mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
added Generalized Hough implementation
This commit is contained in:
parent
86c7e183d2
commit
98c92f196e
@ -770,11 +770,11 @@ CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat
|
||||
GpuMat& result, Stream& stream = Stream::Null());
|
||||
|
||||
//! Performa bilateral filtering of passsed image
|
||||
CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial,
|
||||
CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial,
|
||||
int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());
|
||||
|
||||
//! Brute force non-local means algorith (slow but universal)
|
||||
CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h,
|
||||
CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h,
|
||||
int search_widow_size = 11, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null());
|
||||
|
||||
|
||||
@ -854,6 +854,38 @@ CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, flo
|
||||
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
||||
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);
|
||||
|
||||
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
|
||||
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
|
||||
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
|
||||
class CV_EXPORTS GeneralizedHough_GPU : public Algorithm
|
||||
{
|
||||
public:
|
||||
static Ptr<GeneralizedHough_GPU> create(int method);
|
||||
|
||||
virtual ~GeneralizedHough_GPU();
|
||||
|
||||
//! set template to search
|
||||
void setTemplate(const GpuMat& templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
|
||||
void setTemplate(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter = Point(-1, -1));
|
||||
|
||||
//! find template on image
|
||||
void detect(const GpuMat& image, GpuMat& positions, int cannyThreshold = 100);
|
||||
void detect(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions);
|
||||
|
||||
void download(const GpuMat& d_positions, OutputArray h_positions, OutputArray h_votes = noArray());
|
||||
|
||||
void release();
|
||||
|
||||
protected:
|
||||
virtual void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter) = 0;
|
||||
virtual void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions) = 0;
|
||||
virtual void releaseImpl() = 0;
|
||||
|
||||
private:
|
||||
GpuMat edges_;
|
||||
CannyBuf cannyBuf_;
|
||||
};
|
||||
|
||||
////////////////////////////// Matrix reductions //////////////////////////////
|
||||
|
||||
//! computes mean value and standard deviation of all or selected array elements
|
||||
|
@ -1713,4 +1713,98 @@ PERF_TEST_P(Sz_Dp_MinDist, ImgProc_HoughCircles, Combine(GPU_TYPICAL_MAT_SIZES,
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// GeneralizedHough
|
||||
|
||||
CV_FLAGS(GHMethod, cv::GHT_POSITION, cv::GHT_SCALE, cv::GHT_ROTATION);
|
||||
|
||||
DEF_PARAM_TEST(Method_Sz, GHMethod, cv::Size);
|
||||
|
||||
PERF_TEST_P(Method_Sz, GeneralizedHough, Combine(
|
||||
Values(GHMethod(cv::GHT_POSITION), GHMethod(cv::GHT_POSITION | cv::GHT_SCALE), GHMethod(cv::GHT_POSITION | cv::GHT_ROTATION), GHMethod(cv::GHT_POSITION | cv::GHT_SCALE | cv::GHT_ROTATION)),
|
||||
GPU_TYPICAL_MAT_SIZES))
|
||||
{
|
||||
declare.time(10);
|
||||
|
||||
const int method = GET_PARAM(0);
|
||||
const cv::Size imageSize = GET_PARAM(1);
|
||||
|
||||
const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(templ.empty());
|
||||
|
||||
cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0));
|
||||
|
||||
cv::RNG rng(123456789);
|
||||
const int objCount = rng.uniform(5, 15);
|
||||
for (int i = 0; i < objCount; ++i)
|
||||
{
|
||||
double scale = rng.uniform(0.7, 1.3);
|
||||
bool rotate = rng.uniform(0, 2);
|
||||
|
||||
cv::Mat obj;
|
||||
cv::resize(templ, obj, cv::Size(), scale, scale);
|
||||
if (rotate)
|
||||
obj = obj.t();
|
||||
|
||||
cv::Point pos;
|
||||
|
||||
pos.x = rng.uniform(0, image.cols - obj.cols);
|
||||
pos.y = rng.uniform(0, image.rows - obj.rows);
|
||||
|
||||
cv::Mat roi = image(cv::Rect(pos, obj.size()));
|
||||
cv::add(roi, obj, roi);
|
||||
}
|
||||
|
||||
cv::Mat edges;
|
||||
cv::Canny(image, edges, 50, 100);
|
||||
|
||||
cv::Mat dx, dy;
|
||||
cv::Sobel(image, dx, CV_32F, 1, 0);
|
||||
cv::Sobel(image, dy, CV_32F, 0, 1);
|
||||
|
||||
if (runOnGpu)
|
||||
{
|
||||
cv::gpu::GpuMat d_edges(edges);
|
||||
cv::gpu::GpuMat d_dx(dx);
|
||||
cv::gpu::GpuMat d_dy(dy);
|
||||
cv::gpu::GpuMat d_position;
|
||||
|
||||
cv::Ptr<cv::gpu::GeneralizedHough_GPU> d_hough = cv::gpu::GeneralizedHough_GPU::create(method);
|
||||
if (method & cv::GHT_ROTATION)
|
||||
{
|
||||
d_hough->set("maxAngle", 90.0);
|
||||
d_hough->set("angleStep", 2.0);
|
||||
}
|
||||
|
||||
d_hough->setTemplate(cv::gpu::GpuMat(templ));
|
||||
|
||||
d_hough->detect(d_edges, d_dx, d_dy, d_position);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
d_hough->detect(d_edges, d_dx, d_dy, d_position);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Mat positions;
|
||||
|
||||
cv::Ptr<cv::GeneralizedHough> hough = cv::GeneralizedHough::create(method);
|
||||
if (method & cv::GHT_ROTATION)
|
||||
{
|
||||
hough->set("maxAngle", 90.0);
|
||||
hough->set("angleStep", 2.0);
|
||||
}
|
||||
|
||||
hough->setTemplate(templ);
|
||||
|
||||
hough->detect(edges, dx, dy, positions);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
hough->detect(edges, dx, dy, positions);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
256
modules/gpu/test/test_hough.cpp
Normal file
256
modules/gpu/test/test_hough.cpp
Normal file
@ -0,0 +1,256 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
|
||||
namespace {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// HoughLines
|
||||
|
||||
PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, cv::Size, UseRoi)
|
||||
{
|
||||
static void generateLines(cv::Mat& img)
|
||||
{
|
||||
img.setTo(cv::Scalar::all(0));
|
||||
|
||||
cv::line(img, cv::Point(20, 0), cv::Point(20, img.rows), cv::Scalar::all(255));
|
||||
cv::line(img, cv::Point(0, 50), cv::Point(img.cols, 50), cv::Scalar::all(255));
|
||||
cv::line(img, cv::Point(0, 0), cv::Point(img.cols, img.rows), cv::Scalar::all(255));
|
||||
cv::line(img, cv::Point(img.cols, 0), cv::Point(0, img.rows), cv::Scalar::all(255));
|
||||
}
|
||||
|
||||
static void drawLines(cv::Mat& dst, const std::vector<cv::Vec2f>& lines)
|
||||
{
|
||||
dst.setTo(cv::Scalar::all(0));
|
||||
|
||||
for (size_t i = 0; i < lines.size(); ++i)
|
||||
{
|
||||
float rho = lines[i][0], theta = lines[i][1];
|
||||
cv::Point pt1, pt2;
|
||||
double a = std::cos(theta), b = std::sin(theta);
|
||||
double x0 = a*rho, y0 = b*rho;
|
||||
pt1.x = cvRound(x0 + 1000*(-b));
|
||||
pt1.y = cvRound(y0 + 1000*(a));
|
||||
pt2.x = cvRound(x0 - 1000*(-b));
|
||||
pt2.y = cvRound(y0 - 1000*(a));
|
||||
cv::line(dst, pt1, pt2, cv::Scalar::all(255));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HoughLines, Accuracy)
|
||||
{
|
||||
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
const cv::Size size = GET_PARAM(1);
|
||||
const bool useRoi = GET_PARAM(2);
|
||||
|
||||
const float rho = 1.0f;
|
||||
const float theta = 1.5f * CV_PI / 180.0f;
|
||||
const int threshold = 100;
|
||||
|
||||
cv::Mat src(size, CV_8UC1);
|
||||
generateLines(src);
|
||||
|
||||
cv::gpu::GpuMat d_lines;
|
||||
cv::gpu::HoughLines(loadMat(src, useRoi), d_lines, rho, theta, threshold);
|
||||
|
||||
std::vector<cv::Vec2f> lines;
|
||||
cv::gpu::HoughLinesDownload(d_lines, lines);
|
||||
|
||||
cv::Mat dst(size, CV_8UC1);
|
||||
drawLines(dst, lines);
|
||||
|
||||
ASSERT_MAT_NEAR(src, dst, 0.0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughLines, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// HoughCircles
|
||||
|
||||
PARAM_TEST_CASE(HoughCircles, cv::gpu::DeviceInfo, cv::Size, UseRoi)
|
||||
{
|
||||
static void drawCircles(cv::Mat& dst, const std::vector<cv::Vec3f>& circles, bool fill)
|
||||
{
|
||||
dst.setTo(cv::Scalar::all(0));
|
||||
|
||||
for (size_t i = 0; i < circles.size(); ++i)
|
||||
cv::circle(dst, cv::Point2f(circles[i][0], circles[i][1]), (int)circles[i][2], cv::Scalar::all(255), fill ? -1 : 1);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HoughCircles, Accuracy)
|
||||
{
|
||||
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
const cv::Size size = GET_PARAM(1);
|
||||
const bool useRoi = GET_PARAM(2);
|
||||
|
||||
const float dp = 2.0f;
|
||||
const float minDist = 10.0f;
|
||||
const int minRadius = 10;
|
||||
const int maxRadius = 20;
|
||||
const int cannyThreshold = 100;
|
||||
const int votesThreshold = 20;
|
||||
|
||||
std::vector<cv::Vec3f> circles_gold(4);
|
||||
circles_gold[0] = cv::Vec3i(20, 20, minRadius);
|
||||
circles_gold[1] = cv::Vec3i(90, 87, minRadius + 3);
|
||||
circles_gold[2] = cv::Vec3i(30, 70, minRadius + 8);
|
||||
circles_gold[3] = cv::Vec3i(80, 10, maxRadius);
|
||||
|
||||
cv::Mat src(size, CV_8UC1);
|
||||
drawCircles(src, circles_gold, true);
|
||||
|
||||
cv::gpu::GpuMat d_circles;
|
||||
cv::gpu::HoughCircles(loadMat(src, useRoi), d_circles, CV_HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
|
||||
|
||||
std::vector<cv::Vec3f> circles;
|
||||
cv::gpu::HoughCirclesDownload(d_circles, circles);
|
||||
|
||||
ASSERT_FALSE(circles.empty());
|
||||
|
||||
for (size_t i = 0; i < circles.size(); ++i)
|
||||
{
|
||||
cv::Vec3f cur = circles[i];
|
||||
|
||||
bool found = false;
|
||||
|
||||
for (size_t j = 0; j < circles_gold.size(); ++j)
|
||||
{
|
||||
cv::Vec3f gold = circles_gold[j];
|
||||
|
||||
if (std::fabs(cur[0] - gold[0]) < minDist && std::fabs(cur[1] - gold[1]) < minDist && std::fabs(cur[2] - gold[2]) < minDist)
|
||||
{
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT_TRUE(found);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughCircles, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// GeneralizedHough
|
||||
|
||||
PARAM_TEST_CASE(GeneralizedHough, cv::gpu::DeviceInfo, UseRoi)
|
||||
{
|
||||
};
|
||||
|
||||
TEST_P(GeneralizedHough, POSITION)
|
||||
{
|
||||
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
const bool useRoi = GET_PARAM(1);
|
||||
|
||||
cv::Mat templ = readImage("../cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(templ.empty());
|
||||
|
||||
cv::Point templCenter(templ.cols / 2, templ.rows / 2);
|
||||
|
||||
const size_t gold_count = 3;
|
||||
cv::Point pos_gold[gold_count];
|
||||
pos_gold[0] = cv::Point(templCenter.x + 10, templCenter.y + 10);
|
||||
pos_gold[1] = cv::Point(2 * templCenter.x + 40, templCenter.y + 10);
|
||||
pos_gold[2] = cv::Point(2 * templCenter.x + 40, 2 * templCenter.y + 40);
|
||||
|
||||
cv::Mat image(templ.rows * 3, templ.cols * 3, CV_8UC1, cv::Scalar::all(0));
|
||||
for (size_t i = 0; i < gold_count; ++i)
|
||||
{
|
||||
cv::Rect rec(pos_gold[i].x - templCenter.x, pos_gold[i].y - templCenter.y, templ.cols, templ.rows);
|
||||
cv::Mat imageROI = image(rec);
|
||||
templ.copyTo(imageROI);
|
||||
}
|
||||
|
||||
cv::Ptr<cv::gpu::GeneralizedHough_GPU> hough = cv::gpu::GeneralizedHough_GPU::create(cv::GHT_POSITION);
|
||||
hough->set("votesThreshold", 200);
|
||||
|
||||
hough->setTemplate(loadMat(templ, useRoi));
|
||||
|
||||
cv::gpu::GpuMat d_pos;
|
||||
hough->detect(loadMat(image, useRoi), d_pos);
|
||||
|
||||
std::vector<cv::Vec4f> pos;
|
||||
hough->download(d_pos, pos);
|
||||
|
||||
ASSERT_EQ(gold_count, pos.size());
|
||||
|
||||
for (size_t i = 0; i < gold_count; ++i)
|
||||
{
|
||||
cv::Point gold = pos_gold[i];
|
||||
|
||||
bool found = false;
|
||||
|
||||
for (size_t j = 0; j < pos.size(); ++j)
|
||||
{
|
||||
cv::Point2f p(pos[j][0], pos[j][1]);
|
||||
|
||||
if (::fabs(p.x - gold.x) < 2 && ::fabs(p.y - gold.y) < 2)
|
||||
{
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT_TRUE(found);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, GeneralizedHough, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // HAVE_CUDA
|
@ -1126,142 +1126,6 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine(
|
||||
testing::Values(BlockSize(3), BlockSize(5), BlockSize(7)),
|
||||
testing::Values(ApertureSize(0), ApertureSize(3), ApertureSize(5), ApertureSize(7))));
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// HoughLines
|
||||
|
||||
PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, cv::Size, UseRoi)
|
||||
{
|
||||
static void generateLines(cv::Mat& img)
|
||||
{
|
||||
img.setTo(cv::Scalar::all(0));
|
||||
|
||||
cv::line(img, cv::Point(20, 0), cv::Point(20, img.rows), cv::Scalar::all(255));
|
||||
cv::line(img, cv::Point(0, 50), cv::Point(img.cols, 50), cv::Scalar::all(255));
|
||||
cv::line(img, cv::Point(0, 0), cv::Point(img.cols, img.rows), cv::Scalar::all(255));
|
||||
cv::line(img, cv::Point(img.cols, 0), cv::Point(0, img.rows), cv::Scalar::all(255));
|
||||
}
|
||||
|
||||
static void drawLines(cv::Mat& dst, const std::vector<cv::Vec2f>& lines)
|
||||
{
|
||||
dst.setTo(cv::Scalar::all(0));
|
||||
|
||||
for (size_t i = 0; i < lines.size(); ++i)
|
||||
{
|
||||
float rho = lines[i][0], theta = lines[i][1];
|
||||
cv::Point pt1, pt2;
|
||||
double a = std::cos(theta), b = std::sin(theta);
|
||||
double x0 = a*rho, y0 = b*rho;
|
||||
pt1.x = cvRound(x0 + 1000*(-b));
|
||||
pt1.y = cvRound(y0 + 1000*(a));
|
||||
pt2.x = cvRound(x0 - 1000*(-b));
|
||||
pt2.y = cvRound(y0 - 1000*(a));
|
||||
cv::line(dst, pt1, pt2, cv::Scalar::all(255));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HoughLines, Accuracy)
|
||||
{
|
||||
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
const cv::Size size = GET_PARAM(1);
|
||||
const bool useRoi = GET_PARAM(2);
|
||||
|
||||
const float rho = 1.0f;
|
||||
const float theta = 1.5f * CV_PI / 180.0f;
|
||||
const int threshold = 100;
|
||||
|
||||
cv::Mat src(size, CV_8UC1);
|
||||
generateLines(src);
|
||||
|
||||
cv::gpu::GpuMat d_lines;
|
||||
cv::gpu::HoughLines(loadMat(src, useRoi), d_lines, rho, theta, threshold);
|
||||
|
||||
std::vector<cv::Vec2f> lines;
|
||||
cv::gpu::HoughLinesDownload(d_lines, lines);
|
||||
|
||||
cv::Mat dst(size, CV_8UC1);
|
||||
drawLines(dst, lines);
|
||||
|
||||
ASSERT_MAT_NEAR(src, dst, 0.0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughLines, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// HoughCircles
|
||||
|
||||
PARAM_TEST_CASE(HoughCircles, cv::gpu::DeviceInfo, cv::Size, UseRoi)
|
||||
{
|
||||
static void drawCircles(cv::Mat& dst, const std::vector<cv::Vec3f>& circles, bool fill)
|
||||
{
|
||||
dst.setTo(cv::Scalar::all(0));
|
||||
|
||||
for (size_t i = 0; i < circles.size(); ++i)
|
||||
cv::circle(dst, cv::Point2f(circles[i][0], circles[i][1]), (int)circles[i][2], cv::Scalar::all(255), fill ? -1 : 1);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HoughCircles, Accuracy)
|
||||
{
|
||||
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
const cv::Size size = GET_PARAM(1);
|
||||
const bool useRoi = GET_PARAM(2);
|
||||
|
||||
const float dp = 2.0f;
|
||||
const float minDist = 10.0f;
|
||||
const int minRadius = 10;
|
||||
const int maxRadius = 20;
|
||||
const int cannyThreshold = 100;
|
||||
const int votesThreshold = 20;
|
||||
|
||||
std::vector<cv::Vec3f> circles_gold(4);
|
||||
circles_gold[0] = cv::Vec3i(20, 20, minRadius);
|
||||
circles_gold[1] = cv::Vec3i(90, 87, minRadius + 3);
|
||||
circles_gold[2] = cv::Vec3i(30, 70, minRadius + 8);
|
||||
circles_gold[3] = cv::Vec3i(80, 10, maxRadius);
|
||||
|
||||
cv::Mat src(size, CV_8UC1);
|
||||
drawCircles(src, circles_gold, true);
|
||||
|
||||
cv::gpu::GpuMat d_circles;
|
||||
cv::gpu::HoughCircles(loadMat(src, useRoi), d_circles, CV_HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
|
||||
|
||||
std::vector<cv::Vec3f> circles;
|
||||
cv::gpu::HoughCirclesDownload(d_circles, circles);
|
||||
|
||||
ASSERT_FALSE(circles.empty());
|
||||
|
||||
for (size_t i = 0; i < circles.size(); ++i)
|
||||
{
|
||||
cv::Vec3f cur = circles[i];
|
||||
|
||||
bool found = false;
|
||||
|
||||
for (size_t j = 0; j < circles_gold.size(); ++j)
|
||||
{
|
||||
cv::Vec3f gold = circles_gold[j];
|
||||
|
||||
if (std::fabs(cur[0] - gold[0]) < minDist && std::fabs(cur[1] - gold[1]) < minDist && std::fabs(cur[2] - gold[2]) < minDist)
|
||||
{
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT_TRUE(found);
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughCircles, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // HAVE_CUDA
|
||||
|
@ -489,6 +489,42 @@ CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
|
||||
double param1=100, double param2=100,
|
||||
int minRadius=0, int maxRadius=0 );
|
||||
|
||||
enum
|
||||
{
|
||||
GHT_POSITION = 0,
|
||||
GHT_SCALE = 1,
|
||||
GHT_ROTATION = 2
|
||||
};
|
||||
|
||||
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
|
||||
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
|
||||
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
|
||||
class CV_EXPORTS GeneralizedHough : public Algorithm
|
||||
{
|
||||
public:
|
||||
static Ptr<GeneralizedHough> create(int method);
|
||||
|
||||
virtual ~GeneralizedHough();
|
||||
|
||||
//! set template to search
|
||||
void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
|
||||
void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1));
|
||||
|
||||
//! find template on image
|
||||
void detect(InputArray image, OutputArray positions, OutputArray votes = cv::noArray(), int cannyThreshold = 100);
|
||||
void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = cv::noArray());
|
||||
|
||||
void release();
|
||||
|
||||
protected:
|
||||
virtual void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter) = 0;
|
||||
virtual void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) = 0;
|
||||
virtual void releaseImpl() = 0;
|
||||
|
||||
private:
|
||||
Mat edges_, dx_, dy_;
|
||||
};
|
||||
|
||||
//! erodes the image (applies the local minimum operator)
|
||||
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
|
||||
Point anchor=Point(-1,-1), int iterations=1,
|
||||
|
1293
modules/imgproc/src/generalized_hough.cpp
Normal file
1293
modules/imgproc/src/generalized_hough.cpp
Normal file
File diff suppressed because it is too large
Load Diff
209
samples/cpp/generalized_hough.cpp
Normal file
209
samples/cpp/generalized_hough.cpp
Normal file
@ -0,0 +1,209 @@
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/gpu/gpu.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/contrib/contrib.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
static Mat loadImage(const string& name)
|
||||
{
|
||||
Mat image = imread(name, IMREAD_GRAYSCALE);
|
||||
if (image.empty())
|
||||
{
|
||||
cerr << "Can't load image - " << name << endl;
|
||||
exit(-1);
|
||||
}
|
||||
return image;
|
||||
}
|
||||
|
||||
int main(int argc, const char* argv[])
|
||||
{
|
||||
CommandLineParser cmd(argc, argv,
|
||||
"{ image i | pic1.png | input image }"
|
||||
"{ template t | templ.png | template image }"
|
||||
"{ scale s | | estimate scale }"
|
||||
"{ rotation r | | estimate rotation }"
|
||||
"{ gpu | | use gpu version }"
|
||||
"{ minDist | 100 | minimum distance between the centers of the detected objects }"
|
||||
"{ levels | 360 | R-Table levels }"
|
||||
"{ votesThreshold | 30 | the accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected }"
|
||||
"{ angleThresh | 10000 | angle votes treshold }"
|
||||
"{ scaleThresh | 1000 | scale votes treshold }"
|
||||
"{ posThresh | 100 | position votes threshold }"
|
||||
"{ dp | 2 | inverse ratio of the accumulator resolution to the image resolution }"
|
||||
"{ minScale | 0.5 | minimal scale to detect }"
|
||||
"{ maxScale | 2 | maximal scale to detect }"
|
||||
"{ scaleStep | 0.05 | scale step }"
|
||||
"{ minAngle | 0 | minimal rotation angle to detect in degrees }"
|
||||
"{ maxAngle | 360 | maximal rotation angle to detect in degrees }"
|
||||
"{ angleStep | 1 | angle step in degrees }"
|
||||
"{ maxSize | 1000 | maximal size of inner buffers }"
|
||||
"{ help h ? | | print help message }"
|
||||
);
|
||||
|
||||
cmd.about("This program demonstrates arbitary object finding with the Generalized Hough transform.");
|
||||
|
||||
if (cmd.has("help"))
|
||||
{
|
||||
cmd.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
const string templName = cmd.get<string>("template");
|
||||
const string imageName = cmd.get<string>("image");
|
||||
const bool estimateScale = cmd.has("scale");
|
||||
const bool estimateRotation = cmd.has("rotation");
|
||||
const bool useGpu = cmd.has("gpu");
|
||||
const double minDist = cmd.get<double>("minDist");
|
||||
const int levels = cmd.get<int>("levels");
|
||||
const int votesThreshold = cmd.get<int>("votesThreshold");
|
||||
const int angleThresh = cmd.get<int>("angleThresh");
|
||||
const int scaleThresh = cmd.get<int>("scaleThresh");
|
||||
const int posThresh = cmd.get<int>("posThresh");
|
||||
const double dp = cmd.get<double>("dp");
|
||||
const double minScale = cmd.get<double>("minScale");
|
||||
const double maxScale = cmd.get<double>("maxScale");
|
||||
const double scaleStep = cmd.get<double>("scaleStep");
|
||||
const double minAngle = cmd.get<double>("minAngle");
|
||||
const double maxAngle = cmd.get<double>("maxAngle");
|
||||
const double angleStep = cmd.get<double>("angleStep");
|
||||
const int maxSize = cmd.get<int>("maxSize");
|
||||
|
||||
if (!cmd.check())
|
||||
{
|
||||
cmd.printErrors();
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat templ = loadImage(templName);
|
||||
Mat image = loadImage(imageName);
|
||||
|
||||
int method = GHT_POSITION;
|
||||
if (estimateScale)
|
||||
method += GHT_SCALE;
|
||||
if (estimateRotation)
|
||||
method += GHT_ROTATION;
|
||||
|
||||
vector<Vec4f> position;
|
||||
cv::TickMeter tm;
|
||||
|
||||
if (useGpu)
|
||||
{
|
||||
GpuMat d_templ(templ);
|
||||
GpuMat d_image(image);
|
||||
GpuMat d_position;
|
||||
|
||||
Ptr<GeneralizedHough_GPU> d_hough = GeneralizedHough_GPU::create(method);
|
||||
d_hough->set("minDist", minDist);
|
||||
d_hough->set("levels", levels);
|
||||
d_hough->set("dp", dp);
|
||||
d_hough->set("maxSize", maxSize);
|
||||
if (estimateScale && estimateRotation)
|
||||
{
|
||||
d_hough->set("angleThresh", angleThresh);
|
||||
d_hough->set("scaleThresh", scaleThresh);
|
||||
d_hough->set("posThresh", posThresh);
|
||||
}
|
||||
else
|
||||
{
|
||||
d_hough->set("votesThreshold", votesThreshold);
|
||||
}
|
||||
if (estimateScale)
|
||||
{
|
||||
d_hough->set("minScale", minScale);
|
||||
d_hough->set("maxScale", maxScale);
|
||||
d_hough->set("scaleStep", scaleStep);
|
||||
}
|
||||
if (estimateRotation)
|
||||
{
|
||||
d_hough->set("minAngle", minAngle);
|
||||
d_hough->set("maxAngle", maxAngle);
|
||||
d_hough->set("angleStep", angleStep);
|
||||
}
|
||||
|
||||
d_hough->setTemplate(d_templ);
|
||||
|
||||
tm.start();
|
||||
|
||||
d_hough->detect(d_image, d_position);
|
||||
d_hough->download(d_position, position);
|
||||
|
||||
tm.stop();
|
||||
}
|
||||
else
|
||||
{
|
||||
Ptr<GeneralizedHough> hough = GeneralizedHough::create(method);
|
||||
hough->set("minDist", minDist);
|
||||
hough->set("levels", levels);
|
||||
hough->set("dp", dp);
|
||||
if (estimateScale && estimateRotation)
|
||||
{
|
||||
hough->set("angleThresh", angleThresh);
|
||||
hough->set("scaleThresh", scaleThresh);
|
||||
hough->set("posThresh", posThresh);
|
||||
hough->set("maxSize", maxSize);
|
||||
}
|
||||
else
|
||||
{
|
||||
hough->set("votesThreshold", votesThreshold);
|
||||
}
|
||||
if (estimateScale)
|
||||
{
|
||||
hough->set("minScale", minScale);
|
||||
hough->set("maxScale", maxScale);
|
||||
hough->set("scaleStep", scaleStep);
|
||||
}
|
||||
if (estimateRotation)
|
||||
{
|
||||
hough->set("minAngle", minAngle);
|
||||
hough->set("maxAngle", maxAngle);
|
||||
hough->set("angleStep", angleStep);
|
||||
}
|
||||
|
||||
hough->setTemplate(templ);
|
||||
|
||||
tm.start();
|
||||
|
||||
hough->detect(image, position);
|
||||
|
||||
tm.stop();
|
||||
}
|
||||
|
||||
cout << "Found : " << position.size() << " objects" << endl;
|
||||
cout << "Detection time : " << tm.getTimeMilli() << " ms" << endl;
|
||||
|
||||
Mat out;
|
||||
cvtColor(image, out, COLOR_GRAY2BGR);
|
||||
|
||||
for (size_t i = 0; i < position.size(); ++i)
|
||||
{
|
||||
Point2f pos(position[i][0], position[i][1]);
|
||||
float scale = position[i][2];
|
||||
float angle = position[i][3];
|
||||
|
||||
RotatedRect rect;
|
||||
rect.center = pos;
|
||||
rect.size = Size2f(templ.cols * scale, templ.rows * scale);
|
||||
rect.angle = angle;
|
||||
|
||||
Point2f pts[4];
|
||||
rect.points(pts);
|
||||
|
||||
line(out, pts[0], pts[1], Scalar(0, 0, 255), 3);
|
||||
line(out, pts[1], pts[2], Scalar(0, 0, 255), 3);
|
||||
line(out, pts[2], pts[3], Scalar(0, 0, 255), 3);
|
||||
line(out, pts[3], pts[0], Scalar(0, 0, 255), 3);
|
||||
}
|
||||
|
||||
imshow("out", out);
|
||||
waitKey();
|
||||
|
||||
return 0;
|
||||
}
|
BIN
samples/cpp/templ.png
Normal file
BIN
samples/cpp/templ.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.6 KiB |
Loading…
Reference in New Issue
Block a user