double modgrad;
};
struct coorlist
{
Point2i p;
struct coorlist* next;
};
struct rect
{
double x1, y1, x2, y2; // first and second point of the line segment
double width; // rectangle width
double x, y; // center of the rectangle
double theta; // angle
double dx,dy; // (dx,dy) is vector oriented as the line segment
double prec; // tolerance angle
double p; // probability of a point with angle within 'prec'
};
/**
* Detect lines in the whole input image.
*
* @param lines Return: A vector of Vec4i elements specifying the beginning and ending point of a line.
* Where Vec4i is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
* Returned lines are strictly oriented depending on the gradient.
* @param widths Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
* @param precisions Return: Vector of precisions with which the lines are found.
* @param nfas Return: Vector containing number of false alarms in the line region, with precision of 10%.
* The bigger the value, logarithmically better the detection.
* * -1 corresponds to 10 mean false alarms
* * 0 corresponds to 1 mean false alarm
* * 1 corresponds to 0.1 mean false alarms
*/
void flsd(std::vector<Vec4i>& lines,
std::vector<double>& widths, std::vector<double>& precisions,
std::vector<double>& nfas);
/**
* Finds the angles and the gradients of the image. Generates a list of pseudo ordered points.
*
* @param threshold The minimum value of the angle that is considered defined, otherwise NOTDEF
* @param n_bins The number of bins with which gradients are ordered by, using bucket sort.
* @param list Return: Vector of coordinate points that are pseudo ordered by magnitude.
* Pixels would be ordered by norm value, up to a precision given by max_grad/n_bins.
*/
void ll_angle(const double& threshold, const unsigned int& n_bins, std::vector<coorlist>& list);
/**
* Grow a region starting from point s with a defined precision,
* returning the containing points size and the angle of the gradients.
*
* @param s Starting point for the region.
* @param reg Return: Vector of points, that are part of the region
* @param reg_size Return: The size of the region.
* @param reg_angle Return: The mean angle of the region.
* @param prec The precision by which each region angle should be aligned to the mean.
*/
void region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
int& reg_size, double& reg_angle, const double& prec);
/**
* Finds the bounding rotated rectangle of a region.
*
* @param reg The region of points, from which the rectangle to be constructed from.
* @param reg_size The number of points in the region.
* @param reg_angle The mean angle of the region.
* @param prec The precision by which points were found.
* @param p Probability of a point with angle within 'prec'.
* @param rec Return: The generated rectangle.
*/
void region2rect(const std::vector<RegionPoint>& reg, const int reg_size, const double reg_angle,
const double prec, const double p, rect& rec) const;
/**
* Compute region's angle as the principal inertia axis of the region.
* @return Regions angle.
*/
double get_theta(const std::vector<RegionPoint>& reg, const int& reg_size, const double& x,
const double& y, const double& reg_angle, const double& prec) const;
/**
* An estimation of the angle tolerance is performed by the standard deviation of the angle at points
* near the region's starting point. Then, a new region is grown starting from the same point, but using the
* estimated angle tolerance. If this fails to produce a rectangle with the right density of region points,
* 'reduce_region_radius' is called to try to satisfy this condition.
*/
bool refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
const double prec, double p, rect& rec, const double& density_th);
/**
* Reduce the region size, by elimination the points far from the starting point, until that leads to
* rectangle with the right density of region points or to discard the region if too small.
*/
bool reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
const double prec, double p, rect& rec, double density, const double& density_th);
/**
* Try some rectangles variations to improve NFA value. Only if the rectangle is not meaningful (i.e., log_nfa <= log_eps).
* @return The new NFA value.
*/
double rect_improve(rect& rec) const;
/**
* Calculates the number of correctly aligned points within the rectangle.
* @return The new NFA value.
*/
double rect_nfa(const rect& rec) const;
/**
* Computes the NFA values based on the total number of points, points that agree.
* n, k, p are the binomial parameters.
* @return The new NFA value.
*/
double nfa(const int& n, const int& k, const double& p) const;
/**
* Is the point at place 'address' aligned to angle theta, up to precision 'prec'?
* @return Whether the point is aligned.
*/
bool isAligned(const int& address, const double& theta, const double& prec) const;
};
/////////////////////////////////////////////////////////////////////////////////////////
CV_EXPORTS Ptr<LineSegmentDetector> createLineSegmentDetectorSmrtPtr(
int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th,
double _log_eps, double _density_th, int _n_bins)
{
return Ptr<LineSegmentDetector>(new LineSegmentDetectorImpl(
_refine, _scale, _sigma_scale, _quant, _ang_th,
_log_eps, _density_th, _n_bins));
}
CV_EXPORTS LineSegmentDetector* createLineSegmentDetectorPtr(
int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th,
double _log_eps, double _density_th, int _n_bins)
{
return new LineSegmentDetectorImpl(
_refine, _scale, _sigma_scale, _quant, _ang_th,
_log_eps, _density_th, _n_bins);
}
/////////////////////////////////////////////////////////////////////////////////////////
LineSegmentDetectorImpl::LineSegmentDetectorImpl(int _refine, double _scale, double _sigma_scale, double _quant,
double _ang_th, double _log_eps, double _density_th, int _n_bins)
:SCALE(_scale), doRefine(_refine), SIGMA_SCALE(_sigma_scale), QUANT(_quant),
ANG_TH(_ang_th), LOG_EPS(_log_eps), DENSITY_TH(_density_th), N_BINS(_n_bins)
@ -173,46 +417,35 @@ LSD::LSD(int _refine, double _scale, double _sigma_scale, double _quant,
_n_bins > 0);
}
void LSD::detect(const cv::InputArray _image, cv::OutputArray _lines, cv::Rect _roi,
cv::OutputArray _width, cv::OutputArray _prec,
cv::OutputArray _nfa)
void LineSegmentDetectorImpl::detect(const InputArray _image, OutputArray _lines,
OutputArray _width, OutputArray _prec, OutputArray _nfa)
{
Mat_<double> img = _image.getMat();
CV_Assert(!img.empty() && img.channels() == 1);
// If default, then convert the whole image, else just the specified by roi
roi = _roi;
if (roi.area() == 0)
{
// Convert image to double
img.convertTo(image, CV_64FC1);
}
else
{
roix = roi.x;
roiy = roi.y;
img(roi).convertTo(image, CV_64FC1);
}
std::vector<Vec4i> lines;
std::vector<double>* w = (_width.needed())?(new std::vector<double>()) : 0;
std::vector<double>* p = (_prec.needed())?(new std::vector<double>()) : 0;
std::vector<double>* n = (_nfa.needed())?(new std::vector<double>()) : 0;
std::vector<double> w, p, n;
w_needed = _width.needed();
p_needed = _prec.needed();
n_needed = _nfa.needed();
CV_Assert((!_nfa.needed()) || // NFA InputArray will be filled _only_ when
(_nfa.needed() && doRefine >= LSD_REFINE_ADV)); // REFINE_ADV type LineSegmentDetectorImpl object is created.
flsd(lines, w, p, n);
Mat(lines).copyTo(_lines);
if(w) Mat(*w).copyTo(_width);
if(p) Mat(*p).copyTo(_prec);
if(n) Mat(*n).copyTo(_nfa);
delete w;
delete p;
delete n;
if(w_needed) Mat(w).copyTo(_width);
if(p_needed) Mat(p).copyTo(_prec);
if(n_needed) Mat(n).copyTo(_nfa);
}
void LSD::flsd(std::vector<Vec4i>& lines,
std::vector<double>* widths, std::vector<double>* precisions,
std::vector<double>* nfas)
void LineSegmentDetectorImpl::flsd(std::vector<Vec4i>& lines,
std::vector<double>& widths, std::vector<double>& precisions,
std::vector<double>& nfas)
{
// Angle tolerance
const double prec = M_PI * ANG_TH / 180;
@ -293,19 +526,12 @@ void LSD::flsd(std::vector<Vec4i>& lines,
rec.width /= SCALE;
}
if(roi.area()) // if a roi has been given by the user, adjust coordinates
{
rec.x1 += roix;
rec.y1 += roiy;
rec.x2 += roix;
rec.y2 += roiy;
}
//Store the relevant data
lines.push_back(Vec4i(int(rec.x1), int(rec.y1), int(rec.x2), int(rec.y2)));
if (widths) widths->push_back(rec.width);
if (precisions) precisions->push_back(rec.p);
if (nfas && doRefine >= LSD_REFINE_ADV) nfas->push_back(log_nfa);
if(w_needed) widths.push_back(rec.width);
if(p_needed) precisions.push_back(rec.p);
if(n_needed && doRefine >= LSD_REFINE_ADV) nfas.push_back(log_nfa);
// //Add the linesID to the region on the image
// for(unsigned int el = 0; el < reg_size; el++)
@ -316,11 +542,13 @@ void LSD::flsd(std::vector<Vec4i>& lines,
}
}
void LSD::ll_angle(const double& threshold, const unsigned int& n_bins, std::vector<coorlist>& list)
void LineSegmentDetectorImpl::ll_angle(const double& threshold,
const unsigned int& n_bins,
std::vector<coorlist>& list)
{
//Initialize data
angles = cv::Mat_<double>(scaled_image.size());
modgrad = cv::Mat_<double>(scaled_image.size());
angles = Mat_<double>(scaled_image.size());
modgrad = Mat_<double>(scaled_image.size());
angles_data = angles.ptr<double>(0);
modgrad_data = modgrad.ptr<double>(0);
@ -357,7 +585,7 @@ void LSD::ll_angle(const double& threshold, const unsigned int& n_bins, std::vec
}
else
{
angles_data[addr] = cv::fastAtan2(float(gx), float(-gy)) * DEG_TO_RADS; // gradient angle computation
angles_data[addr] = fastAtan2(float(gx), float(-gy)) * DEG_TO_RADS; // gradient angle computation
if (norm > max_grad) { max_grad = norm; }
}
@ -389,7 +617,7 @@ void LSD::ll_angle(const double& threshold, const unsigned int& n_bins, std::vec
range_e[i] = &list[count];
++count;
}
range_e[i]->p = cv::Point(x, y);
range_e[i]->p = Point(x, y);
range_e[i]->next = 0;
}
}
@ -413,7 +641,7 @@ void LSD::ll_angle(const double& threshold, const unsigned int& n_bins, std::vec
}
}
void LSD::region_grow(const cv::Point2i& s, std::vector<RegionPoint>& reg,
void LineSegmentDetectorImpl::region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
int& reg_size, double& reg_angle, const double& prec)
{
// Point to this region
@ -459,15 +687,15 @@ void LSD::region_grow(const cv::Point2i& s, std::vector<RegionPoint>& reg,
sumdx += cos(float(angle));
sumdy += sin(float(angle));
// reg_angle is used in the isAligned, so it needs to be updates?
reg_angle = cv::fastAtan2(sumdy, sumdx) * DEG_TO_RADS;
reg_angle = fastAtan2(sumdy, sumdx) * DEG_TO_RADS;
}
}
}
}
}
void LSD::region2rect(const std::vector<RegionPoint>& reg, const int reg_size, const double reg_angle,
const double prec, const double p, rect& rec) const
void LineSegmentDetectorImpl::region2rect(const std::vector<RegionPoint>& reg, const int reg_size,
const double reg_angle, const double prec, const double p, rect& rec) const
{
double x = 0, y = 0, sum = 0;
for(int i = 0; i < reg_size; ++i)
@ -524,7 +752,7 @@ void LSD::region2rect(const std::vector<RegionPoint>& reg, const int reg_size, c
if(rec.width < 1.0) rec.width = 1.0;
}
double LSD::get_theta(const std::vector<RegionPoint>& reg, const int& reg_size, const double& x,
double LineSegmentDetectorImpl::get_theta(const std::vector<RegionPoint>& reg, const int& reg_size, const double& x,
const double& y, const double& reg_angle, const double& prec) const
{
double Ixx = 0.0;
@ -552,8 +780,8 @@ double LSD::get_theta(const std::vector<RegionPoint>& reg, const int& reg_size,
// Compute angle
double theta = (fabs(Ixx)>fabs(Iyy))?
double(cv::fastAtan2(float(lambda - Ixx), float(Ixy))):
double(cv::fastAtan2(float(Ixy), float(lambda - Iyy))); // in degs
double(fastAtan2(float(lambda - Ixx), float(Ixy))):
double(fastAtan2(float(Ixy), float(lambda - Iyy))); // in degs
theta *= DEG_TO_RADS;
// Correct angle by 180 deg if necessary
@ -562,7 +790,7 @@ double LSD::get_theta(const std::vector<RegionPoint>& reg, const int& reg_size,
return theta;
}
bool LSD::refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
bool LineSegmentDetectorImpl::refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
const double prec, double p, rect& rec, const double& density_th)
{
double density = double(reg_size) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
@ -610,7 +838,7 @@ bool LSD::refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
}
}
bool LSD::reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
bool LineSegmentDetectorImpl::reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
const double prec, double p, rect& rec, double density, const double& density_th)
{
// Compute region's radius
@ -642,13 +870,14 @@ bool LSD::reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, dou
region2rect(reg, reg_size ,reg_angle, prec, p, rec);
// Re-compute region points density
density = double(reg_size) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
density = double(reg_size) /
(dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
}
return true;
}
double LSD::rect_improve(rect& rec) const
double LineSegmentDetectorImpl::rect_improve(rect& rec) const
{
double delta = 0.5;
double delta_2 = delta / 2.0;
@ -752,7 +981,7 @@ double LSD::rect_improve(rect& rec) const
return log_nfa;
}
double LSD::rect_nfa(const rect& rec) const
double LineSegmentDetectorImpl::rect_nfa(const rect& rec) const
{
int total_pts = 0, alg_pts = 0;
double half_width = rec.width / 2.0;
@ -871,7 +1100,7 @@ double LSD::rect_nfa(const rect& rec) const
return nfa(total_pts, alg_pts, rec.p);
}
double LSD::nfa(const int& n, const int& k, const double& p) const
double LineSegmentDetectorImpl::nfa(const int& n, const int& k, const double& p) const
{
// Trivial cases
if(n == 0 || k == 0) { return -LOG_NT; }
@ -909,7 +1138,7 @@ double LSD::nfa(const int& n, const int& k, const double& p) const
return -log10(bin_tail) - LOG_NT;
}
inline bool LSD::isAligned(const int& address, const double& theta, const double& prec) const
inline bool LineSegmentDetectorImpl::isAligned(const int& address, const double& theta, const double& prec) const
{
if(address < 0) { return false; }
const double& a = angles_data[address];
@ -928,18 +1157,18 @@ inline bool LSD::isAligned(const int& address, const double& theta, const double
}
void LSD::drawSegments(cv::Mat& image, const std::vector<cv::Vec4i>& lines)
void LineSegmentDetectorImpl::drawSegments(InputOutputArray _image, const InputArray lines)
{
CV_Assert(!image.empty() && (image.channels() == 1 || image.channels() == 3));
CV_Assert(!_image.empty() && (_image.channels() == 1 || _image.channels() == 3));
Mat gray;
if (image.channels() == 1)
if (_image.channels() == 1)
{
gray = image;
gray = _image.getMatRef();
}
else if (image.channels() == 3)
else if (_image.channels() == 3)
{
cv::cvtColor(image, gray, CV_BGR2GRAY);
cvtColor(_image, gray, CV_BGR2GRAY);
}
// Create a 3 channel image in order to draw colored lines
@ -948,38 +1177,47 @@ void LSD::drawSegments(cv::Mat& image, const std::vector<cv::Vec4i>& lines)
planes.push_back(gray);
planes.push_back(gray);
merge(planes, image);
merge(planes, _image);
Mat _lines;
_lines = lines.getMat();
// Draw segments
for(unsigned int i = 0; i < lines.size(); ++i)
for(int i = 0; i < _lines.size().width; ++i)
{
Point b(lines[i][0], lines[i][1]);
Point e(lines[i][2], lines[i][3]);
line(image, b, e, Scalar(0, 0, 255), 1);
const Vec4i& v = _lines.at<Vec4i>(i);
Point b(v[0], v[1]);
Point e(v[2], v[3]);
line(_image.getMatRef(), b, e, Scalar(0, 0, 255), 1);
}
}
int LSD::compareSegments(const cv::Size& size, const std::vector<cv::Vec4i>& lines1, const std::vector<cv::Vec4i> lines2, cv::Mat* image)
int LineSegmentDetectorImpl::compareSegments(const Size& size, const InputArray lines1, const InputArray lines2, Mat* _image)
{
Size sz = size;
if (image && image->size() != size) sz = image->size();
if (_image && _image->size() != size) sz = _image->size();
CV_Assert(sz.area());
Mat_<uchar> I1 = Mat_<uchar>::zeros(sz);
Mat_<uchar> I2 = Mat_<uchar>::zeros(sz);
Mat _lines1;
Mat _lines2;
_lines1 = lines1.getMat();
_lines2 = lines2.getMat();
// Draw segments
for(unsigned int i = 0; i < lines1.size(); ++i)
std::vector<Mat> _lines;
for(int i = 0; i < _lines1.size().width; ++i)
{
Point b(lines1[i][0], lines1[i][1]);
Point e(lines1[i][2], lines1[i][3]);
Point b(_lines1.at<Vec4i>(i)[0], _lines1.at<Vec4i>(i)[1]);
Point e(_lines1.at<Vec4i>(i)[2], _lines1.at<Vec4i>(i)[3]);
line(I1, b, e, Scalar::all(255), 1);
}
for(unsigned int i = 0; i < lines2.size(); ++i)
for(int i = 0; i < _lines2.size().width; ++i)
{
Point b(lines2[i][0], lines2[i][1]);
Point e(lines2[i][2], lines2[i][3]);
Point b(_lines2.at<Vec4i>(i)[0], _lines2.at<Vec4i>(i)[1]);
Point e(_lines2.at<Vec4i>(i)[2], _lines2.at<Vec4i>(i)[3]);
line(I2, b, e, Scalar::all(255), 1);
}
@ -988,14 +1226,14 @@ int LSD::compareSegments(const cv::Size& size, const std::vector<cv::Vec4i>& lin
bitwise_xor(I1, I2, Ixor);
int N = countNonZero(Ixor);
if (image)
if (_image)
{
Mat Ig;
if (image->channels() == 1)
if (_image->channels() == 1)
{
cv::cvtColor(*image, *image, CV_GRAY2BGR);
cvtColor(*_image, *_image, CV_GRAY2BGR);
}
CV_Assert(image->isContinuous() && I1.isContinuous() && I2.isContinuous());
CV_Assert(_image->isContinuous() && I1.isContinuous() && I2.isContinuous());
for (unsigned int i = 0; i < I1.total(); ++i)
{
@ -1003,14 +1241,16 @@ int LSD::compareSegments(const cv::Size& size, const std::vector<cv::Vec4i>& lin
uchar i2 = I2.data[i];
if (i1 || i2)
{
image->data[3*i + 1] = 0;
if (i1) image->data[3*i] = 255;
else image->data[3*i] = 0;
if (i2) image->data[3*i + 2] = 255;
else image->data[3*i + 2] = 0;
_image->data[3*i + 1] = 0;
if (i1) _image->data[3*i] = 255;
else _image->data[3*i] = 0;
if (i2) _image->data[3*i + 2] = 255;
else _image->data[3*i + 2] = 0;
}
}
}
return N;
}
} // namespace cv

View File

@ -23,26 +23,26 @@ protected:
virtual void SetUp();
};
class LSD_ADV: public LSDBase
class Imgproc_LSD_ADV: public LSDBase
{
public:
LSD_ADV() {};
Imgproc_LSD_ADV() {};
protected:
};
class LSD_STD: public LSDBase
class Imgproc_LSD_STD: public LSDBase
{
public:
LSD_STD() {};
Imgproc_LSD_STD() {};
protected:
};
class LSD_NONE: public LSDBase
class Imgproc_LSD_NONE: public LSDBase
{
public:
LSD_NONE() {};
Imgproc_LSD_NONE() {};
protected:
};
@ -92,7 +92,7 @@ void LSDBase::GenerateRotatedRect(Mat& image)
rRect.points(vertices);
for (int i = 0; i < 4; i++)
{
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(255));
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(255), 3);
}
}
@ -103,110 +103,113 @@ void LSDBase::SetUp()
}
TEST_F(LSD_ADV, whiteNoise)
TEST_F(Imgproc_LSD_ADV, whiteNoise)
{
GenerateWhiteNoise(test_image);
LSD detector(LSD_REFINE_ADV);
detector.detect(test_image, lines);
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_ADV);
detector->detect(test_image, lines);
ASSERT_GE((unsigned int)(40), lines.size());
}
TEST_F(LSD_ADV, constColor)
TEST_F(Imgproc_LSD_ADV, constColor)
{
GenerateConstColor(test_image);
LSD detector(LSD_REFINE_ADV);
detector.detect(test_image, lines);
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_ADV);
detector->detect(test_image, lines);
ASSERT_EQ((unsigned int)(0), lines.size());
}
TEST_F(LSD_ADV, lines)
TEST_F(Imgproc_LSD_ADV, lines)
{
const unsigned int numOfLines = 3;
GenerateLines(test_image, numOfLines);
LSD detector(LSD_REFINE_ADV);
detector.detect(test_image, lines);
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_ADV);
detector->detect(test_image, lines);
ASSERT_EQ(numOfLines * 2, lines.size()); // * 2 because of Gibbs effect
}
TEST_F(LSD_ADV, rotatedRect)
TEST_F(Imgproc_LSD_ADV, rotatedRect)
{
GenerateRotatedRect(test_image);
LSD detector(LSD_REFINE_ADV);
detector.detect(test_image, lines);
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_ADV);
detector->detect(test_image, lines);
ASSERT_LE((unsigned int)(2), lines.size());
}
TEST_F(Imgproc_LSD_STD, whiteNoise)
{
GenerateWhiteNoise(test_image);
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_STD);
detector->detect(test_image, lines);
ASSERT_GE((unsigned int)(50), lines.size());
}
TEST_F(Imgproc_LSD_STD, constColor)
{
GenerateConstColor(test_image);
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_STD);
detector->detect(test_image, lines);
ASSERT_EQ((unsigned int)(0), lines.size());
}
TEST_F(Imgproc_LSD_STD, lines)
{
const unsigned int numOfLines = 3; //1
GenerateLines(test_image, numOfLines);
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_STD);
detector->detect(test_image, lines);
ASSERT_EQ(numOfLines * 2, lines.size()); // * 2 because of Gibbs effect
}
TEST_F(Imgproc_LSD_STD, rotatedRect)
{
GenerateRotatedRect(test_image);
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_STD);
detector->detect(test_image, lines);
ASSERT_LE((unsigned int)(4), lines.size());
}
TEST_F(LSD_STD, whiteNoise)
TEST_F(Imgproc_LSD_NONE, whiteNoise)
{
GenerateWhiteNoise(test_image);
LSD detector(LSD_REFINE_STD);
detector.detect(test_image, lines);
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_STD);
detector->detect(test_image, lines);
ASSERT_GE((unsigned int)(50), lines.size());
}
TEST_F(LSD_STD, constColor)
TEST_F(Imgproc_LSD_NONE, constColor)
{
GenerateConstColor(test_image);
LSD detector(LSD_REFINE_STD);
detector.detect(test_image, lines);
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_NONE);
detector->detect(test_image, lines);
ASSERT_EQ((unsigned int)(0), lines.size());
}
TEST_F(LSD_STD, lines)
TEST_F(Imgproc_LSD_NONE, lines)
{
const unsigned int numOfLines = 3; //1
GenerateLines(test_image, numOfLines);
LSD detector(LSD_REFINE_STD);
detector.detect(test_image, lines);
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_NONE);
detector->detect(test_image, lines);
ASSERT_EQ(numOfLines * 2, lines.size()); // * 2 because of Gibbs effect
}
TEST_F(LSD_STD, rotatedRect)
TEST_F(Imgproc_LSD_NONE, rotatedRect)
{
GenerateRotatedRect(test_image);
LSD detector(LSD_REFINE_STD);
detector.detect(test_image, lines);
ASSERT_EQ((unsigned int)(8), lines.size());
}
TEST_F(LSD_NONE, whiteNoise)
{
GenerateWhiteNoise(test_image);
LSD detector(LSD_REFINE_NONE);
detector.detect(test_image, lines);
ASSERT_GE((unsigned int)(50), lines.size());
}
TEST_F(LSD_NONE, constColor)
{
GenerateConstColor(test_image);
LSD detector(LSD_REFINE_NONE);
detector.detect(test_image, lines);
ASSERT_EQ((unsigned int)(0), lines.size());
}
TEST_F(LSD_NONE, lines)
{
const unsigned int numOfLines = 3; //1
GenerateLines(test_image, numOfLines);
LSD detector(LSD_REFINE_NONE);
detector.detect(test_image, lines);
ASSERT_EQ(numOfLines * 2, lines.size()); // * 2 because of Gibbs effect
}
TEST_F(LSD_NONE, rotatedRect)
{
GenerateRotatedRect(test_image);
LSD detector(LSD_REFINE_NONE);
detector.detect(test_image, lines);
ASSERT_EQ((unsigned int)(8), lines.size());
LineSegmentDetector* detector = createLineSegmentDetectorPtr(LSD_REFINE_NONE);
detector->detect(test_image, lines);
ASSERT_LE((unsigned int)(8), lines.size());
}

View File

@ -22,28 +22,28 @@ int main(int argc, char** argv)
Mat image = imread(in, IMREAD_GRAYSCALE);
// Create and LSD detector with std refinement.
LSD lsd_std(LSD_REFINE_STD);
LineSegmentDetector* lsd_std = createLineSegmentDetectorPtr(LSD_REFINE_STD);
double start = double(getTickCount());
vector<Vec4i> lines_std;
lsd_std.detect(image, lines_std);
lsd_std->detect(image, lines_std);
double duration_ms = (double(getTickCount()) - start) * 1000 / getTickFrequency();
std::cout << "OpenCV STD (blue) - " << duration_ms << " ms." << std::endl;
// Create an LSD detector with no refinement applied.
LSD lsd_none(LSD_REFINE_NONE);
LineSegmentDetector* lsd_none = createLineSegmentDetectorPtr(LSD_REFINE_NONE);
start = double(getTickCount());
vector<Vec4i> lines_none;
lsd_none.detect(image, lines_none);
lsd_none->detect(image, lines_none);
duration_ms = (double(getTickCount()) - start) * 1000 / getTickFrequency();
std::cout << "OpenCV NONE (red)- " << duration_ms << " ms." << std::endl;
std::cout << "Overlapping pixels are shown in purple." << std::endl;
Mat difference = Mat::zeros(image.size(), CV_8UC1);
LSD::compareSegments(image.size(), lines_std, lines_none, &difference);
lsd_none->compareSegments(image.size(), lines_std, lines_none, &difference);
imshow("Line difference", difference);
Mat drawnLines(image);
LSD::drawSegments(drawnLines, lines_std);
lsd_none->drawSegments(drawnLines, lines_std);
imshow("Standard refinement", drawnLines);
waitKey();