Merge pull request #20904 from Crayon-new:fix_bug_in_maxLayer

fix bug: wrong output dimension when "keep_dims" is false in pooling layer.

* fix bug in max layer

* code align

* delete permute layer and add test case

* add name assert

* check other cases

* remove c++11 features

* style:add "const" remove assert

* style:sanitize file names
This commit is contained in:
ZaKiiiiiiiii 2021-11-10 00:24:04 +08:00 committed by GitHub
parent 1ac7baceff
commit 98b6ce353c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 66 additions and 24 deletions

View File

@ -2142,6 +2142,7 @@ void TFImporter::parseMean(tensorflow::GraphDef& net, const tensorflow::NodeDef&
const std::string& type = layer.op();
const int num_inputs = layer.input_size();
std::string pool_type = cv::toLowerCase(type);
DataLayout layout = getDataLayout(name, data_layouts);
if (pool_type == "mean")
{
@ -2205,6 +2206,16 @@ void TFImporter::parseMean(tensorflow::GraphDef& net, const tensorflow::NodeDef&
if (!keepDims)
{
if (layout == DATA_LAYOUT_NHWC)
{
LayerParams permLP;
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
std::string permName = name + "/nhwc";
Pin inpId = Pin(layerShapeName);
addPermuteLayer(order, permName, inpId);
layerShapeName = permName;
}
LayerParams squeezeLp;
std::string squeezeName = name + "/squeeze";
CV_Assert(layer_id.find(squeezeName) == layer_id.end());
@ -2227,22 +2238,30 @@ void TFImporter::parseMean(tensorflow::GraphDef& net, const tensorflow::NodeDef&
layerParams.set("pool", pool_type);
layerParams.set(axis == 2 ? "kernel_w" : "kernel_h", 1);
layerParams.set(axis == 2 ? "global_pooling_h" : "global_pooling_w", true);
int id = dstNet.addLayer(name, "Pooling", layerParams);
layer_id[name] = id;
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
if (!keepDims)
if (keepDims)
{
int id = dstNet.addLayer(name, "Pooling", layerParams);
layer_id[name] = id;
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
}
else
{
// To keep correct order after squeeze dims we first need to change layout from NCHW to NHWC
std::string poolingName = name + "/Pooling";
CV_Assert(layer_id.find(poolingName) == layer_id.end());
int id = dstNet.addLayer(poolingName, "Pooling", layerParams);
layer_id[poolingName] = id;
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
LayerParams permLP;
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
std::string permName = name + "/nchw";
Pin inpId = Pin(name);
std::string permName = name + "/nhwc";
Pin inpId = Pin(poolingName);
addPermuteLayer(order, permName, inpId);
LayerParams squeezeLp;
std::string squeezeName = name + "/squeeze";
CV_Assert(layer_id.find(squeezeName) == layer_id.end());
const std::string& squeezeName = name;
squeezeLp.set("axis", indices.at<int>(0));
squeezeLp.set("end_axis", indices.at<int>(0) + 1);
int squeezeId = dstNet.addLayer(squeezeName, "Flatten", squeezeLp);
@ -2254,32 +2273,34 @@ void TFImporter::parseMean(tensorflow::GraphDef& net, const tensorflow::NodeDef&
{
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
Pin inpId = parsePin(layer.input(0));
addPermuteLayer(order, name + "/nhwc", inpId);
std::string permName = name + "/nhwc";
addPermuteLayer(order, permName, inpId);
layerParams.set("pool", pool_type);
layerParams.set("kernel_h", 1);
layerParams.set("global_pooling_w", true);
int id = dstNet.addLayer(name, "Pooling", layerParams);
layer_id[name] = id;
connect(layer_id, dstNet, inpId, id, 0);
std::string poolingName = name + "/Pooling";
CV_Assert(layer_id.find(poolingName) == layer_id.end());
int id = dstNet.addLayer(poolingName, "Pooling", layerParams);
layer_id[poolingName] = id;
connect(layer_id, dstNet, Pin(permName), id, 0);
if (!keepDims)
{
LayerParams squeezeLp;
std::string squeezeName = name + "/squeeze";
CV_Assert(layer_id.find(squeezeName) == layer_id.end());
const std::string& squeezeName = name;
int channel_id = 3; // TF NHWC layout
squeezeLp.set("axis", channel_id - 1);
squeezeLp.set("end_axis", channel_id);
int squeezeId = dstNet.addLayer(squeezeName, "Flatten", squeezeLp);
layer_id[squeezeName] = squeezeId;
connect(layer_id, dstNet, Pin(name), squeezeId, 0);
connect(layer_id, dstNet, Pin(poolingName), squeezeId, 0);
}
else
{
int order[] = {0, 3, 1, 2}; // From NHWC to OpenCV's NCHW.
Pin inpId = parsePin(name);
addPermuteLayer(order, name + "/nchw", inpId);
Pin inpId = parsePin(poolingName);
addPermuteLayer(order, name, inpId);
}
}
} else {
@ -2288,18 +2309,26 @@ void TFImporter::parseMean(tensorflow::GraphDef& net, const tensorflow::NodeDef&
layerParams.set("pool", pool_type);
layerParams.set("global_pooling", true);
int id = dstNet.addLayer(name, "Pooling", layerParams);
layer_id[name] = id;
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
if (!keepDims)
if (keepDims)
{
int id = dstNet.addLayer(name, "Pooling", layerParams);
layer_id[name] = id;
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
}
else
{
std::string poolingName = name + "/Pooling";
CV_Assert(layer_id.find(poolingName) == layer_id.end());
int id = dstNet.addLayer(poolingName, "Pooling", layerParams);
layer_id[poolingName] = id;
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
LayerParams flattenLp;
std::string flattenName = name + "/flatten";
CV_Assert(layer_id.find(flattenName) == layer_id.end());
const std::string& flattenName = name;
int flattenId = dstNet.addLayer(flattenName, "Flatten", flattenLp);
layer_id[flattenName] = flattenId;
connect(layer_id, dstNet, Pin(name), flattenId, 0);
connect(layer_id, dstNet, Pin(poolingName), flattenId, 0);
data_layouts[name] = DATA_LAYOUT_PLANAR;
}
}
}

View File

@ -413,6 +413,19 @@ TEST_P(Test_TensorFlow_layers, pooling_reduce_sum)
runTensorFlowNet("reduce_sum"); // a SUM pooling over all spatial dimensions.
}
TEST_P(Test_TensorFlow_layers, pooling_reduce_sum2)
{
int axises[] = {0, 1, 2, 3};
for (int keepdims = 0; keepdims <= 1; ++keepdims)
{
for (int i = 0; i < sizeof(axises)/sizeof(axises[0]); ++i)
{
runTensorFlowNet(cv::format("reduce_sum_%d_%s", axises[i], (keepdims ? "True" : "False")));
}
runTensorFlowNet(cv::format("reduce_sum_1_2_%s", keepdims ? "True" : "False"));
}
}
TEST_P(Test_TensorFlow_layers, max_pool_grad)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)