mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
9b7b22ee0e
@ -129,9 +129,9 @@ endif()
|
||||
|
||||
if(INF_ENGINE_TARGET)
|
||||
if(NOT INF_ENGINE_RELEASE)
|
||||
message(WARNING "InferenceEngine version has not been set, 2020.3 will be used by default. Set INF_ENGINE_RELEASE variable if you experience build errors.")
|
||||
message(WARNING "InferenceEngine version has not been set, 2020.4 will be used by default. Set INF_ENGINE_RELEASE variable if you experience build errors.")
|
||||
endif()
|
||||
set(INF_ENGINE_RELEASE "2020030000" CACHE STRING "Force IE version, should be in form YYYYAABBCC (e.g. 2020.1.0.2 -> 2020010002)")
|
||||
set(INF_ENGINE_RELEASE "2020040000" CACHE STRING "Force IE version, should be in form YYYYAABBCC (e.g. 2020.1.0.2 -> 2020010002)")
|
||||
set_target_properties(${INF_ENGINE_TARGET} PROPERTIES
|
||||
INTERFACE_COMPILE_DEFINITIONS "HAVE_INF_ENGINE=1;INF_ENGINE_RELEASE=${INF_ENGINE_RELEASE}"
|
||||
)
|
||||
|
95
modules/dnn/perf/perf_layer.cpp
Normal file
95
modules/dnn/perf/perf_layer.cpp
Normal file
@ -0,0 +1,95 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "perf_precomp.hpp"
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
|
||||
namespace opencv_test {
|
||||
|
||||
struct Layer_Slice : public TestBaseWithParam<tuple<Backend, Target> >
|
||||
{
|
||||
template<int DIMS>
|
||||
void test_slice(const int* inputShape, const int* begin, const int* end)
|
||||
{
|
||||
int backendId = get<0>(GetParam());
|
||||
int targetId = get<1>(GetParam());
|
||||
|
||||
Mat input(DIMS, inputShape, CV_32FC1, Scalar::all(0));
|
||||
for (int i = 0; i < (int)input.total(); ++i)
|
||||
input.ptr<float>()[i] = (float)(i & 4095);
|
||||
|
||||
std::vector<Range> range(DIMS);
|
||||
for (int i = 0; i < DIMS; ++i)
|
||||
range[i] = Range(begin[i], end[i]);
|
||||
|
||||
Net net;
|
||||
LayerParams lp;
|
||||
lp.type = "Slice";
|
||||
lp.name = "testLayer";
|
||||
lp.set("begin", DictValue::arrayInt<int*>((int*)&begin[0], DIMS));
|
||||
lp.set("end", DictValue::arrayInt<int*>((int*)&end[0], DIMS));
|
||||
net.addLayerToPrev(lp.name, lp.type, lp);
|
||||
|
||||
// warmup
|
||||
{
|
||||
net.setInput(input);
|
||||
net.setPreferableBackend(backendId);
|
||||
net.setPreferableTarget(targetId);
|
||||
Mat out = net.forward();
|
||||
|
||||
EXPECT_GT(cv::norm(out, NORM_INF), 0);
|
||||
#if 0
|
||||
//normAssert(out, input(range));
|
||||
cout << input(range).clone().reshape(1, 1) << endl;
|
||||
cout << out.reshape(1, 1) << endl;
|
||||
#endif
|
||||
}
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
Mat res = net.forward();
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_1)
|
||||
{
|
||||
const int inputShape[4] = {1, 64, 104, 104};
|
||||
const int begin[] = {0, 32, 0, 0};
|
||||
const int end[] = {1, 64, 104, 104};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_2)
|
||||
{
|
||||
const int inputShape[4] = {1, 128, 52, 52};
|
||||
const int begin[] = {0, 64, 0, 0};
|
||||
const int end[] = {1, 128, 52, 52};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_3)
|
||||
{
|
||||
const int inputShape[4] = {1, 256, 26, 26};
|
||||
const int begin[] = {0, 128, 0, 0};
|
||||
const int end[] = {1, 256, 26, 26};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
|
||||
PERF_TEST_P_(Layer_Slice, FastNeuralStyle_eccv16)
|
||||
{
|
||||
const int inputShape[4] = {1, 128, 80, 100};
|
||||
const int begin[] = {0, 0, 2, 2};
|
||||
const int end[] = {1, 128, 76, 96};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_Slice, dnnBackendsAndTargets(false, false));
|
||||
|
||||
} // namespace
|
@ -196,6 +196,13 @@ PERF_TEST_P_(DNNTestNetwork, YOLOv3)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
throw SkipTestException("");
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
||||
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||||
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
||||
#endif
|
||||
|
||||
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
||||
cvtColor(sample, sample, COLOR_BGR2RGB);
|
||||
Mat inp;
|
||||
@ -209,6 +216,12 @@ PERF_TEST_P_(DNNTestNetwork, YOLOv4)
|
||||
throw SkipTestException("");
|
||||
if (target == DNN_TARGET_MYRIAD)
|
||||
throw SkipTestException("");
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
||||
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||||
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
||||
#endif
|
||||
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
||||
cvtColor(sample, sample, COLOR_BGR2RGB);
|
||||
Mat inp;
|
||||
@ -220,8 +233,6 @@ PERF_TEST_P_(DNNTestNetwork, YOLOv4_tiny)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
throw SkipTestException("");
|
||||
if (target == DNN_TARGET_MYRIAD)
|
||||
throw SkipTestException("");
|
||||
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
||||
cvtColor(sample, sample, COLOR_BGR2RGB);
|
||||
Mat inp;
|
||||
|
@ -63,9 +63,6 @@ int Subgraph::getInputNodeId(const Ptr<ImportGraphWrapper>& net,
|
||||
{
|
||||
CV_Assert(inpId < node->getNumInputs());
|
||||
std::string name = node->getInputName(inpId);
|
||||
// If operation produces several tensors, they are specified by index
|
||||
// after ':' character. In example, "input:0".
|
||||
name = name.substr(0, name.rfind(':'));
|
||||
const int numNodes = net->getNumNodes();
|
||||
for (int i = 0; i < numNodes; ++i)
|
||||
{
|
||||
|
@ -48,6 +48,8 @@
|
||||
#include "layers_common.hpp"
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
#include "opencl_kernels_dnn.hpp"
|
||||
#endif
|
||||
@ -204,58 +206,168 @@ public:
|
||||
finalSliceRanges[i][j] = clamp(finalSliceRanges[i][j], inpShape[j]);
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
std::cout << "DEBUG: DNN/Slice: " << outputs.size() << " inpShape=" << inpShape << std::endl;
|
||||
for (int i = 0; i < outputs.size(); ++i)
|
||||
{
|
||||
for (int j = 0; j < finalSliceRanges[i].size(); ++j)
|
||||
{
|
||||
std::cout << finalSliceRanges[i][j];
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
|
||||
{
|
||||
#if 1
|
||||
// TODO fix that (brokes YOLOv4-tiny)
|
||||
return false;
|
||||
#else
|
||||
std::vector<UMat> inputs;
|
||||
std::vector<UMat> outputs;
|
||||
|
||||
bool use_half = (inputs_.depth() == CV_16S);
|
||||
inputs_.getUMatVector(inputs);
|
||||
outputs_.getUMatVector(outputs);
|
||||
|
||||
if (inputs[0].dims < 4 || (total(shape(outputs[0]), 0, 2) % 4 != 0) ||
|
||||
(total(shape(outputs[0]), 2) % 4 != 0))
|
||||
return false;
|
||||
CV_Assert(outputs.size() == finalSliceRanges.size());
|
||||
|
||||
String opts;
|
||||
if (use_half)
|
||||
opts = "-DDtype=half -DDtype4=half4 -DDtype8=half8";
|
||||
else
|
||||
opts = "-DDtype=float -DDtype4=float4 -DDtype8=float8";
|
||||
const UMat& inpMat = inputs[0];
|
||||
for (size_t i = 0; i < outputs.size(); i++)
|
||||
const UMat& input = inputs[0];
|
||||
if (input.dims > 5)
|
||||
{
|
||||
int groups = outputs[i].size[0];
|
||||
int channels = outputs[i].size[1];
|
||||
int rows = outputs[i].size[2];
|
||||
int cols = outputs[i].size[3];
|
||||
|
||||
ocl::Kernel kernel("slice", ocl::dnn::slice_oclsrc, opts);
|
||||
size_t local[] = { 128 };
|
||||
size_t global[] = { (size_t)groups * channels / 4 * local[0] };
|
||||
int idx = 0;
|
||||
kernel.set(idx++, ocl::KernelArg::PtrReadOnly(inpMat));
|
||||
kernel.set(idx++, (int)(inpMat.size[2] * inpMat.size[3]));
|
||||
kernel.set(idx++, (int)(rows * cols));
|
||||
kernel.set(idx++, (int)inpMat.size[3]);
|
||||
kernel.set(idx++, (int)cols);
|
||||
kernel.set(idx++, (int)finalSliceRanges[i][2].start);
|
||||
kernel.set(idx++, (int)finalSliceRanges[i][3].start);
|
||||
kernel.set(idx++, ocl::KernelArg::PtrWriteOnly(outputs[i]));
|
||||
bool ret = kernel.run(1, global, local, false);
|
||||
if (!ret)
|
||||
return false;
|
||||
CV_LOG_INFO(NULL, "DNN/OpenCL/Slice: implementation doesn't support dims=" << input.dims << ". Fallback to CPU");
|
||||
return false;
|
||||
}
|
||||
|
||||
size_t WSZ = 128;
|
||||
|
||||
const int dims = input.dims;
|
||||
const int elemSize = (int)input.elemSize();
|
||||
String opts0 = cv::format(
|
||||
"-DDIMS=%d -DELEMSIZE=%d",
|
||||
dims, elemSize
|
||||
);
|
||||
for (int d = 0; d < dims; d++)
|
||||
{
|
||||
opts0 += cv::format(" -DSRC_STEP_%d=%d", d, (int)input.step[dims - 1 - d]);
|
||||
}
|
||||
String kname = cv::format("slice_%d", dims);
|
||||
for (size_t i = 0; i < outputs.size(); i++)
|
||||
{
|
||||
UMat& output = outputs[i];
|
||||
const std::vector<Range>& range = finalSliceRanges[i];
|
||||
|
||||
String opts = opts0;
|
||||
|
||||
CV_CheckEQ(output.dims, dims, "");
|
||||
for (int d = 0; d < dims; d++)
|
||||
{
|
||||
opts += cv::format(" -DDST_STEP_%d=%d -DDST_SZ_%d=%d -DSRC_START_%d=%d",
|
||||
d, (int)output.step[dims - 1 - d],
|
||||
d, (int)output.size[dims - 1 - d],
|
||||
d, (int)range[dims - 1 - d].start
|
||||
);
|
||||
CV_CheckEQ(range[d].size(), (int)output.size[d], "");
|
||||
}
|
||||
|
||||
int block_dims = 0;
|
||||
size_t block_size = elemSize;
|
||||
for (int i = dims - 1; i >= 0; --i)
|
||||
{
|
||||
if (input.step[i] != output.step[i])
|
||||
break;
|
||||
block_size *= output.size[i];
|
||||
block_dims++;
|
||||
}
|
||||
|
||||
const size_t total = output.total() * elemSize;
|
||||
size_t num_blocks = total / block_size;
|
||||
|
||||
if ((num_blocks <= 8 && block_size >= WSZ * 4) || (block_size >= WSZ * 64))
|
||||
{
|
||||
// use 1D copy mode
|
||||
opts += cv::format(" -DUSE_COPY_1D=1");
|
||||
|
||||
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims);
|
||||
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims);
|
||||
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size);
|
||||
|
||||
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
// use 2D copy mode
|
||||
int block_cols = block_size;
|
||||
int block_dims_contiguous = block_dims;
|
||||
size_t input_base_step = input.step[dims - 1 - block_dims_contiguous];
|
||||
size_t output_base_step = output.step[dims - 1 - block_dims_contiguous];
|
||||
|
||||
size_t block_rows = 1;
|
||||
for (int i = dims - 1 - block_dims_contiguous; i >= 0; --i)
|
||||
{
|
||||
if (input.step[i] * output_base_step != output.step[i] * input_base_step)
|
||||
break;
|
||||
block_rows *= output.size[i];
|
||||
block_dims++;
|
||||
}
|
||||
|
||||
block_size *= block_rows;
|
||||
|
||||
num_blocks = total / block_size;
|
||||
|
||||
if (block_rows > 1)
|
||||
{
|
||||
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims);
|
||||
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous);
|
||||
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size);
|
||||
|
||||
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_cols);
|
||||
|
||||
opts += cv::format(" -DBLOCK_ROWS=%d", (int)block_rows);
|
||||
opts += cv::format(" -DBLOCK_SRC_STRIDE=%d", (int)input_base_step);
|
||||
}
|
||||
else
|
||||
{
|
||||
// use 1D copy mode
|
||||
opts += cv::format(" -DUSE_COPY_1D=1");
|
||||
|
||||
opts += cv::format(" -DBLOCK_DIMS=%d", block_dims_contiguous);
|
||||
opts += cv::format(" -DBLOCK_DIMS_CONTIGUOUS=%d", block_dims_contiguous);
|
||||
opts += cv::format(" -DBLOCK_SIZE=%d", (int)block_size);
|
||||
|
||||
opts += cv::format(" -DBLOCK_COLS=%d", (int)block_size);
|
||||
}
|
||||
}
|
||||
|
||||
const size_t MIN_WORK_ITEMS = 16;
|
||||
if (block_size <= 4 * MIN_WORK_ITEMS)
|
||||
WSZ = 4;
|
||||
else if (block_size <= 8 * MIN_WORK_ITEMS)
|
||||
WSZ = 8;
|
||||
else if (block_size <= 16 * MIN_WORK_ITEMS)
|
||||
WSZ = 16;
|
||||
else if (block_size <= 32 * MIN_WORK_ITEMS)
|
||||
WSZ = 32;
|
||||
else if (block_size <= 64 * MIN_WORK_ITEMS)
|
||||
WSZ = 64;
|
||||
|
||||
opts += cv::format(" -DWSZ=%d", (int)WSZ);
|
||||
|
||||
size_t local[] = { WSZ, 1 };
|
||||
size_t global[] = { WSZ, num_blocks };
|
||||
|
||||
ocl::Kernel kernel(kname.c_str(), ocl::dnn::slice_oclsrc, opts);
|
||||
if (kernel.empty())
|
||||
return false;
|
||||
bool ret = kernel.args(
|
||||
ocl::KernelArg::PtrReadOnly(input),
|
||||
ocl::KernelArg::PtrWriteOnly(output)
|
||||
)
|
||||
.run(2, global, local, false);
|
||||
if (!ret)
|
||||
return false;
|
||||
} // for outputs.size()
|
||||
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -29,8 +29,8 @@
|
||||
#define INF_ENGINE_RELEASE_2020_4 2020040000
|
||||
|
||||
#ifndef INF_ENGINE_RELEASE
|
||||
#warning("IE version have not been provided via command-line. Using 2020.3 by default")
|
||||
#define INF_ENGINE_RELEASE INF_ENGINE_RELEASE_2020_3
|
||||
#warning("IE version have not been provided via command-line. Using 2020.4 by default")
|
||||
#define INF_ENGINE_RELEASE INF_ENGINE_RELEASE_2020_4
|
||||
#endif
|
||||
|
||||
#define INF_ENGINE_VER_MAJOR_GT(ver) (((INF_ENGINE_RELEASE) / 10000) > ((ver) / 10000))
|
||||
@ -44,7 +44,7 @@
|
||||
#pragma GCC diagnostic ignored "-Wsuggest-override"
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
|
||||
#if defined(HAVE_DNN_IE_NN_BUILDER_2019) || INF_ENGINE_VER_MAJOR_EQ(INF_ENGINE_RELEASE_2020_4)
|
||||
//#define INFERENCE_ENGINE_DEPRECATED // turn off deprecation warnings from IE
|
||||
//there is no way to suppress warnings from IE only at this moment, so we are forced to suppress warnings globally
|
||||
#if defined(__GNUC__)
|
||||
@ -53,7 +53,7 @@
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(disable: 4996) // was declared deprecated
|
||||
#endif
|
||||
#endif // HAVE_DNN_IE_NN_BUILDER_2019
|
||||
#endif
|
||||
|
||||
#if defined(__GNUC__) && INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2020_1)
|
||||
#pragma GCC visibility push(default)
|
||||
|
@ -1,81 +1,283 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
||||
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#if defined(cl_khr_fp16)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
/*
|
||||
Specialization constants:
|
||||
- WSZ: size of OpenCL local group
|
||||
- DIMS: number of working dimensions
|
||||
- ELEMSIZE: element size in bytes
|
||||
- DST_SZ_<i>: dst sizes
|
||||
- SRC_START_<i>: src index shift (slice .start value)
|
||||
- SRC_STEP_<i>: src steps (bytes)
|
||||
- DST_STEP_<i>: dst steps (bytes), derived from DST_SZ_<i> and ELEMSIZE
|
||||
- BLOCK_DIMS: number of dims for copy block (argmax(count(SRC_STEP_<i> != DST_STEP_<i>) <= 1))
|
||||
- BLOCK_DIMS_CONTIGUOUS (<= BLOCK_DIMS): SRC_STEP_<i> == DST_STEP_<i> for i in [0, BLOCK_DIMS_CONTIGUOUS)
|
||||
|
||||
derived specialization constants:
|
||||
- BLOCK_SIZE: ELEMSIZE * mul(DST_SZ_<i>) for i in [0, BLOCK_DIMS)
|
||||
|
||||
- USE_COPY_1D iff BLOCK_DIMS == BLOCK_DIMS_CONTIGUOUS
|
||||
- BLOCK_COLS:
|
||||
* with USE_COPY_1D: BLOCK_SIZE
|
||||
* w/o USE_COPY_1D: ELEMSIZE * mul(DST_SZ_<i>) for i in [0, BLOCK_DIMS_CONTIGUOUS)
|
||||
- BLOCK_ROWS:
|
||||
* with USE_COPY_1D: N/A
|
||||
* w/o USE_COPY_1D: ELEMSIZE * mul(DST_SZ_<i>) for i in [BLOCK_DIMS_CONTIGUOUS, BLOCK_DIMS)
|
||||
- BLOCK_SRC_STRIDE:
|
||||
* with USE_COPY_1D: N/A
|
||||
* w/o USE_COPY_1D: ELEMSIZE * mul(SRC_STEP_<i>) for i in [0, BLOCK_DIMS_CONTIGUOUS)
|
||||
|
||||
Note: SZ, STEP values are in reversed order than OpenCV Mat:
|
||||
- NCHW SZ: [cols, rows, channels, batch]
|
||||
- NCHW STEP: [elemsize, cols * elemsize, rows * cols * elemsize, ...] (DIMS+1 value)
|
||||
|
||||
*/
|
||||
|
||||
/*
|
||||
local: <WSZ, 1, 1>
|
||||
global: <WSZ, number_of_copy_blocks, 1>
|
||||
*/
|
||||
|
||||
#define CONCAT_(A, B) A##B
|
||||
#define CONCAT(A, B) CONCAT_(A, B)
|
||||
|
||||
#define BLOCK_COLS_X4 (BLOCK_COLS / 4)
|
||||
#define BLOCK_COLS_X16 (BLOCK_COLS / 16)
|
||||
|
||||
#ifdef USE_COPY_1D
|
||||
|
||||
static inline
|
||||
__attribute__((always_inline))
|
||||
void copy_block_1d(
|
||||
__global const uchar* src0,
|
||||
const uint src_offset,
|
||||
__global uchar* dst0,
|
||||
const uint dst_offset
|
||||
)
|
||||
{
|
||||
__global const uchar* src = src0 + src_offset;
|
||||
__global uchar* dst = dst0 + dst_offset;
|
||||
|
||||
uint processed = 0;
|
||||
|
||||
#if BLOCK_COLS_X16 >= 4
|
||||
{
|
||||
// uchar16 x 4rows per iteration
|
||||
uint i = get_local_id(0) * 16; // uchar16
|
||||
while (i < BLOCK_COLS_X16 * 16)
|
||||
{
|
||||
uint4 idx = (uint4)(i, i + 16 * WSZ, i + 32 * WSZ, i + 48 * WSZ);
|
||||
idx = select((uint4)i, idx, idx < (BLOCK_COLS_X16 * 16));
|
||||
|
||||
uchar16 a0 = vload16(0, src + idx.s0);
|
||||
uchar16 a1 = vload16(0, src + idx.s1);
|
||||
uchar16 a2 = vload16(0, src + idx.s2);
|
||||
uchar16 a3 = vload16(0, src + idx.s3);
|
||||
|
||||
vstore16(a0, 0, dst + idx.s0);
|
||||
vstore16(a1, 0, dst + idx.s1);
|
||||
vstore16(a2, 0, dst + idx.s2);
|
||||
vstore16(a3, 0, dst + idx.s3);
|
||||
|
||||
i += WSZ * 16 * 4;
|
||||
}
|
||||
processed = BLOCK_COLS_X16 * 16;
|
||||
}
|
||||
#else
|
||||
#define SKIP_1D_BLOCK_COLS_X16 1
|
||||
#endif
|
||||
|
||||
__kernel void slice(__global const Dtype* src,
|
||||
const int src_plane_size,
|
||||
const int dst_plane_size,
|
||||
const int src_cols,
|
||||
const int dst_cols,
|
||||
const int row_offset,
|
||||
const int col_offset,
|
||||
__global Dtype* dst)
|
||||
{
|
||||
unsigned int row_gid = get_group_id(0);
|
||||
unsigned int lid = get_local_id(0);
|
||||
const __global Dtype *src_read = src + row_gid * 4 * src_plane_size;
|
||||
__global Dtype *dst_read = dst + row_gid * 4 * dst_plane_size;
|
||||
Dtype4 a0, a1, a2, a3;
|
||||
|
||||
int i = lid;
|
||||
while( i < dst_plane_size / 4)
|
||||
#if BLOCK_COLS_X4 > 0 && (defined(SKIP_1D_BLOCK_COLS_X16) || (BLOCK_COLS_X16 * 16 != BLOCK_COLS_X4 * 4))
|
||||
{
|
||||
int row = (4 * i) / dst_cols + row_offset;
|
||||
int col = (4 * i) % dst_cols + col_offset;
|
||||
int src_index = row * src_cols + col;
|
||||
// uchar4 x 4rows per iteration
|
||||
uint i = get_local_id(0) * 4 + processed; // uchar4
|
||||
while (i < BLOCK_COLS_X4 * 4)
|
||||
{
|
||||
uint4 idx = (uint4)(i, i + 4 * WSZ, i + 8 * WSZ, i + 12 * WSZ);
|
||||
idx = select((uint4)i, idx, idx < (BLOCK_COLS_X4 * 4));
|
||||
|
||||
a0 = vload4(0, src_read + src_index);
|
||||
a1 = vload4(0, src_read + src_index + src_plane_size);
|
||||
a2 = vload4(0, src_read + src_index + 2 * src_plane_size);
|
||||
a3 = vload4(0, src_read + src_index + 3 * src_plane_size);
|
||||
uchar4 a0 = vload4(0, src + idx.s0);
|
||||
uchar4 a1 = vload4(0, src + idx.s1);
|
||||
uchar4 a2 = vload4(0, src + idx.s2);
|
||||
uchar4 a3 = vload4(0, src + idx.s3);
|
||||
|
||||
vstore4(a0, i, dst_read);
|
||||
vstore4(a1, i, dst_read + dst_plane_size);
|
||||
vstore4(a2, i, dst_read + 2 * dst_plane_size);
|
||||
vstore4(a3, i, dst_read + 3 * dst_plane_size);
|
||||
vstore4(a0, 0, dst + idx.s0);
|
||||
vstore4(a1, 0, dst + idx.s1);
|
||||
vstore4(a2, 0, dst + idx.s2);
|
||||
vstore4(a3, 0, dst + idx.s3);
|
||||
|
||||
i += get_local_size(0);
|
||||
i += WSZ * 4 * 4;
|
||||
}
|
||||
processed = BLOCK_COLS_X4 * 4;
|
||||
}
|
||||
#else
|
||||
#define SKIP_1D_BLOCK_COLS_X4 1
|
||||
#endif // BLOCK_COLS_X4 > 0
|
||||
|
||||
#if (defined(SKIP_1D_BLOCK_COLS_X16) && defined(SKIP_1D_BLOCK_COLS_X4)) || BLOCK_COLS_X4 * 4 != BLOCK_COLS
|
||||
{
|
||||
uint i = get_local_id(0) + processed;
|
||||
while (i < BLOCK_COLS)
|
||||
{
|
||||
uchar a0 = src[i];
|
||||
dst[i] = a0;
|
||||
|
||||
i += WSZ;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#else // USE_COPY_1D
|
||||
|
||||
static inline
|
||||
__attribute__((always_inline))
|
||||
void copy_block_2d(
|
||||
__global const uchar* src0,
|
||||
const uint src_offset0,
|
||||
__global uchar* dst0,
|
||||
const uint dst_offset0
|
||||
)
|
||||
{
|
||||
__global const uchar* src = src0 + src_offset0;
|
||||
__global uchar* dst = dst0 + dst_offset0;
|
||||
|
||||
uint i = get_local_id(0) * 4;
|
||||
|
||||
#define BLOCK_COLS_FILL_X4 (((BLOCK_COLS + 3) / 4) * 4)
|
||||
#define BLOCK_SIZE_FILL_X4 (BLOCK_COLS_FILL_X4 * BLOCK_ROWS)
|
||||
|
||||
while (i < BLOCK_SIZE_FILL_X4)
|
||||
{
|
||||
int row = i / BLOCK_COLS_FILL_X4;
|
||||
int col = i % BLOCK_COLS_FILL_X4;
|
||||
|
||||
uint src_offset = row * BLOCK_SRC_STRIDE + col;
|
||||
#if BLOCK_COLS_FILL_X4 == BLOCK_COLS
|
||||
uint dst_offset = i;
|
||||
#else
|
||||
uint dst_offset = row * BLOCK_COLS + col;
|
||||
#endif
|
||||
|
||||
#if BLOCK_COLS_FILL_X4 != BLOCK_COLS
|
||||
if (col <= BLOCK_COLS - 4)
|
||||
#endif
|
||||
{
|
||||
uchar4 a = vload4(0, src + src_offset);
|
||||
vstore4(a, 0, dst + dst_offset);
|
||||
}
|
||||
#if BLOCK_COLS_FILL_X4 != BLOCK_COLS
|
||||
else
|
||||
{
|
||||
/* non-optimized reference code
|
||||
while (col < BLOCK_COLS)
|
||||
{
|
||||
uchar a = src[src_offset];
|
||||
dst[dst_offset] = a;
|
||||
col++;
|
||||
src_offset++;
|
||||
dst_offset++;
|
||||
}
|
||||
*/
|
||||
|
||||
uint4 shift = (uint4)(0, 1, 2, 3);
|
||||
shift = select((uint4)0, shift, col + shift < BLOCK_COLS);
|
||||
|
||||
dst[dst_offset + shift.s0] = src[src_offset + shift.s0];
|
||||
|
||||
#if BLOCK_COLS_FILL_X4 - BLOCK_COLS <= 2
|
||||
dst[dst_offset + shift.s1] = src[src_offset + shift.s1];
|
||||
#endif
|
||||
#if BLOCK_COLS_FILL_X4 - BLOCK_COLS <= 1
|
||||
dst[dst_offset + shift.s2] = src[src_offset + shift.s2];
|
||||
#endif
|
||||
}
|
||||
#endif // BLOCK_COLS_FILL_X4 != BLOCK_COLS
|
||||
i += WSZ * 4;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // USE_COPY_1D
|
||||
|
||||
__kernel void
|
||||
CONCAT(slice_, DIMS)(
|
||||
__global const uchar* src,
|
||||
__global uchar* dst
|
||||
)
|
||||
{
|
||||
uint block_id = get_global_id(1);
|
||||
|
||||
uint dst_offset = block_id * BLOCK_SIZE;
|
||||
|
||||
uint src_offset = 0;
|
||||
|
||||
#define CALC_SRC_INDEX(dim) \
|
||||
{ \
|
||||
uint plane_sz = CONCAT(DST_STEP_, dim) / BLOCK_SIZE; \
|
||||
CONCAT(idx_, dim) = block_id / plane_sz; \
|
||||
block_id = block_id - CONCAT(idx_, dim) * plane_sz; \
|
||||
}
|
||||
#define UPDATE_SRC_OFFSET(dim) \
|
||||
src_offset = mad24((uint)(CONCAT(idx_, dim) + CONCAT(SRC_START_, dim)), (uint)CONCAT(SRC_STEP_, dim), (uint)src_offset);
|
||||
/*
|
||||
if (get_global_id(0) == 0 && get_global_id(1) == 0) \
|
||||
printf("(%d, %d): @%d src_offset=%d idx_dim=%d block_id=%d\n", \
|
||||
get_global_id(0), get_global_id(1), \
|
||||
dim, src_offset, CONCAT(idx_, dim), block_id \
|
||||
);
|
||||
*/
|
||||
|
||||
#if DIMS > 5
|
||||
#error "invalid configuration"
|
||||
#endif
|
||||
#if DIMS > 4
|
||||
uint idx_4 = 0;
|
||||
#if BLOCK_DIMS <= 4
|
||||
CALC_SRC_INDEX(4)
|
||||
#endif
|
||||
UPDATE_SRC_OFFSET(4)
|
||||
#endif
|
||||
#if DIMS > 3
|
||||
uint idx_3 = 0;
|
||||
#if BLOCK_DIMS <= 3
|
||||
CALC_SRC_INDEX(3)
|
||||
#endif
|
||||
UPDATE_SRC_OFFSET(3)
|
||||
#endif
|
||||
#if DIMS > 2
|
||||
uint idx_2 = 0;
|
||||
#if BLOCK_DIMS <= 2
|
||||
CALC_SRC_INDEX(2)
|
||||
#endif
|
||||
UPDATE_SRC_OFFSET(2)
|
||||
#endif
|
||||
#if DIMS > 1
|
||||
uint idx_1 = 0;
|
||||
#if BLOCK_DIMS <= 1
|
||||
CALC_SRC_INDEX(1)
|
||||
#endif
|
||||
UPDATE_SRC_OFFSET(1)
|
||||
#endif
|
||||
#if DIMS > 0
|
||||
uint idx_0 = 0;
|
||||
UPDATE_SRC_OFFSET(0)
|
||||
#endif
|
||||
|
||||
/*
|
||||
if (get_global_id(0) == 0)
|
||||
printf("(%d, %d): src_offset=%d dst_offset=%d\n",
|
||||
get_global_id(0), get_global_id(1),
|
||||
src_offset, dst_offset
|
||||
);
|
||||
*/
|
||||
|
||||
#ifdef USE_COPY_1D
|
||||
copy_block_1d(src, src_offset, dst, dst_offset);
|
||||
#else
|
||||
copy_block_2d(src, src_offset, dst, dst_offset);
|
||||
#endif
|
||||
}
|
||||
|
@ -31,7 +31,10 @@ public:
|
||||
|
||||
virtual std::string getInputName(int idx) const CV_OVERRIDE
|
||||
{
|
||||
return node->input(idx);
|
||||
// If operation produces several tensors, they are specified by index
|
||||
// after ':' character. In example, "input:0".
|
||||
std::string name = node->input(idx);
|
||||
return name.substr(0, name.rfind(':'));
|
||||
}
|
||||
|
||||
virtual std::string getType() const CV_OVERRIDE
|
||||
|
@ -462,6 +462,8 @@ TEST_P(DNNTestNetwork, DenseNet_121)
|
||||
{
|
||||
l1 = 2e-2;
|
||||
lInf = 9e-2;
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
lInf = 0.1f;
|
||||
}
|
||||
else if (target == DNN_TARGET_MYRIAD)
|
||||
{
|
||||
|
@ -517,6 +517,11 @@ TEST_P(Test_Caffe_nets, Colorization)
|
||||
l1 = 0.21;
|
||||
lInf = 4.5;
|
||||
}
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||||
{
|
||||
l1 = 0.26; lInf = 6.5;
|
||||
}
|
||||
|
||||
normAssert(out, ref, "", l1, lInf);
|
||||
expectNoFallbacksFromIE(net);
|
||||
}
|
||||
@ -542,8 +547,8 @@ TEST_P(Test_Caffe_nets, DenseNet_121)
|
||||
float l1 = default_l1, lInf = default_lInf;
|
||||
if (target == DNN_TARGET_OPENCL_FP16)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
||||
l1 = 0.04; lInf = 0.21;
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019020000)
|
||||
l1 = 0.045; lInf = 0.21;
|
||||
#else
|
||||
l1 = 0.017; lInf = 0.0795;
|
||||
#endif
|
||||
|
@ -323,6 +323,12 @@ TEST_P(Test_Darknet_nets, YoloVoc)
|
||||
CV_TEST_TAG_LONG
|
||||
);
|
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
||||
@ -372,6 +378,12 @@ TEST_P(Test_Darknet_nets, TinyYoloVoc)
|
||||
{
|
||||
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
#if defined(INF_ENGINE_RELEASE)
|
||||
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
|
||||
target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
|
||||
@ -484,6 +496,13 @@ TEST_P(Test_Darknet_nets, YOLOv3)
|
||||
{
|
||||
applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB));
|
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
|
||||
@ -556,6 +575,12 @@ TEST_P(Test_Darknet_nets, YOLOv4)
|
||||
{
|
||||
applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB));
|
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
#if defined(INF_ENGINE_RELEASE)
|
||||
if (target == DNN_TARGET_MYRIAD) // NC_OUT_OF_MEMORY
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
@ -657,7 +682,7 @@ TEST_P(Test_Darknet_nets, YOLOv4_tiny)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL)
|
||||
iouDiff = std::numeric_limits<double>::quiet_NaN();
|
||||
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
||||
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && DNN_TARGET_OPENCL_FP16)
|
||||
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
|
||||
iouDiff = std::numeric_limits<double>::quiet_NaN();
|
||||
#endif
|
||||
|
||||
@ -677,7 +702,7 @@ TEST_P(Test_Darknet_nets, YOLOv4_tiny)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
||||
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && DNN_TARGET_OPENCL_FP16)
|
||||
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
}
|
||||
|
@ -73,7 +73,8 @@ struct OpenVINOModelTestCaseInfo
|
||||
static const std::map<std::string, OpenVINOModelTestCaseInfo>& getOpenVINOTestModels()
|
||||
{
|
||||
static std::map<std::string, OpenVINOModelTestCaseInfo> g_models {
|
||||
#if INF_ENGINE_RELEASE >= 2018050000
|
||||
#if INF_ENGINE_RELEASE >= 2018050000 && \
|
||||
INF_ENGINE_RELEASE <= 2020999999 // don't use IRv5 models with 2020.1+
|
||||
// layout is defined by open_model_zoo/model_downloader
|
||||
// Downloaded using these parameters for Open Model Zoo downloader (2019R1):
|
||||
// ./downloader.py -o ${OPENCV_DNN_TEST_DATA_PATH}/omz_intel_models --cache_dir ${OPENCV_DNN_TEST_DATA_PATH}/.omz_cache/ \
|
||||
@ -295,6 +296,11 @@ TEST_P(DNNTestOpenVINO, models)
|
||||
}
|
||||
#endif
|
||||
|
||||
#if INF_ENGINE_VER_MAJOR_EQ(2020040000)
|
||||
if (targetId == DNN_TARGET_MYRIAD && modelName == "person-detection-retail-0002") // IRv5, OpenVINO 2020.4 regression
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
|
||||
else if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
|
@ -369,6 +369,16 @@ TEST_P(Test_Caffe_layers, layer_prelu_fc)
|
||||
// Reference output values are in range [-0.0001, 10.3906]
|
||||
double l1 = (target == DNN_TARGET_MYRIAD) ? 0.005 : 0.0;
|
||||
double lInf = (target == DNN_TARGET_MYRIAD) ? 0.021 : 0.0;
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
||||
{
|
||||
l1 = 0.006f; lInf = 0.05f;
|
||||
}
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||||
{
|
||||
l1 = 0.01f; lInf = 0.05f;
|
||||
}
|
||||
#endif
|
||||
testLayerUsingCaffeModels("layer_prelu_fc", true, false, l1, lInf);
|
||||
}
|
||||
|
||||
@ -1882,7 +1892,115 @@ TEST_P(Layer_Test_Resize, change_input)
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_Resize, dnnBackendsAndTargets());
|
||||
|
||||
typedef testing::TestWithParam<tuple<Backend, Target> > Layer_Test_Slice;
|
||||
struct Layer_Test_Slice : public testing::TestWithParam<tuple<Backend, Target> >
|
||||
{
|
||||
template<int DIMS>
|
||||
void test_slice(const int* inputShape, const int* begin, const int* end)
|
||||
{
|
||||
int backendId = get<0>(GetParam());
|
||||
int targetId = get<1>(GetParam());
|
||||
|
||||
Mat input(DIMS, inputShape, CV_32FC1, Scalar::all(0));
|
||||
for (int i = 0; i < (int)input.total(); ++i)
|
||||
input.ptr<float>()[i] = (float)i;
|
||||
|
||||
std::vector<Range> range(DIMS);
|
||||
for (int i = 0; i < DIMS; ++i)
|
||||
range[i] = Range(begin[i], end[i]);
|
||||
|
||||
Net net;
|
||||
LayerParams lp;
|
||||
lp.type = "Slice";
|
||||
lp.name = "testLayer";
|
||||
lp.set("begin", DictValue::arrayInt<int*>((int*)&begin[0], DIMS));
|
||||
lp.set("end", DictValue::arrayInt<int*>((int*)&end[0], DIMS));
|
||||
net.addLayerToPrev(lp.name, lp.type, lp);
|
||||
|
||||
{
|
||||
net.setInput(input);
|
||||
net.setPreferableBackend(backendId);
|
||||
net.setPreferableTarget(targetId);
|
||||
Mat out = net.forward();
|
||||
|
||||
EXPECT_GT(cv::norm(out, NORM_INF), 0);
|
||||
normAssert(out, input(range));
|
||||
#if 0
|
||||
cout << input(range).clone().reshape(1, 1) << endl;
|
||||
cout << out.reshape(1, 1) << endl;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Layer_Test_Slice, slice_channels_17762)
|
||||
{
|
||||
const int inputShape[4] = {1, 16, 6, 8};
|
||||
const int begin[] = {0, 4, 0, 0};
|
||||
const int end[] = {1, 8, 6, 8};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
TEST_P(Layer_Test_Slice, slice_channels_with_batch_17762)
|
||||
{
|
||||
const int inputShape[4] = {4, 4, 3, 4};
|
||||
const int begin[] = {0, 1, 0, 0};
|
||||
const int end[] = {4, 3, 3, 4};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
TEST_P(Layer_Test_Slice, slice_channels_and_batch_17762)
|
||||
{
|
||||
int backend = get<0>(GetParam());
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
|
||||
const int inputShape[4] = {4, 4, 3, 4};
|
||||
const int begin[] = {2, 1, 0, 0};
|
||||
const int end[] = {4, 3, 3, 4};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
TEST_P(Layer_Test_Slice, slice_rows)
|
||||
{
|
||||
const int inputShape[4] = {1, 2, 6, 4};
|
||||
const int begin[] = {0, 0, 4, 0};
|
||||
const int end[] = {1, 2, 6, 4};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
TEST_P(Layer_Test_Slice, slice_cols)
|
||||
{
|
||||
const int inputShape[4] = {1, 2, 3, 8};
|
||||
const int begin[] = {0, 0, 0, 4};
|
||||
const int end[] = {1, 2, 3, 8};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
|
||||
TEST_P(Layer_Test_Slice, slice_complex_1_unaligned)
|
||||
{
|
||||
const int inputShape[4] = {1, 4, 2, 3};
|
||||
const int begin[] = {0, 2, 1, 0};
|
||||
const int end[] = {1, 3, 2, 2};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
TEST_P(Layer_Test_Slice, slice_complex_2_x4)
|
||||
{
|
||||
const int inputShape[4] = {1, 3, 2, 4};
|
||||
const int begin[] = {0, 2, 1, 0};
|
||||
const int end[] = {1, 3, 2, 2};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
TEST_P(Layer_Test_Slice, slice_complex_3)
|
||||
{
|
||||
const int inputShape[4] = {1, 6, 4, 8};
|
||||
const int begin[] = {0, 2, 1, 4};
|
||||
const int end[] = {1, 4, 3, 8};
|
||||
test_slice<4>(inputShape, begin, end);
|
||||
}
|
||||
|
||||
TEST_P(Layer_Test_Slice, variable_input_shape)
|
||||
{
|
||||
int backendId = get<0>(GetParam());
|
||||
|
@ -740,6 +740,13 @@ TEST_P(Test_ONNX_nets, TinyYolov2)
|
||||
l1 = 0.018;
|
||||
lInf = 0.16;
|
||||
}
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||||
{
|
||||
l1 = 0.018f; lInf = 0.16f;
|
||||
}
|
||||
#endif
|
||||
|
||||
testONNXModels("tiny_yolo2", pb, l1, lInf);
|
||||
}
|
||||
|
||||
@ -823,6 +830,13 @@ TEST_P(Test_ONNX_nets, Emotion_ferplus)
|
||||
l1 = 2.4e-4;
|
||||
lInf = 6e-4;
|
||||
}
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
||||
{
|
||||
l1 = 0.012f; lInf = 0.035f;
|
||||
}
|
||||
#endif
|
||||
|
||||
testONNXModels("emotion_ferplus", pb, l1, lInf);
|
||||
}
|
||||
|
||||
|
@ -150,7 +150,7 @@ def git_apply_patch(src_dir, patch_file):
|
||||
patch_file = str(patch_file) # Python 3.5 may not handle Path
|
||||
assert os.path.exists(patch_file), patch_file
|
||||
execute(cmd=['git', 'apply', '--3way', '-v', '--ignore-space-change', str(patch_file)], cwd=src_dir)
|
||||
execute(cmd=['git', 'diff', 'HEAD'], cwd=src_dir)
|
||||
execute(cmd=['git', '--no-pager', 'diff', 'HEAD'], cwd=src_dir)
|
||||
|
||||
|
||||
#===================================================================================================
|
||||
@ -443,8 +443,8 @@ class Builder:
|
||||
def main():
|
||||
|
||||
dldt_src_url = 'https://github.com/openvinotoolkit/openvino'
|
||||
dldt_src_commit = '2020.3.0'
|
||||
dldt_release = '2020030000'
|
||||
dldt_src_commit = '2020.4'
|
||||
dldt_release = '2020040000'
|
||||
|
||||
build_cache_dir_default = os.environ.get('BUILD_CACHE_DIR', '.build_cache')
|
||||
build_subst_drive = os.environ.get('BUILD_SUBST_DRIVE', None)
|
||||
|
Loading…
Reference in New Issue
Block a user