mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
War on Whitespace, master edition: trailing spaces.
This commit is contained in:
parent
2c4bbb313c
commit
9b92545ce6
@ -27,7 +27,7 @@ endif(WITH_CUDA)
|
||||
# --- Eigen ---
|
||||
if(WITH_EIGEN)
|
||||
find_path(EIGEN_INCLUDE_PATH "Eigen/Core"
|
||||
PATHS /usr/local /opt /usr $ENV{EIGEN_ROOT}/include ENV ProgramFiles ENV ProgramW6432
|
||||
PATHS /usr/local /opt /usr $ENV{EIGEN_ROOT}/include ENV ProgramFiles ENV ProgramW6432
|
||||
PATH_SUFFIXES include/eigen3 include/eigen2 Eigen/include/eigen3 Eigen/include/eigen2
|
||||
DOC "The path to Eigen3/Eigen2 headers"
|
||||
CMAKE_FIND_ROOT_PATH_BOTH)
|
||||
|
@ -130,7 +130,7 @@ To compile it, assuming OpenCV is correctly installed, use the following command
|
||||
|
||||
Here is a code explanation :
|
||||
|
||||
Retina definition is present in the bioinspired package and a simple include allows to use it. You can rather use the specific header : *opencv2/bioinspired.hpp* if you prefer but then include the other required openv modules : *opencv2/core.hpp* and *opencv2/highgui.hpp*
|
||||
Retina definition is present in the bioinspired package and a simple include allows to use it. You can rather use the specific header : *opencv2/bioinspired.hpp* if you prefer but then include the other required openv modules : *opencv2/core.hpp* and *opencv2/highgui.hpp*
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
|
@ -125,9 +125,9 @@ designed mostly for development purposes. This approach is deprecated for the pr
|
||||
release package is recommended to communicate with OpenCV Manager via the async initialization
|
||||
described above.
|
||||
|
||||
#. Add the OpenCV library project to your workspace the same way as for the async initialization
|
||||
#. Add the OpenCV library project to your workspace the same way as for the async initialization
|
||||
above. Use menu :guilabel:`File -> Import -> Existing project in your workspace`,
|
||||
press :guilabel:`Browse` button and select OpenCV SDK path
|
||||
press :guilabel:`Browse` button and select OpenCV SDK path
|
||||
(:file:`OpenCV-2.4.6-android-sdk/sdk`).
|
||||
|
||||
.. image:: images/eclipse_opencv_dependency0.png
|
||||
|
@ -47,7 +47,7 @@ using namespace cv;
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
|
||||
|
@ -529,16 +529,16 @@ int cv::recoverPose( InputArray E, InputArray _points1, InputArray _points2, Out
|
||||
mask4 = (Q.row(2) > 0) & mask4;
|
||||
mask4 = (Q.row(2) < dist) & mask4;
|
||||
|
||||
mask1 = mask1.t();
|
||||
mask2 = mask2.t();
|
||||
mask3 = mask3.t();
|
||||
mask4 = mask4.t();
|
||||
mask1 = mask1.t();
|
||||
mask2 = mask2.t();
|
||||
mask3 = mask3.t();
|
||||
mask4 = mask4.t();
|
||||
|
||||
// If _mask is given, then use it to filter outliers.
|
||||
if (!_mask.empty())
|
||||
{
|
||||
Mat mask = _mask.getMat();
|
||||
CV_Assert(mask.size() == mask1.size());
|
||||
CV_Assert(mask.size() == mask1.size());
|
||||
bitwise_and(mask, mask1, mask1);
|
||||
bitwise_and(mask, mask2, mask2);
|
||||
bitwise_and(mask, mask3, mask3);
|
||||
@ -546,7 +546,7 @@ int cv::recoverPose( InputArray E, InputArray _points1, InputArray _points2, Out
|
||||
}
|
||||
if (_mask.empty() && _mask.needed())
|
||||
{
|
||||
_mask.create(mask1.size(), CV_8U);
|
||||
_mask.create(mask1.size(), CV_8U);
|
||||
}
|
||||
|
||||
CV_Assert(_R.needed() && _t.needed());
|
||||
|
@ -47,30 +47,30 @@
|
||||
This is translation to C++ of the Matlab's LMSolve package by Miroslav Balda.
|
||||
Here is the original copyright:
|
||||
============================================================================
|
||||
|
||||
|
||||
Copyright (c) 2007, Miroslav Balda
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in
|
||||
the documentation and/or other materials provided with the distribution
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
@ -112,7 +112,7 @@ public:
|
||||
gemm(J, r, 1, noArray(), 0, v, GEMM_1_T);
|
||||
|
||||
Mat D = A.diag().clone();
|
||||
|
||||
|
||||
const double Rlo = 0.25, Rhi = 0.75;
|
||||
double lambda = 1, lc = 0.75;
|
||||
int i, iter = 0;
|
||||
@ -222,5 +222,5 @@ Ptr<LMSolver> createLMSolver(const Ptr<LMSolver::Callback>& cb, int maxIters)
|
||||
CV_Assert( !LMSolverImpl_info_auto.name().empty() );
|
||||
return new LMSolverImpl(cb, maxIters);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
@ -52,30 +52,30 @@ TEST(Calib3d_Affine3f, accuracy)
|
||||
|
||||
cv::Mat expected;
|
||||
cv::Rodrigues(rvec, expected);
|
||||
|
||||
|
||||
|
||||
|
||||
ASSERT_EQ(0, norm(cv::Mat(affine.matrix, false).colRange(0, 3).rowRange(0, 3) != expected));
|
||||
ASSERT_EQ(0, norm(cv::Mat(affine.linear()) != expected));
|
||||
|
||||
|
||||
|
||||
|
||||
cv::Matx33d R = cv::Matx33d::eye();
|
||||
|
||||
|
||||
double angle = 50;
|
||||
R.val[0] = R.val[4] = std::cos(CV_PI*angle/180.0);
|
||||
R.val[3] = std::sin(CV_PI*angle/180.0);
|
||||
R.val[1] = -R.val[3];
|
||||
|
||||
|
||||
|
||||
|
||||
cv::Affine3d affine1(cv::Mat(cv::Vec3d(0.2, 0.5, 0.3)).reshape(1, 1), cv::Vec3d(4, 5, 6));
|
||||
cv::Affine3d affine2(R, cv::Vec3d(1, 1, 0.4));
|
||||
|
||||
|
||||
cv::Affine3d result = affine1.inv() * affine2;
|
||||
|
||||
|
||||
expected = cv::Mat(affine1.matrix.inv(cv::DECOMP_SVD)) * cv::Mat(affine2.matrix, false);
|
||||
|
||||
|
||||
|
||||
cv::Mat diff;
|
||||
cv::absdiff(expected, result.matrix, diff);
|
||||
|
||||
|
||||
ASSERT_LT(cv::norm(diff, cv::NORM_INF), 1e-15);
|
||||
}
|
||||
|
@ -83,4 +83,4 @@ Draws keypoints.
|
||||
|
||||
:param flags: Flags setting drawing features. Possible ``flags`` bit values are defined by ``DrawMatchesFlags``. See details above in :ocv:func:`drawMatches` .
|
||||
|
||||
.. note:: For Python API, flags are modified as `cv2.DRAW_MATCHES_FLAGS_DEFAULT`, `cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS`, `cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG`, `cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS`
|
||||
.. note:: For Python API, flags are modified as `cv2.DRAW_MATCHES_FLAGS_DEFAULT`, `cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS`, `cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG`, `cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS`
|
||||
|
@ -120,7 +120,7 @@ Finds keypoints in an image and computes their descriptors
|
||||
:param descriptors: The output descriptors. Pass ``cv::noArray()`` if you do not need it.
|
||||
|
||||
:param useProvidedKeypoints: If it is true, then the method will use the provided vector of keypoints instead of detecting them.
|
||||
|
||||
|
||||
|
||||
BRISK
|
||||
-----
|
||||
|
@ -1212,7 +1212,7 @@ static AVStream *icv_add_video_stream_FFMPEG(AVFormatContext *oc,
|
||||
#if LIBAVUTIL_BUILD > CALC_FFMPEG_VERSION(51,11,0)
|
||||
/* Some settings for libx264 encoding, restore dummy values for gop_size
|
||||
and qmin since they will be set to reasonable defaults by the libx264
|
||||
preset system. Also, use a crf encode with the default quality rating,
|
||||
preset system. Also, use a crf encode with the default quality rating,
|
||||
this seems easier than finding an appropriate default bitrate. */
|
||||
if (c->codec_id == CODEC_ID_H264) {
|
||||
c->gop_size = -1;
|
||||
|
@ -789,7 +789,7 @@ The function supports the in-place mode. Dilation can be applied several ( ``ite
|
||||
|
||||
* An example using the morphological dilate operation can be found at opencv_source_code/samples/cpp/morphology2.cpp
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
erode
|
||||
@ -1000,17 +1000,17 @@ Returns Gabor filter coefficients.
|
||||
.. ocv:pyfunction:: cv2.getGaborKernel(ksize, sigma, theta, lambd, gamma[, psi[, ktype]]) -> retval
|
||||
|
||||
:param ksize: Size of the filter returned.
|
||||
|
||||
|
||||
:param sigma: Standard deviation of the gaussian envelope.
|
||||
|
||||
|
||||
:param theta: Orientation of the normal to the parallel stripes of a Gabor function.
|
||||
|
||||
|
||||
:param lambd: Wavelength of the sinusoidal factor.
|
||||
|
||||
|
||||
:param gamma: Spatial aspect ratio.
|
||||
|
||||
|
||||
:param psi: Phase offset.
|
||||
|
||||
|
||||
:param ktype: Type of filter coefficients. It can be ``CV_32F`` or ``CV_64F`` .
|
||||
|
||||
For more details about gabor filter equations and parameters, see: `Gabor Filter <http://en.wikipedia.org/wiki/Gabor_filter>`_.
|
||||
@ -1132,7 +1132,7 @@ Performs advanced morphological transformations.
|
||||
:param dst: Destination image of the same size and type as ``src`` .
|
||||
|
||||
:param kernel: Structuring element. It can be created using :ocv:func:`getStructuringElement`.
|
||||
|
||||
|
||||
:param anchor: Anchor position with the kernel. Negative values mean that the anchor is at the kernel center.
|
||||
|
||||
:param op: Type of a morphological operation that can be one of the following:
|
||||
|
@ -553,9 +553,9 @@ Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
|
||||
.. ocv:cfunction:: void cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] )
|
||||
|
||||
:param box: The input rotated rectangle. It may be the output of .. ocv:function:: minAreaRect.
|
||||
|
||||
|
||||
:param points: The output array of four vertices of rectangles.
|
||||
|
||||
|
||||
The function finds the four vertices of a rotated rectangle. This function is useful to draw the rectangle. In C++, instead of using this function, you can directly use box.points() method. Please visit the `tutorial on bounding rectangle <http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html#bounding-rects-circles>`_ for more information.
|
||||
|
||||
|
||||
|
@ -399,7 +399,7 @@ int cv::connectedComponentsWithStats(InputArray _img, OutputArray _labels, Outpu
|
||||
const cv::Mat img = _img.getMat();
|
||||
_labels.create(img.size(), CV_MAT_DEPTH(ltype));
|
||||
cv::Mat labels = _labels.getMat();
|
||||
connectedcomponents::CCStatsOp sop(statsv, centroids);
|
||||
connectedcomponents::CCStatsOp sop(statsv, centroids);
|
||||
if(ltype == CV_16U){
|
||||
return connectedComponents_sub1(img, labels, connectivity, sop);
|
||||
}else if(ltype == CV_32S){
|
||||
|
@ -571,14 +571,14 @@ static void fitLine3D( Point3f * points, int count, int dist,
|
||||
for( j = 0; j < count; j++ )
|
||||
w[j] = 1.f;
|
||||
}
|
||||
|
||||
|
||||
/* save the line parameters */
|
||||
memcpy( _lineprev, _line, 6 * sizeof( float ));
|
||||
|
||||
|
||||
/* Run again... */
|
||||
fitLine3D_wods( points, count, w, _line );
|
||||
}
|
||||
|
||||
|
||||
if( err < min_err )
|
||||
{
|
||||
min_err = err;
|
||||
@ -595,27 +595,27 @@ void cv::fitLine( InputArray _points, OutputArray _line, int distType,
|
||||
double param, double reps, double aeps )
|
||||
{
|
||||
Mat points = _points.getMat();
|
||||
|
||||
|
||||
float linebuf[6]={0.f};
|
||||
int npoints2 = points.checkVector(2, -1, false);
|
||||
int npoints3 = points.checkVector(3, -1, false);
|
||||
|
||||
|
||||
CV_Assert( npoints2 >= 0 || npoints3 >= 0 );
|
||||
|
||||
|
||||
if( points.depth() != CV_32F || !points.isContinuous() )
|
||||
{
|
||||
Mat temp;
|
||||
points.convertTo(temp, CV_32F);
|
||||
points = temp;
|
||||
}
|
||||
|
||||
|
||||
if( npoints2 >= 0 )
|
||||
fitLine2D( points.ptr<Point2f>(), npoints2, distType,
|
||||
(float)param, (float)reps, (float)aeps, linebuf);
|
||||
else
|
||||
fitLine3D( points.ptr<Point3f>(), npoints3, distType,
|
||||
(float)param, (float)reps, (float)aeps, linebuf);
|
||||
|
||||
|
||||
Mat(npoints2 >= 0 ? 4 : 6, 1, CV_32F, linebuf).copyTo(_line);
|
||||
}
|
||||
|
||||
|
@ -142,7 +142,7 @@ double cv::matchShapes(InputArray contour1, InputArray contour2, int method, dou
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "Unknown comparison method" );
|
||||
}
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -159,7 +159,7 @@ static Moments contourMoments( const Mat& contour )
|
||||
if( fabs(a00) > FLT_EPSILON )
|
||||
{
|
||||
double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60;
|
||||
|
||||
|
||||
if( a00 > 0 )
|
||||
{
|
||||
db1_2 = 0.5;
|
||||
@ -464,7 +464,7 @@ cv::Moments cv::moments( InputArray _src, bool binary )
|
||||
m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
completeMomentState( &m );
|
||||
return m;
|
||||
}
|
||||
|
@ -204,7 +204,7 @@ pyrDown_( const Mat& _src, Mat& _dst, int borderType )
|
||||
CastOp castOp;
|
||||
VecOp vecOp;
|
||||
|
||||
CV_Assert( ssize.width > 0 && ssize.height > 0 &&
|
||||
CV_Assert( ssize.width > 0 && ssize.height > 0 &&
|
||||
std::abs(dsize.width*2 - ssize.width) <= 2 &&
|
||||
std::abs(dsize.height*2 - ssize.height) <= 2 );
|
||||
int k, x, sy0 = -PD_SZ/2, sy = sy0, width0 = std::min((ssize.width-PD_SZ/2-1)/2 + 1, dsize.width);
|
||||
|
@ -327,7 +327,7 @@ void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
|
||||
double sr2 = sr * sr;
|
||||
int isr2 = cvRound(sr2), isr22 = MAX(isr2,16);
|
||||
int tab[768];
|
||||
|
||||
|
||||
|
||||
if( src0.type() != CV_8UC3 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );
|
||||
|
@ -1690,7 +1690,7 @@ TEST(Imgproc_ColorBayer, regression)
|
||||
Mat given = imread(string(ts->get_data_path()) + "/cvtcolor/bayer_input.png", IMREAD_GRAYSCALE);
|
||||
Mat gold = imread(string(ts->get_data_path()) + "/cvtcolor/bayer_gold.png", IMREAD_UNCHANGED);
|
||||
Mat result;
|
||||
|
||||
|
||||
CV_Assert(given.data != NULL && gold.data != NULL);
|
||||
|
||||
cvtColor(given, result, CV_BayerBG2GRAY);
|
||||
|
@ -52,12 +52,12 @@ namespace cv
|
||||
{
|
||||
|
||||
/*!
|
||||
Extremal Region Stat structure
|
||||
Extremal Region Stat structure
|
||||
|
||||
The ERStat structure represents a class-specific Extremal Region (ER).
|
||||
|
||||
An ER is a 4-connected set of pixels with all its grey-level values smaller than the values
|
||||
in its outer boundary. A class-specific ER is selected (using a classifier) from all the ER's
|
||||
An ER is a 4-connected set of pixels with all its grey-level values smaller than the values
|
||||
in its outer boundary. A class-specific ER is selected (using a classifier) from all the ER's
|
||||
in the component tree of the image.
|
||||
*/
|
||||
struct CV_EXPORTS ERStat
|
||||
@ -69,17 +69,17 @@ public:
|
||||
~ERStat(){};
|
||||
|
||||
//! seed point and the threshold (max grey-level value)
|
||||
int pixel;
|
||||
int level;
|
||||
int pixel;
|
||||
int level;
|
||||
|
||||
//! incrementally computable features
|
||||
int area;
|
||||
int area;
|
||||
int perimeter;
|
||||
int euler; //!< euler number
|
||||
Rect rect;
|
||||
double raw_moments[2]; //!< order 1 raw moments to derive the centroid
|
||||
double central_moments[3]; //!< order 2 central moments to construct the covariance matrix
|
||||
std::deque<int> *crossings;//!< horizontal crossings
|
||||
std::deque<int> *crossings;//!< horizontal crossings
|
||||
float med_crossings; //!< median of the crossings at three different height levels
|
||||
|
||||
//! 2nd stage features
|
||||
@ -88,21 +88,21 @@ public:
|
||||
float num_inflexion_points;
|
||||
|
||||
// TODO Other features can be added (average color, standard deviation, and such)
|
||||
|
||||
|
||||
|
||||
// TODO shall we include the pixel list whenever available (i.e. after 2nd stage) ?
|
||||
std::vector<int> *pixels;
|
||||
|
||||
std::vector<int> *pixels;
|
||||
|
||||
//! probability that the ER belongs to the class we are looking for
|
||||
double probability;
|
||||
|
||||
//! pointers preserving the tree structure of the component tree
|
||||
ERStat* parent;
|
||||
ERStat* child;
|
||||
ERStat* parent;
|
||||
ERStat* child;
|
||||
ERStat* next;
|
||||
ERStat* prev;
|
||||
|
||||
//! wenever the regions is a local maxima of the probability
|
||||
//! wenever the regions is a local maxima of the probability
|
||||
bool local_maxima;
|
||||
ERStat* max_probability_ancestor;
|
||||
ERStat* min_probability_ancestor;
|
||||
@ -124,11 +124,11 @@ public:
|
||||
public:
|
||||
virtual ~Callback(){};
|
||||
//! The classifier must return probability measure for the region.
|
||||
virtual double eval(const ERStat& stat) = 0; //const = 0; //TODO why cannot use const = 0 here?
|
||||
virtual double eval(const ERStat& stat) = 0; //const = 0; //TODO why cannot use const = 0 here?
|
||||
};
|
||||
|
||||
/*!
|
||||
the key method. Takes image on input and returns the selected regions in a vector of ERStat
|
||||
/*!
|
||||
the key method. Takes image on input and returns the selected regions in a vector of ERStat
|
||||
only distinctive ERs which correspond to characters are selected by a sequential classifier
|
||||
\param image is the input image
|
||||
\param regions is output for the first stage, input/output for the second one.
|
||||
@ -151,15 +151,15 @@ public:
|
||||
/*!
|
||||
Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm
|
||||
Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
|
||||
|
||||
|
||||
The component tree of the image is extracted by a threshold increased step by step
|
||||
from 0 to 255, incrementally computable descriptors (aspect_ratio, compactness,
|
||||
number of holes, and number of horizontal crossings) are computed for each ER
|
||||
and used as features for a classifier which estimates the class-conditional
|
||||
probability P(er|character). The value of P(er|character) is tracked using the inclusion
|
||||
relation of ER across all thresholds and only the ERs which correspond to local maximum
|
||||
from 0 to 255, incrementally computable descriptors (aspect_ratio, compactness,
|
||||
number of holes, and number of horizontal crossings) are computed for each ER
|
||||
and used as features for a classifier which estimates the class-conditional
|
||||
probability P(er|character). The value of P(er|character) is tracked using the inclusion
|
||||
relation of ER across all thresholds and only the ERs which correspond to local maximum
|
||||
of the probability P(er|character) are selected (if the local maximum of the
|
||||
probability is above a global limit pmin and the difference between local maximum and
|
||||
probability is above a global limit pmin and the difference between local maximum and
|
||||
local minimum is greater than minProbabilityDiff).
|
||||
|
||||
\param cb Callback with the classifier.
|
||||
@ -168,29 +168,29 @@ public:
|
||||
\param minArea The minimum area (% of image size) allowed for retreived ER's
|
||||
\param minArea The maximum area (% of image size) allowed for retreived ER's
|
||||
\param minProbability The minimum probability P(er|character) allowed for retreived ER's
|
||||
\param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities
|
||||
\param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities
|
||||
\param minProbability The minimum probability difference between local maxima and local minima ERs
|
||||
*/
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb = NULL,
|
||||
int thresholdDelta = 1, float minArea = 0.000025,
|
||||
float maxArea = 0.13, float minProbability = 0.2,
|
||||
bool nonMaxSuppression = true,
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb = NULL,
|
||||
int thresholdDelta = 1, float minArea = 0.000025,
|
||||
float maxArea = 0.13, float minProbability = 0.2,
|
||||
bool nonMaxSuppression = true,
|
||||
float minProbabilityDiff = 0.1);
|
||||
|
||||
/*!
|
||||
Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm
|
||||
Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
|
||||
|
||||
In the second stage, the ERs that passed the first stage are classified into character
|
||||
In the second stage, the ERs that passed the first stage are classified into character
|
||||
and non-character classes using more informative but also more computationally expensive
|
||||
features. The classifier uses all the features calculated in the first stage and the following
|
||||
features. The classifier uses all the features calculated in the first stage and the following
|
||||
additional features: hole area ratio, convex hull ratio, and number of outer inflexion points.
|
||||
|
||||
\param cb Callback with the classifier
|
||||
if omitted tries to load a default classifier from file trained_classifierNM2.xml
|
||||
\param minProbability The minimum probability P(er|character) allowed for retreived ER's
|
||||
*/
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb = NULL,
|
||||
CV_EXPORTS Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb = NULL,
|
||||
float minProbability = 0.85);
|
||||
|
||||
}
|
||||
|
@ -181,7 +181,7 @@ void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps
|
||||
int n1 = rweights[i];
|
||||
double w1 = rejectWeights[i];
|
||||
int l1 = rejectLevels[i];
|
||||
|
||||
|
||||
// filter out rectangles which don't have enough similar rectangles
|
||||
if( n1 <= groupThreshold )
|
||||
continue;
|
||||
|
@ -48,9 +48,9 @@ using namespace std;
|
||||
namespace cv
|
||||
{
|
||||
|
||||
ERStat::ERStat(int init_level, int init_pixel, int init_x, int init_y) : pixel(init_pixel),
|
||||
level(init_level), area(0), perimeter(0), euler(0), probability(1.0),
|
||||
parent(0), child(0), next(0), prev(0), local_maxima(0),
|
||||
ERStat::ERStat(int init_level, int init_pixel, int init_x, int init_y) : pixel(init_pixel),
|
||||
level(init_level), area(0), perimeter(0), euler(0), probability(1.0),
|
||||
parent(0), child(0), next(0), prev(0), local_maxima(0),
|
||||
max_probability_ancestor(0), min_probability_ancestor(0)
|
||||
{
|
||||
rect = Rect(init_x,init_y,1,1);
|
||||
@ -76,17 +76,17 @@ public:
|
||||
//Destructor
|
||||
~ERFilterNM() {};
|
||||
|
||||
float minProbability;
|
||||
float minProbability;
|
||||
bool nonMaxSuppression;
|
||||
float minProbabilityDiff;
|
||||
|
||||
// the key method. Takes image on input, vector of ERStat is output for the first stage,
|
||||
// the key method. Takes image on input, vector of ERStat is output for the first stage,
|
||||
// input/output - for the second one.
|
||||
void run( InputArray image, std::vector<ERStat>& regions );
|
||||
|
||||
protected:
|
||||
int thresholdDelta;
|
||||
float maxArea;
|
||||
float maxArea;
|
||||
float minArea;
|
||||
|
||||
Ptr<ERFilter::Callback> classifier;
|
||||
@ -116,8 +116,8 @@ private:
|
||||
// extract the component tree and store all the ER regions
|
||||
void er_tree_extract( InputArray image );
|
||||
// accumulate a pixel into an ER
|
||||
void er_add_pixel( ERStat *parent, int x, int y, int non_boundary_neighbours,
|
||||
int non_boundary_neighbours_horiz,
|
||||
void er_add_pixel( ERStat *parent, int x, int y, int non_boundary_neighbours,
|
||||
int non_boundary_neighbours_horiz,
|
||||
int d_C1, int d_C2, int d_C3 );
|
||||
// merge an ER with its nested parent
|
||||
void er_merge( ERStat *parent, ERStat *child );
|
||||
@ -133,7 +133,7 @@ private:
|
||||
|
||||
|
||||
// default 1st stage classifier
|
||||
class CV_EXPORTS ERClassifierNM1 : public ERFilter::Callback
|
||||
class CV_EXPORTS ERClassifierNM1 : public ERFilter::Callback
|
||||
{
|
||||
public:
|
||||
//Constructor
|
||||
@ -142,14 +142,14 @@ public:
|
||||
~ERClassifierNM1() {};
|
||||
|
||||
// The classifier must return probability measure for the region.
|
||||
double eval(const ERStat& stat);
|
||||
double eval(const ERStat& stat);
|
||||
|
||||
private:
|
||||
CvBoost boost;
|
||||
};
|
||||
|
||||
// default 2nd stage classifier
|
||||
class CV_EXPORTS ERClassifierNM2 : public ERFilter::Callback
|
||||
class CV_EXPORTS ERClassifierNM2 : public ERFilter::Callback
|
||||
{
|
||||
public:
|
||||
//constructor
|
||||
@ -158,7 +158,7 @@ public:
|
||||
~ERClassifierNM2() {};
|
||||
|
||||
// The classifier must return probability measure for the region.
|
||||
double eval(const ERStat& stat);
|
||||
double eval(const ERStat& stat);
|
||||
|
||||
private:
|
||||
CvBoost boost;
|
||||
@ -182,7 +182,7 @@ ERFilterNM::ERFilterNM()
|
||||
classifier = NULL;
|
||||
}
|
||||
|
||||
// the key method. Takes image on input, vector of ERStat is output for the first stage,
|
||||
// the key method. Takes image on input, vector of ERStat is output for the first stage,
|
||||
// input/output for the second one.
|
||||
void ERFilterNM::run( InputArray image, std::vector<ERStat>& _regions )
|
||||
{
|
||||
@ -192,7 +192,7 @@ void ERFilterNM::run( InputArray image, std::vector<ERStat>& _regions )
|
||||
|
||||
regions = &_regions;
|
||||
region_mask = Mat::zeros(image.getMat().rows+2, image.getMat().cols+2, CV_8UC1);
|
||||
|
||||
|
||||
// if regions vector is empty we must extract the entire component tree
|
||||
if ( regions->size() == 0 )
|
||||
{
|
||||
@ -237,13 +237,13 @@ void ERFilterNM::er_tree_extract( InputArray image )
|
||||
src = (image.getMat() / thresholdDelta) -1;
|
||||
}
|
||||
|
||||
const unsigned char * image_data = src.data;
|
||||
int width = src.cols, height = src.rows;
|
||||
const unsigned char * image_data = src.data;
|
||||
int width = src.cols, height = src.rows;
|
||||
|
||||
// the component stack
|
||||
vector<ERStat*> er_stack;
|
||||
|
||||
//the quads for euler number calculation
|
||||
//the quads for euler number calculation
|
||||
unsigned char quads[3][4];
|
||||
quads[0][0] = 1 << 3;
|
||||
quads[0][1] = 1 << 2;
|
||||
@ -271,32 +271,32 @@ void ERFilterNM::er_tree_extract( InputArray image )
|
||||
|
||||
// we'll look initially for all pixels with grey-level lower than a grey-level higher than any allowed in the image
|
||||
int threshold_level = (255/thresholdDelta)+1;
|
||||
|
||||
|
||||
// starting from the first pixel (0,0)
|
||||
int current_pixel = 0;
|
||||
int current_edge = 0;
|
||||
int current_level = image_data[0];
|
||||
accessible_pixel_mask[0] = true;
|
||||
|
||||
|
||||
bool push_new_component = true;
|
||||
|
||||
|
||||
for (;;) {
|
||||
|
||||
int x = current_pixel % width;
|
||||
int y = current_pixel / width;
|
||||
|
||||
// push a component with current level in the component stack
|
||||
if (push_new_component)
|
||||
if (push_new_component)
|
||||
er_stack.push_back(new ERStat(current_level, current_pixel, x, y));
|
||||
push_new_component = false;
|
||||
|
||||
|
||||
// explore the (remaining) edges to the neighbors to the current pixel
|
||||
for (current_edge = current_edge; current_edge < 4; current_edge++)
|
||||
for (current_edge = current_edge; current_edge < 4; current_edge++)
|
||||
{
|
||||
|
||||
int neighbour_pixel = current_pixel;
|
||||
|
||||
switch (current_edge)
|
||||
|
||||
switch (current_edge)
|
||||
{
|
||||
case 0: if (x < width - 1) neighbour_pixel = current_pixel + 1; break;
|
||||
case 1: if (y < height - 1) neighbour_pixel = current_pixel + width; break;
|
||||
@ -305,46 +305,46 @@ void ERFilterNM::er_tree_extract( InputArray image )
|
||||
}
|
||||
|
||||
// if neighbour is not accessible, mark it accessible and retreive its grey-level value
|
||||
if ( !accessible_pixel_mask[neighbour_pixel] && (neighbour_pixel != current_pixel) )
|
||||
if ( !accessible_pixel_mask[neighbour_pixel] && (neighbour_pixel != current_pixel) )
|
||||
{
|
||||
|
||||
int neighbour_level = image_data[neighbour_pixel];
|
||||
accessible_pixel_mask[neighbour_pixel] = true;
|
||||
|
||||
// if neighbour level is not lower than current level add neighbour to the boundary heap
|
||||
if (neighbour_level >= current_level)
|
||||
// if neighbour level is not lower than current level add neighbour to the boundary heap
|
||||
if (neighbour_level >= current_level)
|
||||
{
|
||||
|
||||
boundary_pixes[neighbour_level].push_back(neighbour_pixel);
|
||||
boundary_edges[neighbour_level].push_back(0);
|
||||
|
||||
|
||||
// if neighbour level is lower than our threshold_level set threshold_level to neighbour level
|
||||
if (neighbour_level < threshold_level)
|
||||
threshold_level = neighbour_level;
|
||||
|
||||
}
|
||||
else // if neighbour level is lower than current add current_pixel (and next edge)
|
||||
}
|
||||
else // if neighbour level is lower than current add current_pixel (and next edge)
|
||||
// to the boundary heap for later processing
|
||||
{
|
||||
|
||||
|
||||
boundary_pixes[current_level].push_back(current_pixel);
|
||||
boundary_edges[current_level].push_back(current_edge + 1);
|
||||
|
||||
|
||||
// if neighbour level is lower than threshold_level set threshold_level to neighbour level
|
||||
if (current_level < threshold_level)
|
||||
threshold_level = current_level;
|
||||
|
||||
|
||||
// consider the new pixel and its grey-level as current pixel
|
||||
current_pixel = neighbour_pixel;
|
||||
current_edge = 0;
|
||||
current_level = neighbour_level;
|
||||
|
||||
|
||||
// and push a new component
|
||||
push_new_component = true;
|
||||
break;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // else neigbor was already accessible
|
||||
|
||||
if (push_new_component) continue;
|
||||
@ -363,12 +363,12 @@ void ERFilterNM::er_tree_extract( InputArray image )
|
||||
quad_after[2] = 1<<2;
|
||||
quad_after[3] = 1;
|
||||
|
||||
for (int edge = 0; edge < 8; edge++)
|
||||
for (int edge = 0; edge < 8; edge++)
|
||||
{
|
||||
int neighbour4 = -1;
|
||||
int neighbour8 = -1;
|
||||
int cell = 0;
|
||||
switch (edge)
|
||||
switch (edge)
|
||||
{
|
||||
case 0: if (x < width - 1) { neighbour4 = neighbour8 = current_pixel + 1;} cell = 5; break;
|
||||
case 1: if ((x < width - 1)&&(y < height - 1)) { neighbour8 = current_pixel + 1 + width;} cell = 8; break;
|
||||
@ -391,7 +391,7 @@ void ERFilterNM::er_tree_extract( InputArray image )
|
||||
{
|
||||
if (accumulated_pixel_mask[neighbour8])
|
||||
pix_value = image_data[neighbour8];
|
||||
}
|
||||
}
|
||||
|
||||
if (pix_value<=image_data[current_pixel])
|
||||
{
|
||||
@ -453,18 +453,18 @@ void ERFilterNM::er_tree_extract( InputArray image )
|
||||
C_before[p]++;
|
||||
if ( (quad_before[1] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
C_before[p]++;
|
||||
if ( (quad_before[2] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
if ( (quad_before[2] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
C_before[p]++;
|
||||
if ( (quad_before[3] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
C_before[p]++;
|
||||
|
||||
if ( (quad_after[0] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
if ( (quad_after[0] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
C_after[p]++;
|
||||
if ( (quad_after[1] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
if ( (quad_after[1] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
C_after[p]++;
|
||||
if ( (quad_after[2] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
if ( (quad_after[2] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
C_after[p]++;
|
||||
if ( (quad_after[3] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
if ( (quad_after[3] == quads[p][q]) && ((p<2)||(q<2)) )
|
||||
C_after[p]++;
|
||||
}
|
||||
}
|
||||
@ -475,9 +475,9 @@ void ERFilterNM::er_tree_extract( InputArray image )
|
||||
|
||||
er_add_pixel(er_stack.back(), x, y, non_boundary_neighbours, non_boundary_neighbours_horiz, d_C1, d_C2, d_C3);
|
||||
accumulated_pixel_mask[current_pixel] = true;
|
||||
|
||||
|
||||
// if we have processed all the possible threshold levels (the hea is empty) we are done!
|
||||
if (threshold_level == (255/thresholdDelta)+1)
|
||||
if (threshold_level == (255/thresholdDelta)+1)
|
||||
{
|
||||
|
||||
// save the extracted regions into the output vector
|
||||
@ -490,18 +490,18 @@ void ERFilterNM::er_tree_extract( InputArray image )
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// pop the heap of boundary pixels
|
||||
current_pixel = boundary_pixes[threshold_level].back();
|
||||
boundary_pixes[threshold_level].erase(boundary_pixes[threshold_level].end()-1);
|
||||
current_edge = boundary_edges[threshold_level].back();
|
||||
boundary_edges[threshold_level].erase(boundary_edges[threshold_level].end()-1);
|
||||
|
||||
|
||||
while (boundary_pixes[threshold_level].empty() && (threshold_level < (255/thresholdDelta)+1))
|
||||
threshold_level++;
|
||||
|
||||
|
||||
|
||||
int new_level = image_data[current_pixel];
|
||||
|
||||
// if the new pixel has higher grey value than the current one
|
||||
@ -514,11 +514,11 @@ void ERFilterNM::er_tree_extract( InputArray image )
|
||||
{
|
||||
ERStat* er = er_stack.back();
|
||||
er_stack.erase(er_stack.end()-1);
|
||||
|
||||
if (new_level < er_stack.back()->level)
|
||||
|
||||
if (new_level < er_stack.back()->level)
|
||||
{
|
||||
er_stack.push_back(new ERStat(new_level, current_pixel, current_pixel%width, current_pixel/width));
|
||||
er_merge(er_stack.back(), er);
|
||||
er_merge(er_stack.back(), er);
|
||||
break;
|
||||
}
|
||||
|
||||
@ -531,8 +531,8 @@ void ERFilterNM::er_tree_extract( InputArray image )
|
||||
}
|
||||
|
||||
// accumulate a pixel into an ER
|
||||
void ERFilterNM::er_add_pixel(ERStat *parent, int x, int y, int non_border_neighbours,
|
||||
int non_border_neighbours_horiz,
|
||||
void ERFilterNM::er_add_pixel(ERStat *parent, int x, int y, int non_border_neighbours,
|
||||
int non_border_neighbours_horiz,
|
||||
int d_C1, int d_C2, int d_C3)
|
||||
{
|
||||
parent->area++;
|
||||
@ -575,7 +575,7 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child)
|
||||
parent->area += child->area;
|
||||
|
||||
parent->perimeter += child->perimeter;
|
||||
|
||||
|
||||
|
||||
for (int i=parent->rect.y; i<=min(parent->rect.br().y-1,child->rect.br().y-1); i++)
|
||||
if (i-child->rect.y >= 0)
|
||||
@ -584,12 +584,12 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child)
|
||||
for (int i=parent->rect.y-1; i>=child->rect.y; i--)
|
||||
if (i-child->rect.y < (int)child->crossings->size())
|
||||
parent->crossings->push_front(child->crossings->at(i-child->rect.y));
|
||||
else
|
||||
else
|
||||
parent->crossings->push_front(0);
|
||||
|
||||
for (int i=parent->rect.br().y; i<child->rect.y; i++)
|
||||
parent->crossings->push_back(0);
|
||||
|
||||
|
||||
for (int i=max(parent->rect.br().y,child->rect.y); i<=child->rect.br().y-1; i++)
|
||||
parent->crossings->push_back(child->crossings->at(i-child->rect.y));
|
||||
|
||||
@ -618,8 +618,8 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child)
|
||||
std::sort(m_crossings.begin(), m_crossings.end());
|
||||
child->med_crossings = (float)m_crossings.at(1);
|
||||
|
||||
// free unnecessary mem
|
||||
child->crossings->clear();
|
||||
// free unnecessary mem
|
||||
child->crossings->clear();
|
||||
delete(child->crossings);
|
||||
child->crossings = NULL;
|
||||
|
||||
@ -632,15 +632,15 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child)
|
||||
child->probability = classifier->eval(*child);
|
||||
}
|
||||
|
||||
if ( ((classifier!=NULL)?(child->probability >= minProbability):true) &&
|
||||
((child->area >= (minArea*region_mask.rows*region_mask.cols)) &&
|
||||
if ( ((classifier!=NULL)?(child->probability >= minProbability):true) &&
|
||||
((child->area >= (minArea*region_mask.rows*region_mask.cols)) &&
|
||||
(child->area <= (maxArea*region_mask.rows*region_mask.cols))) )
|
||||
{
|
||||
|
||||
num_accepted_regions++;
|
||||
|
||||
child->next = parent->child;
|
||||
if (parent->child)
|
||||
if (parent->child)
|
||||
parent->child->prev = child;
|
||||
parent->child = child;
|
||||
child->parent = parent;
|
||||
@ -658,7 +658,7 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child)
|
||||
while (new_child->next != NULL)
|
||||
new_child = new_child->next;
|
||||
new_child->next = parent->child;
|
||||
if (parent->child)
|
||||
if (parent->child)
|
||||
parent->child->prev = new_child;
|
||||
parent->child = child->child;
|
||||
child->child->parent = parent;
|
||||
@ -672,8 +672,8 @@ void ERFilterNM::er_merge(ERStat *parent, ERStat *child)
|
||||
child->crossings = NULL;
|
||||
}
|
||||
delete(child);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// recursively walk the tree and clean memory
|
||||
@ -691,11 +691,11 @@ void ERFilterNM::er_tree_clean( ERStat *stat )
|
||||
}
|
||||
delete stat;
|
||||
}
|
||||
|
||||
|
||||
// copy extracted regions into the output vector
|
||||
ERStat* ERFilterNM::er_save( ERStat *er, ERStat *parent, ERStat *prev )
|
||||
{
|
||||
|
||||
|
||||
regions->push_back(*er);
|
||||
|
||||
regions->back().parent = parent;
|
||||
@ -714,7 +714,7 @@ ERStat* ERFilterNM::er_save( ERStat *er, ERStat *parent, ERStat *prev )
|
||||
this_er->probability = 0; //TODO this makes sense in order to select at least one region in short tree's but is it really necessary?
|
||||
this_er->max_probability_ancestor = this_er;
|
||||
this_er->min_probability_ancestor = this_er;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
this_er->max_probability_ancestor = (this_er->probability > parent->max_probability_ancestor->probability)? this_er : parent->max_probability_ancestor;
|
||||
@ -730,11 +730,11 @@ ERStat* ERFilterNM::er_save( ERStat *er, ERStat *parent, ERStat *prev )
|
||||
// this_er->min_probability_ancestor->local_maxima = false;
|
||||
|
||||
this_er->max_probability_ancestor = this_er;
|
||||
this_er->min_probability_ancestor = this_er;
|
||||
this_er->min_probability_ancestor = this_er;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for (ERStat * child = er->child; child; child = child->next)
|
||||
{
|
||||
old_prev = er_save(child, this_er, old_prev);
|
||||
@ -749,16 +749,16 @@ ERStat* ERFilterNM::er_tree_filter ( InputArray image, ERStat * stat, ERStat *pa
|
||||
Mat src = image.getMat();
|
||||
// assert correct image type
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
|
||||
|
||||
//Fill the region and calculate 2nd stage features
|
||||
Mat region = region_mask(Rect(Point(stat->rect.x,stat->rect.y),Point(stat->rect.br().x+2,stat->rect.br().y+2)));
|
||||
region = Scalar(0);
|
||||
int newMaskVal = 255;
|
||||
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
|
||||
Rect rect;
|
||||
|
||||
floodFill( src(Rect(Point(stat->rect.x,stat->rect.y),Point(stat->rect.br().x,stat->rect.br().y))),
|
||||
region, Point(stat->pixel%src.cols - stat->rect.x, stat->pixel/src.cols - stat->rect.y),
|
||||
|
||||
floodFill( src(Rect(Point(stat->rect.x,stat->rect.y),Point(stat->rect.br().x,stat->rect.br().y))),
|
||||
region, Point(stat->pixel%src.cols - stat->rect.x, stat->pixel/src.cols - stat->rect.y),
|
||||
Scalar(255), &rect, Scalar(stat->level), Scalar(0), flags );
|
||||
rect.width += 2;
|
||||
rect.height += 2;
|
||||
@ -768,9 +768,9 @@ ERStat* ERFilterNM::er_tree_filter ( InputArray image, ERStat * stat, ERStat *pa
|
||||
vector<Point> contour_poly;
|
||||
vector<Vec4i> hierarchy;
|
||||
findContours( region, contours, hierarchy, RETR_TREE, CHAIN_APPROX_NONE, Point(0, 0) );
|
||||
//TODO check epsilon parameter of approxPolyDP (set empirically) : we want more precission
|
||||
//TODO check epsilon parameter of approxPolyDP (set empirically) : we want more precission
|
||||
// if the region is very small because otherwise we'll loose all the convexities
|
||||
approxPolyDP( Mat(contours[0]), contour_poly, max(rect.width,rect.height)/25, true );
|
||||
approxPolyDP( Mat(contours[0]), contour_poly, max(rect.width,rect.height)/25, true );
|
||||
|
||||
|
||||
bool was_convex = false;
|
||||
@ -829,11 +829,11 @@ ERStat* ERFilterNM::er_tree_filter ( InputArray image, ERStat * stat, ERStat *pa
|
||||
if ( (classifier != NULL) && (stat->parent != NULL) )
|
||||
{
|
||||
stat->probability = classifier->eval(*stat);
|
||||
}
|
||||
}
|
||||
|
||||
if ( ( ((classifier != NULL)?(stat->probability >= minProbability):true) &&
|
||||
((stat->area >= minArea*region_mask.rows*region_mask.cols) &&
|
||||
(stat->area <= maxArea*region_mask.rows*region_mask.cols)) ) ||
|
||||
if ( ( ((classifier != NULL)?(stat->probability >= minProbability):true) &&
|
||||
((stat->area >= minArea*region_mask.rows*region_mask.cols) &&
|
||||
(stat->area <= maxArea*region_mask.rows*region_mask.cols)) ) ||
|
||||
(stat->parent == NULL) )
|
||||
{
|
||||
|
||||
@ -979,19 +979,19 @@ int ERFilterNM::getNumRejected()
|
||||
ERClassifierNM1::ERClassifierNM1()
|
||||
{
|
||||
|
||||
if (ifstream("./trained_classifierNM1.xml"))
|
||||
if (ifstream("./trained_classifierNM1.xml"))
|
||||
{
|
||||
// The file with default classifier exists
|
||||
boost.load("./trained_classifierNM1.xml", "boost");
|
||||
}
|
||||
else if (ifstream("./training/trained_classifierNM1.xml"))
|
||||
}
|
||||
else if (ifstream("./training/trained_classifierNM1.xml"))
|
||||
{
|
||||
// The file with default classifier exists
|
||||
boost.load("./training/trained_classifierNM1.xml", "boost");
|
||||
}
|
||||
else
|
||||
}
|
||||
else
|
||||
{
|
||||
// File not found
|
||||
// File not found
|
||||
CV_Error(CV_StsBadArg, "Default classifier ./trained_classifierNM1.xml not found!");
|
||||
}
|
||||
};
|
||||
@ -1017,19 +1017,19 @@ double ERClassifierNM1::eval(const ERStat& stat)
|
||||
ERClassifierNM2::ERClassifierNM2()
|
||||
{
|
||||
|
||||
if (ifstream("./trained_classifierNM2.xml"))
|
||||
if (ifstream("./trained_classifierNM2.xml"))
|
||||
{
|
||||
// The file with default classifier exists
|
||||
boost.load("./trained_classifierNM2.xml", "boost");
|
||||
}
|
||||
else if (ifstream("./training/trained_classifierNM2.xml"))
|
||||
}
|
||||
else if (ifstream("./training/trained_classifierNM2.xml"))
|
||||
{
|
||||
// The file with default classifier exists
|
||||
boost.load("./training/trained_classifierNM2.xml", "boost");
|
||||
}
|
||||
else
|
||||
}
|
||||
else
|
||||
{
|
||||
// File not found
|
||||
// File not found
|
||||
CV_Error(CV_StsBadArg, "Default classifier ./trained_classifierNM2.xml not found!");
|
||||
}
|
||||
};
|
||||
@ -1040,7 +1040,7 @@ double ERClassifierNM2::eval(const ERStat& stat)
|
||||
float arr[] = {0,(float)(stat.rect.width)/(stat.rect.height), // aspect ratio
|
||||
sqrt((float)(stat.area))/stat.perimeter, // compactness
|
||||
(float)(1-stat.euler), //number of holes
|
||||
stat.med_crossings, stat.hole_area_ratio,
|
||||
stat.med_crossings, stat.hole_area_ratio,
|
||||
stat.convex_hull_ratio, stat.num_inflexion_points};
|
||||
|
||||
vector<float> sample (arr, arr + sizeof(arr) / sizeof(arr[0]) );
|
||||
@ -1055,15 +1055,15 @@ double ERClassifierNM2::eval(const ERStat& stat)
|
||||
/*!
|
||||
Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm
|
||||
Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
|
||||
|
||||
|
||||
The component tree of the image is extracted by a threshold increased step by step
|
||||
from 0 to 255, incrementally computable descriptors (aspect_ratio, compactness,
|
||||
number of holes, and number of horizontal crossings) are computed for each ER
|
||||
and used as features for a classifier which estimates the class-conditional
|
||||
probability P(er|character). The value of P(er|character) is tracked using the inclusion
|
||||
relation of ER across all thresholds and only the ERs which correspond to local maximum
|
||||
from 0 to 255, incrementally computable descriptors (aspect_ratio, compactness,
|
||||
number of holes, and number of horizontal crossings) are computed for each ER
|
||||
and used as features for a classifier which estimates the class-conditional
|
||||
probability P(er|character). The value of P(er|character) is tracked using the inclusion
|
||||
relation of ER across all thresholds and only the ERs which correspond to local maximum
|
||||
of the probability P(er|character) are selected (if the local maximum of the
|
||||
probability is above a global limit pmin and the difference between local maximum and
|
||||
probability is above a global limit pmin and the difference between local maximum and
|
||||
local minimum is greater than minProbabilityDiff).
|
||||
|
||||
\param cb Callback with the classifier.
|
||||
@ -1072,11 +1072,11 @@ double ERClassifierNM2::eval(const ERStat& stat)
|
||||
\param minArea The minimum area (% of image size) allowed for retreived ER's
|
||||
\param minArea The maximum area (% of image size) allowed for retreived ER's
|
||||
\param minProbability The minimum probability P(er|character) allowed for retreived ER's
|
||||
\param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities
|
||||
\param nonMaxSuppression Whenever non-maximum suppression is done over the branch probabilities
|
||||
\param minProbability The minimum probability difference between local maxima and local minima ERs
|
||||
*/
|
||||
Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb, int thresholdDelta,
|
||||
float minArea, float maxArea, float minProbability,
|
||||
Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb, int thresholdDelta,
|
||||
float minArea, float maxArea, float minProbability,
|
||||
bool nonMaxSuppression, float minProbabilityDiff)
|
||||
{
|
||||
|
||||
@ -1086,7 +1086,7 @@ Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb, int threshold
|
||||
CV_Assert( (minProbabilityDiff >= 0.) && (minProbabilityDiff <= 1.) );
|
||||
|
||||
Ptr<ERFilterNM> filter = new ERFilterNM();
|
||||
|
||||
|
||||
if (cb == NULL)
|
||||
filter->setCallback(new ERClassifierNM1());
|
||||
else
|
||||
@ -1105,9 +1105,9 @@ Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb, int threshold
|
||||
Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm
|
||||
Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
|
||||
|
||||
In the second stage, the ERs that passed the first stage are classified into character
|
||||
In the second stage, the ERs that passed the first stage are classified into character
|
||||
and non-character classes using more informative but also more computationally expensive
|
||||
features. The classifier uses all the features calculated in the first stage and the following
|
||||
features. The classifier uses all the features calculated in the first stage and the following
|
||||
additional features: hole area ratio, convex hull ratio, and number of outer inflexion points.
|
||||
|
||||
\param cb Callback with the classifier
|
||||
@ -1121,7 +1121,7 @@ Ptr<ERFilter> createERFilterNM2(const Ptr<ERFilter::Callback>& cb, float minProb
|
||||
|
||||
Ptr<ERFilterNM> filter = new ERFilterNM();
|
||||
|
||||
|
||||
|
||||
if (cb == NULL)
|
||||
filter->setCallback(new ERClassifierNM2());
|
||||
else
|
||||
|
@ -151,9 +151,9 @@ Returns void
|
||||
:param temp1: Convolution kernel, a single-channel floating point matrix. The size is not greater than the ``image`` size. The type is the same as ``image``.
|
||||
|
||||
:param result: The destination image
|
||||
|
||||
|
||||
:param ccorr: Flags to evaluate cross-correlation instead of convolution.
|
||||
|
||||
|
||||
:param buf: Optional buffer to avoid extra memory allocations and to adjust some specific parameters. See :ocv:struct:`ocl::ConvolveBuf`.
|
||||
|
||||
Convolves an image with the kernel. Supports only CV_32FC1 data types and do not support ROI.
|
||||
|
@ -1782,7 +1782,7 @@ namespace cv
|
||||
};
|
||||
//! Returns the sorted result of all the elements in input based on equivalent keys.
|
||||
//
|
||||
// The element unit in the values to be sorted is determined from the data type,
|
||||
// The element unit in the values to be sorted is determined from the data type,
|
||||
// i.e., a CV_32FC2 input {a1a2, b1b2} will be considered as two elements, regardless its
|
||||
// matrix dimension.
|
||||
// both keys and values will be sorted inplace
|
||||
|
@ -189,7 +189,7 @@ void cv::ocl::oclMat::upload(const Mat &m)
|
||||
temp = clCreateBuffer((cl_context)clCxt->oclContext(), CL_MEM_READ_WRITE,
|
||||
(pitch * wholeSize.height + tail_padding - 1) / tail_padding * tail_padding, 0, &err);
|
||||
openCLVerifyCall(err);
|
||||
openCLMemcpy2D(clCxt, temp, pitch, m.datastart, m.step,
|
||||
openCLMemcpy2D(clCxt, temp, pitch, m.datastart, m.step,
|
||||
wholeSize.width * m.elemSize(), wholeSize.height, clMemcpyHostToDevice, 3);
|
||||
}
|
||||
else{
|
||||
@ -198,7 +198,7 @@ void cv::ocl::oclMat::upload(const Mat &m)
|
||||
openCLVerifyCall(err);
|
||||
}
|
||||
|
||||
|
||||
|
||||
convert_C3C4(temp, *this);
|
||||
openCLSafeCall(clReleaseMemObject(temp));
|
||||
}
|
||||
|
@ -14,20 +14,20 @@ static void print_matrix(const Mat& x){
|
||||
}
|
||||
static void print_simplex_state(const Mat& c,const Mat& b,double v,const std::vector<int> N,const std::vector<int> B){
|
||||
printf("\tprint simplex state\n");
|
||||
|
||||
|
||||
printf("v=%g\n",v);
|
||||
|
||||
|
||||
printf("here c goes\n");
|
||||
print_matrix(c);
|
||||
|
||||
|
||||
printf("non-basic: ");
|
||||
print(Mat(N));
|
||||
printf("\n");
|
||||
|
||||
|
||||
printf("here b goes\n");
|
||||
print_matrix(b);
|
||||
printf("basic: ");
|
||||
|
||||
|
||||
print(Mat(B));
|
||||
printf("\n");
|
||||
}
|
||||
@ -185,7 +185,7 @@ static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<
|
||||
if(indexToRow[I]<N.size()){
|
||||
dprintf(("I=%d from nonbasic\n",I));
|
||||
int iterator_offset=indexToRow[I];
|
||||
c(0,iterator_offset)+=old_c(0,I);
|
||||
c(0,iterator_offset)+=old_c(0,I);
|
||||
print_matrix(c);
|
||||
}else{
|
||||
dprintf(("I=%d from basic\n",I));
|
||||
@ -272,7 +272,7 @@ static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>&
|
||||
}
|
||||
}
|
||||
|
||||
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,
|
||||
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,
|
||||
int leaving_index,int entering_index,vector<unsigned int>& indexToRow){
|
||||
double Coef=b(leaving_index,entering_index);
|
||||
for(int i=0;i<b.cols;i++){
|
||||
@ -307,7 +307,7 @@ static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>&
|
||||
}
|
||||
dprintf(("v was %g\n",v));
|
||||
v+=Coef*b(leaving_index,b.cols-1);
|
||||
|
||||
|
||||
SWAP(int,N[entering_index],B[leaving_index]);
|
||||
SWAP(int,indexToRow[N[entering_index]],indexToRow[B[leaving_index]]);
|
||||
}
|
||||
|
@ -321,7 +321,7 @@ void BoostedSoftCascadeOctave::traverse(const CvBoostTree* tree, cv::FileStorage
|
||||
|
||||
|
||||
fs << "}";
|
||||
|
||||
|
||||
delete [] leafs;
|
||||
}
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
// A demo program of the Extremal Region Filter algorithm described in
|
||||
// A demo program of the Extremal Region Filter algorithm described in
|
||||
// Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
|
||||
//--------------------------------------------------------------------------------------------------
|
||||
|
||||
@ -21,7 +21,7 @@ void er_draw(Mat &src, Mat &dst, ERStat& er);
|
||||
void er_draw(Mat &src, Mat &dst, ERStat& er)
|
||||
{
|
||||
|
||||
if (er.parent != NULL) // deprecate the root region
|
||||
if (er.parent != NULL) // deprecate the root region
|
||||
{
|
||||
int newMaskVal = 255;
|
||||
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
|
||||
@ -29,7 +29,7 @@ void er_draw(Mat &src, Mat &dst, ERStat& er)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, const char * argv[])
|
||||
{
|
||||
|
||||
@ -54,14 +54,14 @@ int main(int argc, const char * argv[])
|
||||
}
|
||||
Mat grey(original.size(),CV_8UC1);
|
||||
cvtColor(original,grey,COLOR_RGB2GRAY);
|
||||
|
||||
|
||||
double t = (double)getTickCount();
|
||||
|
||||
|
||||
// Build ER tree and filter with the 1st stage default classifier
|
||||
Ptr<ERFilter> er_filter1 = createERFilterNM1();
|
||||
|
||||
|
||||
er_filter1->run(grey, regions);
|
||||
|
||||
|
||||
t = (double)getTickCount() - t;
|
||||
cout << " --------------------------------------------------------------------------------------------------" << endl;
|
||||
cout << "\t FIRST STAGE CLASSIFIER done in " << t * 1000. / getTickFrequency() << " ms." << endl;
|
||||
@ -87,11 +87,11 @@ int main(int argc, const char * argv[])
|
||||
}
|
||||
|
||||
t = (double)getTickCount();
|
||||
|
||||
|
||||
// Default second stage classifier
|
||||
Ptr<ERFilter> er_filter2 = createERFilterNM2();
|
||||
er_filter2->run(grey, regions);
|
||||
|
||||
|
||||
t = (double)getTickCount() - t;
|
||||
cout << " --------------------------------------------------------------------------------------------------" << endl;
|
||||
cout << "\t SECOND STAGE CLASSIFIER done in " << t * 1000. / getTickFrequency() << " ms." << endl;
|
||||
|
@ -17,7 +17,7 @@ static void help(char** argv)
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
if(argc != 2)
|
||||
if(argc != 2)
|
||||
{
|
||||
help(argv);
|
||||
return 1;
|
||||
@ -25,28 +25,28 @@ int main(int argc, char** argv)
|
||||
|
||||
string first_file = argv[1];
|
||||
VideoCapture sequence(first_file);
|
||||
|
||||
|
||||
if (!sequence.isOpened())
|
||||
{
|
||||
cerr << "Failed to open the image sequence!\n" << endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
Mat image;
|
||||
namedWindow("Image sequence | press ESC to close", 1);
|
||||
|
||||
|
||||
for(;;)
|
||||
{
|
||||
// Read in image from sequence
|
||||
sequence >> image;
|
||||
|
||||
|
||||
// If no image was retrieved -> end of sequence
|
||||
if(image.empty())
|
||||
{
|
||||
cout << "End of Sequence" << endl;
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
imshow("Image sequence | press ESC to close", image);
|
||||
|
||||
if(waitKey(500) == 27)
|
||||
|
@ -41,15 +41,15 @@ namespace {
|
||||
cout << "press space to save a picture. q or esc to quit" << endl;
|
||||
namedWindow(window_name, WINDOW_KEEPRATIO); //resizable window;
|
||||
Mat frame;
|
||||
|
||||
|
||||
for (;;) {
|
||||
capture >> frame;
|
||||
if (frame.empty())
|
||||
break;
|
||||
|
||||
|
||||
imshow(window_name, frame);
|
||||
char key = (char)waitKey(30); //delay N millis, usually long enough to display and capture input
|
||||
|
||||
|
||||
switch (key) {
|
||||
case 'q':
|
||||
case 'Q':
|
||||
|
@ -119,19 +119,19 @@ if __name__ == '__main__':
|
||||
img1 = cv2.imread(fn1, 0)
|
||||
img2 = cv2.imread(fn2, 0)
|
||||
detector, matcher = init_feature(feature_name)
|
||||
|
||||
|
||||
if img1 is None:
|
||||
print 'Failed to load fn1:', fn1
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if img2 is None:
|
||||
print 'Failed to load fn2:', fn2
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if detector is None:
|
||||
print 'unknown feature:', feature_name
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
print 'using', feature_name
|
||||
|
||||
pool=ThreadPool(processes = cv2.getNumberOfCPUs())
|
||||
|
@ -102,7 +102,7 @@ class App(object):
|
||||
vis[:] = prob[...,np.newaxis]
|
||||
try:
|
||||
cv2.ellipse(vis, track_box, (0, 0, 255), 2)
|
||||
except:
|
||||
except:
|
||||
print track_box
|
||||
|
||||
cv2.imshow('camshift', vis)
|
||||
@ -119,7 +119,7 @@ if __name__ == '__main__':
|
||||
import sys
|
||||
try:
|
||||
video_src = sys.argv[1]
|
||||
except:
|
||||
except:
|
||||
video_src = 0
|
||||
print __doc__
|
||||
App(video_src).run()
|
||||
|
@ -40,9 +40,9 @@ def coherence_filter(img, sigma = 11, str_sigma = 11, blend = 0.5, iter_n = 4):
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
try:
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
except:
|
||||
fn = '../cpp/baboon.jpg'
|
||||
|
||||
src = cv2.imread(fn)
|
||||
|
@ -141,7 +141,7 @@ class App:
|
||||
count = tk.IntVar()
|
||||
while True:
|
||||
match_index = text.search(pattern, 'matchPos', count=count, regexp=regexp, stopindex='end')
|
||||
if not match_index:
|
||||
if not match_index:
|
||||
break
|
||||
end_index = text.index( "%s+%sc" % (match_index, count.get()) )
|
||||
text.mark_set('matchPos', end_index)
|
||||
|
@ -143,15 +143,15 @@ if __name__ == '__main__':
|
||||
if img1 is None:
|
||||
print 'Failed to load fn1:', fn1
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if img2 is None:
|
||||
print 'Failed to load fn2:', fn2
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if detector is None:
|
||||
print 'unknown feature:', feature_name
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
print 'using', feature_name
|
||||
|
||||
kp1, desc1 = detector.detectAndCompute(img1, None)
|
||||
|
@ -51,14 +51,14 @@ if __name__ == '__main__':
|
||||
print __doc__
|
||||
try:
|
||||
img_fn = sys.argv[1]
|
||||
except:
|
||||
except:
|
||||
img_fn = '../cpp/baboon.jpg'
|
||||
|
||||
img = cv2.imread(img_fn)
|
||||
if img is None:
|
||||
print 'Failed to load image file:', img_fn
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
filters = build_filters()
|
||||
|
||||
with Timer('running single-threaded'):
|
||||
|
@ -61,7 +61,7 @@ if __name__ == '__main__':
|
||||
print "usage : python hist.py <image_file>"
|
||||
|
||||
im = cv2.imread(fname)
|
||||
|
||||
|
||||
if im is None:
|
||||
print 'Failed to load image file:', fname
|
||||
sys.exit(1)
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
'''
|
||||
This example illustrates how to use cv2.HoughCircles() function.
|
||||
Usage: ./houghcircles.py [<image_name>]
|
||||
Usage: ./houghcircles.py [<image_name>]
|
||||
image argument defaults to ../cpp/board.jpg
|
||||
'''
|
||||
|
||||
|
@ -23,16 +23,16 @@ if __name__ == '__main__':
|
||||
import sys
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
except:
|
||||
fn = '../cpp/fruits.jpg'
|
||||
|
||||
|
||||
print __doc__
|
||||
|
||||
img = cv2.imread(fn)
|
||||
if img is None:
|
||||
print 'Failed to load image file:', fn
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
img_mark = img.copy()
|
||||
mark = np.zeros(img.shape[:2], np.uint8)
|
||||
sketch = Sketcher('img', [img_mark, mark], lambda : ((255, 255, 255), 255))
|
||||
|
@ -27,13 +27,13 @@ if __name__ == '__main__':
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = '../cpp/baboon.jpg'
|
||||
|
||||
|
||||
img = cv2.imread(fn)
|
||||
|
||||
|
||||
if img is None:
|
||||
print 'Failed to load image file:', fn
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
cv2.imshow('original', img)
|
||||
|
||||
modes = cycle(['erode/dilate', 'open/close', 'blackhat/tophat', 'gradient'])
|
||||
|
Loading…
Reference in New Issue
Block a user