Merge pull request #14109 from PedroFerreiradaCosta:adding_python_version_to_anisotropic_tutorial

* Created python version of the code for the anisotropic image segmentation tutorial. Created python/cpp toggles for the markdown file.

* fix doxygen warnings
This commit is contained in:
Pedro Ferreira da Costa 2019-03-21 19:53:12 +00:00 committed by Alexander Alekhin
parent 865bd7abff
commit 9cef78b685
2 changed files with 135 additions and 6 deletions

View File

@ -48,28 +48,65 @@ The orientation of an anisotropic image:
Coherency:
\f[C = \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2}\f]
The coherency ranges from 0 to 1. For ideal local orientation (\f$\lambda_2\f$ = 0, \f$\lambda_1\f$ > 0) it is one, for an isotropic gray value structure (\f$\lambda_1\f$ = \f$\lambda_2\f$ > 0) it is zero.
The coherency ranges from 0 to 1. For ideal local orientation (\f$\lambda_2\f$ = 0, \f$\lambda_1\f$ > 0) it is one, for an isotropic gray value structure (\f$\lambda_1\f$ = \f$\lambda_2\f$ \> 0) it is zero.
Source code
-----------
You can find source code in the `samples/cpp/tutorial_code/ImgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.cpp` of the OpenCV source code library.
@include cpp/tutorial_code/ImgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.cpp
@add_toggle_cpp
@include cpp/tutorial_code/ImgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.cpp
@end_toggle
@add_toggle_python
@include samples/python/tutorial_code/imgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.py
@end_toggle
Explanation
-----------
An anisotropic image segmentation algorithm consists of a gradient structure tensor calculation, an orientation calculation, a coherency calculation and an orientation and coherency thresholding:
@snippet samples/cpp/tutorial_code/ImgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.cpp main
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.cpp main
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/imgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.py main
@end_toggle
A function calcGST() calculates orientation and coherency by using a gradient structure tensor. An input parameter w defines a window size:
@snippet samples/cpp/tutorial_code/ImgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.cpp calcGST
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.cpp calcGST
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/imgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.py calcGST
@end_toggle
The below code applies a thresholds LowThr and HighThr to image orientation and a threshold C_Thr to image coherency calculated by the previous function. LowThr and HighThr define orientation range:
@snippet samples/cpp/tutorial_code/ImgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.cpp thresholding
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.cpp thresholding
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/imgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.py thresholding
@end_toggle
And finally we combine thresholding results:
@snippet samples/cpp/tutorial_code/ImgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.cpp combining
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/ImgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.cpp combining
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/imgProc/anisotropic_image_segmentation/anisotropic_image_segmentation.py combining
@end_toggle
Result
------

View File

@ -0,0 +1,92 @@
import cv2 as cv
import numpy as np
import argparse
W = 52 # window size is WxW
C_Thr = 0.43 # threshold for coherency
LowThr = 35 # threshold1 for orientation, it ranges from 0 to 180
HighThr = 57 # threshold2 for orientation, it ranges from 0 to 180
## [calcGST]
## [calcJ_header]
## [calcGST_proto]
def calcGST(inputIMG, w):
## [calcGST_proto]
img = inputIMG.astype(np.float32)
# GST components calculation (start)
# J = (J11 J12; J12 J22) - GST
imgDiffX = cv.Sobel(img, cv.CV_32F, 1, 0, 3)
imgDiffY = cv.Sobel(img, cv.CV_32F, 0, 1, 3)
imgDiffXY = cv.multiply(imgDiffX, imgDiffY)
## [calcJ_header]
imgDiffXX = cv.multiply(imgDiffX, imgDiffX)
imgDiffYY = cv.multiply(imgDiffY, imgDiffY)
J11 = cv.boxFilter(imgDiffXX, cv.CV_32F, (w,w))
J22 = cv.boxFilter(imgDiffYY, cv.CV_32F, (w,w))
J12 = cv.boxFilter(imgDiffXY, cv.CV_32F, (w,w))
# GST components calculations (stop)
# eigenvalue calculation (start)
# lambda1 = J11 + J22 + sqrt((J11-J22)^2 + 4*J12^2)
# lambda2 = J11 + J22 - sqrt((J11-J22)^2 + 4*J12^2)
tmp1 = J11 + J22
tmp2 = J11 - J22
tmp2 = cv.multiply(tmp2, tmp2)
tmp3 = cv.multiply(J12, J12)
tmp4 = np.sqrt(tmp2 + 4.0 * tmp3)
lambda1 = tmp1 + tmp4 # biggest eigenvalue
lambda2 = tmp1 - tmp4 # smallest eigenvalue
# eigenvalue calculation (stop)
# Coherency calculation (start)
# Coherency = (lambda1 - lambda2)/(lambda1 + lambda2)) - measure of anisotropism
# Coherency is anisotropy degree (consistency of local orientation)
imgCoherencyOut = cv.divide(lambda1 - lambda2, lambda1 + lambda2)
# Coherency calculation (stop)
# orientation angle calculation (start)
# tan(2*Alpha) = 2*J12/(J22 - J11)
# Alpha = 0.5 atan2(2*J12/(J22 - J11))
imgOrientationOut = cv.phase(J22 - J11, 2.0 * J12, angleInDegrees = True)
imgOrientationOut = 0.5 * imgOrientationOut
# orientation angle calculation (stop)
return imgCoherencyOut, imgOrientationOut
## [calcGST]
parser = argparse.ArgumentParser(description='Code for Anisotropic image segmentation tutorial.')
parser.add_argument('-i', '--input', help='Path to input image.', required=True)
args = parser.parse_args()
imgIn = cv.imread(args.input, cv.IMREAD_GRAYSCALE)
if imgIn is None:
print('Could not open or find the image: {}'.format(args.input))
exit(0)
## [main_extra]
## [main]
imgCoherency, imgOrientation = calcGST(imgIn, W)
## [thresholding]
_, imgCoherencyBin = cv.threshold(imgCoherency, C_Thr, 255, cv.THRESH_BINARY)
_, imgOrientationBin = cv.threshold(imgOrientation, LowThr, HighThr, cv.THRESH_BINARY)
## [thresholding]
## [combining]
imgBin = cv.bitwise_and(imgCoherencyBin, imgOrientationBin)
## [combining]
## [main]
imgCoherency = cv.normalize(imgCoherency, None, alpha=0, beta=1, norm_type=cv.NORM_MINMAX, dtype=cv.CV_32F)
imgOrientation = cv.normalize(imgOrientation, None, alpha=0, beta=1, norm_type=cv.NORM_MINMAX, dtype=cv.CV_32F)
cv.imshow('result.jpg', np.uint8(0.5*(imgIn + imgBin)))
cv.imshow('Coherency.jpg', imgCoherency)
cv.imshow('Orientation.jpg', imgOrientation)
cv.waitKey(0)
## [main_extra]