mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Merge remote-tracking branch 'origin/2.4' into merge-2.4
Conflicts: doc/tutorials/definitions/tocDefinitions.rst modules/core/include/opencv2/core/core.hpp modules/core/src/system.cpp modules/features2d/src/freak.cpp modules/ocl/include/opencv2/ocl/ocl.hpp modules/ocl/src/cl_context.cpp modules/ocl/test/test_api.cpp
This commit is contained in:
commit
9d8d70d6ca
@ -11,5 +11,6 @@
|
||||
.. |Author_EricCh| unicode:: Eric U+0020 Christiansen
|
||||
.. |Author_AndreyP| unicode:: Andrey U+0020 Pavlenko
|
||||
.. |Author_AlexS| unicode:: Alexander U+0020 Smorkalov
|
||||
.. |Author_MimmoC| unicode:: Mimmo U+0020 Cosenza
|
||||
.. |Author_BarisD| unicode:: Bar U+0131 U+015F U+0020 Evrim U+0020 Demir U+00F6 z
|
||||
.. |Author_DomenicoB| unicode:: Domenico U+0020 Daniele U+0020 Bloisi
|
||||
|
@ -0,0 +1,728 @@
|
||||
.. _clojure_dev_intro:
|
||||
|
||||
Introduction to OpenCV Development with Clojure
|
||||
***********************************************
|
||||
|
||||
As of OpenCV 2.4.4, OpenCV supports desktop Java development using
|
||||
nearly the same interface as for Android development.
|
||||
|
||||
`Clojure <http://clojure.org/>`_ is a contemporary LISP dialect hosted
|
||||
by the Java Virtual Machine and it offers a complete interoperability
|
||||
with the underlying JVM. This means that we should even be able to use
|
||||
the Clojure REPL (Read Eval Print Loop) as and interactive programmable
|
||||
interface to the underlying OpenCV engine.
|
||||
|
||||
What we'll do in this tutorial
|
||||
==============================
|
||||
|
||||
This tutorial will help you in setting up a basic Clojure environment
|
||||
for interactively learning OpenCV within the fully programmable
|
||||
CLojure REPL.
|
||||
|
||||
Tutorial source code
|
||||
--------------------
|
||||
|
||||
You can find a runnable source code of the sample in the
|
||||
:file:`samples/java/clojure/simple-sample` folder of the OpenCV
|
||||
repository. After having installed OpenCV and Clojure as explained in
|
||||
the tutorial, issue the following command to run the sample from the
|
||||
command line.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
cd path/to/samples/java/clojure/simple-sample
|
||||
lein run
|
||||
|
||||
Preamble
|
||||
========
|
||||
|
||||
For detailed instruction on installing OpenCV with desktop Java support
|
||||
refer to the `corresponding tutorial <http://docs.opencv.org/2.4.4-beta/doc/tutorials/introduction/desktop_java/java_dev_intro.html>`_.
|
||||
|
||||
If you are in hurry, here is a minimum quick start guide to install
|
||||
OpenCV on Mac OS X:
|
||||
|
||||
NOTE 1: I'm assuming you already installed
|
||||
`xcode <https://developer.apple.com/xcode/>`_,
|
||||
`jdk <http://www.oracle.com/technetwork/java/javase/downloads/index.html>`_
|
||||
and `Cmake <http://www.cmake.org/cmake/resources/software.html>`_.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
cd ~/
|
||||
mkdir opt
|
||||
git clone https://github.com/Itseez/opencv.git
|
||||
cd opencv
|
||||
git checkout 2.4
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DBUILD_SHARED_LIBS=OFF ..
|
||||
...
|
||||
...
|
||||
make -j8
|
||||
# optional
|
||||
# make install
|
||||
|
||||
Install Leiningen
|
||||
=================
|
||||
|
||||
Once you installed OpenCV with desktop java support the only other
|
||||
requirement is to install
|
||||
`Leiningeng <https://github.com/technomancy/leiningen>`_ which allows
|
||||
you to manage the entire life cycle of your CLJ projects.
|
||||
|
||||
The available `installation guide <https://github.com/technomancy/leiningen#installation>`_ is very easy to be followed:
|
||||
|
||||
1. `Download the script <https://raw.github.com/technomancy/leiningen/stable/bin/lein>`_
|
||||
2. Place it on your ``$PATH`` (cf. ``~/bin`` is a good choice if it is
|
||||
on your ``path``.)
|
||||
3. Set the script to be executable. (i.e. ``chmod 755 ~/bin/lein``).
|
||||
|
||||
If you work on Windows, follow `this instruction <https://github.com/technomancy/leiningen#windows>`_
|
||||
|
||||
You now have both the OpenCV library and a fully installed basic Clojure
|
||||
environment. What is now needed is to configure the Clojure environment
|
||||
to interact with the OpenCV library.
|
||||
|
||||
Install the localrepo Leiningen plugin
|
||||
=======================================
|
||||
|
||||
The set of commands (tasks in Leiningen parlance) natively supported by
|
||||
Leiningen can be very easily extended by various plugins. One of them is
|
||||
the `lein-localrepo <https://github.com/kumarshantanu/lein-localrepo>`_
|
||||
plugin which allows to install any jar lib as an artifact in the local
|
||||
maven repository of your machine (typically in the ``~/.m2/repository``
|
||||
directory of your username).
|
||||
|
||||
We're going to use this ``lein`` plugin to add to the local maven
|
||||
repository the opencv components needed by Java and Clojure to use the
|
||||
opencv lib.
|
||||
|
||||
Generally speaking, if you want to use a plugin on project base only, it
|
||||
can be added directly to a CLJ project created by ``lein``.
|
||||
|
||||
Instead, when you want a plugin to be available to any CLJ project in
|
||||
your username space, you can add it to the ``profiles.clj`` in the
|
||||
``~/.lein/`` directory.
|
||||
|
||||
The ``lein-localrepo`` plugin will be useful to me in other CLJ
|
||||
projects where I need to call native libs wrapped by a Java interface.
|
||||
So I decide to make it available to any CLJ project:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
mkdir ~/.lein
|
||||
|
||||
Create a file named ``profiles.clj`` in the ``~/.lein`` directory and
|
||||
copy into it the following content:
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
{:user {:plugins [[lein-localrepo "0.5.2"]]}}
|
||||
|
||||
Here we're saying that the version release ``"0.5.2"`` of the
|
||||
``lein-localrepo`` plugin will be available to the ``:user`` profile for
|
||||
any CLJ project created by ``lein``.
|
||||
|
||||
You do not need to do anything else to install the plugin because it
|
||||
will be automatically downloaded from a remote repository the very first
|
||||
time you issue any ``lein`` task.
|
||||
|
||||
Install the java specific libs as local repository
|
||||
==================================================
|
||||
|
||||
If you followed the standard documentation for installing OpenCV on your
|
||||
computer, you should find the following two libs under the directory
|
||||
where you built OpenCV:
|
||||
|
||||
- the ``build/bin/opencv-247.jar`` java lib
|
||||
- the ``build/lib/libopencv_java247.dylib`` native lib (or ``.so`` in
|
||||
you built OpenCV a GNU/Linux OS)
|
||||
|
||||
They are the only opencv libs needed by the JVM to interact with OpenCV.
|
||||
|
||||
Take apart the needed opencv libs
|
||||
---------------------------------
|
||||
|
||||
Create a new directory to store in the above two libs. Start by copying
|
||||
into it the ``opencv-247.jar`` lib.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
cd ~/opt
|
||||
mkdir clj-opencv
|
||||
cd clj-opencv
|
||||
cp ~/opt/opencv/build/bin/opencv-247.jar .
|
||||
|
||||
First lib done.
|
||||
|
||||
Now, to be able to add the ``libopencv_java247.dylib`` shared native lib
|
||||
to the local maven repository, we first need to package it as a jar
|
||||
file.
|
||||
|
||||
The native lib has to be copied into a directories layout which mimics
|
||||
the names of your operating system and architecture. I'm using a Mac OS
|
||||
X with a X86 64 bit architecture. So my layout will be the following:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
mkdir -p native/macosx/x86_64
|
||||
|
||||
Copy into the ``x86_64`` directory the ``libopencv_java247.dylib`` lib.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
cp ~/opt/opencv/build/lib/libopencv_java247.dylib native/macosx/x86_64/
|
||||
|
||||
If you're running OpenCV from a different OS/Architecture pair, here
|
||||
is a summary of the mapping you can choose from.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
OS
|
||||
|
||||
Mac OS X -> macosx
|
||||
Windows -> windows
|
||||
Linux -> linux
|
||||
SunOS -> solaris
|
||||
|
||||
Architectures
|
||||
|
||||
amd64 -> x86_64
|
||||
x86_64 -> x86_64
|
||||
x86 -> x86
|
||||
i386 -> x86
|
||||
arm -> arm
|
||||
sparc -> sparc
|
||||
|
||||
Package the native lib as a jar
|
||||
-------------------------------
|
||||
|
||||
Next you need to package the native lib in a jar file by using the
|
||||
``jar`` command to create a new jar file from a directory.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
jar -cMf opencv-native-247.jar native
|
||||
|
||||
Note that ehe ``M`` option instructs the ``jar`` command to not create
|
||||
a MANIFEST file for the artifact.
|
||||
|
||||
Your directories layout should look like the following:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
tree
|
||||
.
|
||||
|__ native
|
||||
| |__ macosx
|
||||
| |__ x86_64
|
||||
| |__ libopencv_java247.dylib
|
||||
|
|
||||
|__ opencv-247.jar
|
||||
|__ opencv-native-247.jar
|
||||
|
||||
3 directories, 3 files
|
||||
|
||||
Locally install the jars
|
||||
------------------------
|
||||
|
||||
We are now ready to add the two jars as artifacts to the local maven
|
||||
repository with the help of the ``lein-localrepo`` plugin.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
lein localrepo install opencv-247.jar opencv/opencv 2.4.7
|
||||
|
||||
Here the ``localrepo install`` task creates the ``2.4.7.`` release of
|
||||
the ``opencv/opencv`` maven artifact from the ``opencv-247.jar`` lib and
|
||||
then installs it into the local maven repository. The ``opencv/opencv``
|
||||
artifact will then be available to any maven compliant project
|
||||
(Leiningen is internally based on maven).
|
||||
|
||||
Do the same thing with the native lib previously wrapped in a new jar
|
||||
file.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
lein localrepo install opencv-native-247.jar opencv/opencv-native 2.4.7
|
||||
|
||||
Note that the groupId, ``opencv``, of the two artifacts is the same. We
|
||||
are now ready to create a new CLJ project to start interacting with
|
||||
OpenCV.
|
||||
|
||||
Create a project
|
||||
----------------
|
||||
|
||||
Create a new CLJ project by using the ``lein new`` task from the
|
||||
terminal.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
# cd in the directory where you work with your development projects (e.g. ~/devel)
|
||||
lein new simple-sample
|
||||
Generating a project called simple-sample based on the 'default' template.
|
||||
To see other templates (app, lein plugin, etc), try `lein help new`.
|
||||
|
||||
The above task creates the following ``simple-sample`` directories
|
||||
layout:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
tree simple-sample/
|
||||
simple-sample/
|
||||
|__ LICENSE
|
||||
|__ README.md
|
||||
|__ doc
|
||||
| |__ intro.md
|
||||
|
|
||||
|__ project.clj
|
||||
|__ resources
|
||||
|__ src
|
||||
| |__ simple_sample
|
||||
| |__ core.clj
|
||||
|__ test
|
||||
|__ simple_sample
|
||||
|__ core_test.clj
|
||||
|
||||
6 directories, 6 files
|
||||
|
||||
We need to add the two ``opencv`` artifacts as dependencies of the newly
|
||||
created project. Open the ``project.clj`` and modify its dependencies
|
||||
section as follows:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
(defproject simple-sample "0.1.0-SNAPSHOT"
|
||||
:description "FIXME: write description"
|
||||
:url "http://example.com/FIXME"
|
||||
:license {:name "Eclipse Public License"
|
||||
:url "http://www.eclipse.org/legal/epl-v10.html"}
|
||||
:dependencies [[org.clojure/clojure "1.5.1"]
|
||||
[opencv/opencv "2.4.7"] ; added line
|
||||
[opencv/opencv-native "2.4.7"]]) ;added line
|
||||
|
||||
|
||||
Note that The Clojure Programming Language is a jar artifact too. This
|
||||
is why Clojure is called an hosted language.
|
||||
|
||||
To verify that everything went right issue the ``lein deps`` task. The
|
||||
very first time you run a ``lein`` task it will take sometime to
|
||||
download all the required dependencies before executing the task
|
||||
itself.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
cd simple-sample
|
||||
lein deps
|
||||
...
|
||||
|
||||
The ``deps`` task reads and merges from the ``project.clj`` and the
|
||||
``~/.lein/profiles.clj`` files all the dependencies of the
|
||||
``simple-sample`` project and verifies if they have already been
|
||||
cached in the local maven repository. If the task returns without
|
||||
messages about not being able to retrieve the two new artifacts your
|
||||
installation is correct, otherwise go back and double check that you
|
||||
did everything right.
|
||||
|
||||
REPLing with OpenCV
|
||||
-------------------
|
||||
|
||||
Now ``cd`` in the ``simple-sample`` directory and issue the following
|
||||
``lein`` task:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
cd simple-sample
|
||||
lein repl
|
||||
...
|
||||
...
|
||||
nREPL server started on port 50907 on host 127.0.0.1
|
||||
REPL-y 0.3.0
|
||||
Clojure 1.5.1
|
||||
Docs: (doc function-name-here)
|
||||
(find-doc "part-of-name-here")
|
||||
Source: (source function-name-here)
|
||||
Javadoc: (javadoc java-object-or-class-here)
|
||||
Exit: Control+D or (exit) or (quit)
|
||||
Results: Stored in vars *1, *2, *3, an exception in *e
|
||||
|
||||
user=>
|
||||
|
||||
You can immediately interact with the REPL by issuing any CLJ expression
|
||||
to be evaluated.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (+ 41 1)
|
||||
42
|
||||
user=> (println "Hello, OpenCV!")
|
||||
Hello, OpenCV!
|
||||
nil
|
||||
user=> (defn foo [] (str "bar"))
|
||||
#'user/foo
|
||||
user=> (foo)
|
||||
"bar"
|
||||
|
||||
When ran from the home directory of a lein based project, even if the
|
||||
``lein repl`` task automatically loads all the project dependencies, you
|
||||
still need to load the opencv native library to be able to interact with
|
||||
the OpenCV.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (clojure.lang.RT/loadLibrary org.opencv.core.Core/NATIVE_LIBRARY_NAME)
|
||||
nil
|
||||
|
||||
Then you can start interacting with OpenCV by just referencing the fully
|
||||
qualified names of its classes.
|
||||
|
||||
NOTE 2: `Here <http://docs.opencv.org/java/>`_ you can find the
|
||||
full OpenCV Java API.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (org.opencv.core.Point. 0 0)
|
||||
#<Point {0.0, 0.0}>
|
||||
|
||||
Here we created a two dimensions opencv ``Point`` instance. Even if all
|
||||
the java packages included within the java interface to OpenCV are
|
||||
immediately available from the CLJ REPL, it's very annoying to prefix
|
||||
the ``Point.`` instance constructors with the fully qualified package
|
||||
name.
|
||||
|
||||
Fortunately CLJ offer a very easy way to overcome this annoyance by
|
||||
directly importing the ``Point`` class.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (import 'org.opencv.core.Point)
|
||||
org.opencv.core.Point
|
||||
user=> (def p1 (Point. 0 0))
|
||||
#'user/p1
|
||||
user=> p1
|
||||
#<Point {0.0, 0.0}>
|
||||
user=> (def p2 (Point. 100 100))
|
||||
#'user/p2
|
||||
|
||||
We can even inspect the class of an instance and verify if the value of
|
||||
a symbol is an instance of a ``Point`` java class.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (class p1)
|
||||
org.opencv.core.Point
|
||||
user=> (instance? org.opencv.core.Point p1)
|
||||
true
|
||||
|
||||
If we now want to use the opencv ``Rect`` class to create a rectangle,
|
||||
we again have to fully qualify its constructor even if it leaves in
|
||||
the same ``org.opencv.core`` package of the ``Point`` class.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (org.opencv.core.Rect. p1 p2)
|
||||
#<Rect {0, 0, 100x100}>
|
||||
|
||||
Again, the CLJ importing facilities is very handy and let you to map
|
||||
more symbols in one shot.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (import '[org.opencv.core Point Rect Size])
|
||||
org.opencv.core.Size
|
||||
user=> (def r1 (Rect. p1 p2))
|
||||
#'user/r1
|
||||
user=> r1
|
||||
#<Rect {0, 0, 100x100}>
|
||||
user=> (class r1)
|
||||
org.opencv.core.Rect
|
||||
user=> (instance? org.opencv.core.Rect r1)
|
||||
true
|
||||
user=> (Size. 100 100)
|
||||
#<Size 100x100>
|
||||
user=> (def sq-100 (Size. 100 100))
|
||||
#'user/sq-100
|
||||
user=> (class sq-100)
|
||||
org.opencv.core.Size
|
||||
user=> (instance? org.opencv.core.Size sq-100)
|
||||
true
|
||||
|
||||
Obviously you can call methods on instances as well.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (.area r1)
|
||||
10000.0
|
||||
user=> (.area sq-100)
|
||||
10000.0
|
||||
|
||||
Or modify the value of a member field.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (set! (.x p1) 10)
|
||||
10
|
||||
user=> p1
|
||||
#<Point {10.0, 0.0}>
|
||||
user=> (set! (.width sq-100) 10)
|
||||
10
|
||||
user=> (set! (.height sq-100) 10)
|
||||
10
|
||||
user=> (.area sq-100)
|
||||
100.0
|
||||
|
||||
If you find yourself not remembering a OpenCV class behavior, the
|
||||
REPL gives you the opportunity to easily search the corresponding
|
||||
javadoc documention:
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (javadoc Rect)
|
||||
"http://www.google.com/search?btnI=I%27m%20Feeling%20Lucky&q=allinurl:org/opencv/core/Rect.html"
|
||||
|
||||
Mimic the OpenCV Java Tutorial Sample in the REPL
|
||||
-------------------------------------------------
|
||||
|
||||
Let's now try to port to Clojure the `opencv java tutorial sample <http://docs.opencv.org/2.4.4-beta/doc/tutorials/introduction/desktop_java/java_dev_intro.html>`_.
|
||||
Instead of writing it in a source file we're going to evaluate it at the
|
||||
REPL.
|
||||
|
||||
Following is the original Java source code of the cited sample.
|
||||
|
||||
.. code:: java
|
||||
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Scalar;
|
||||
|
||||
class SimpleSample {
|
||||
|
||||
static{ System.loadLibrary("opencv_java244"); }
|
||||
|
||||
public static void main(String[] args) {
|
||||
Mat m = new Mat(5, 10, CvType.CV_8UC1, new Scalar(0));
|
||||
System.out.println("OpenCV Mat: " + m);
|
||||
Mat mr1 = m.row(1);
|
||||
mr1.setTo(new Scalar(1));
|
||||
Mat mc5 = m.col(5);
|
||||
mc5.setTo(new Scalar(5));
|
||||
System.out.println("OpenCV Mat data:\n" + m.dump());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Add injections to the project
|
||||
-----------------------------
|
||||
|
||||
Before start coding, we'd like to eliminate the boring need of
|
||||
interactively loading the native opencv lib any time we start a new REPL
|
||||
to interact with it.
|
||||
|
||||
First, stop the REPL by evaluating the ``(exit)`` expression at the REPL
|
||||
prompt.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (exit)
|
||||
Bye for now!
|
||||
|
||||
Then open your ``project.clj`` file and edit it as follows:
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
(defproject simple-sample "0.1.0-SNAPSHOT"
|
||||
...
|
||||
:injections [(clojure.lang.RT/loadLibrary org.opencv.core.Core/NATIVE_LIBRARY_NAME)])
|
||||
|
||||
Here we're saying to load the opencv native lib anytime we run the REPL
|
||||
in such a way that we have not anymore to remember to manually do it.
|
||||
|
||||
Rerun the ``lein repl`` task
|
||||
|
||||
.. code:: bash
|
||||
|
||||
lein repl
|
||||
nREPL server started on port 51645 on host 127.0.0.1
|
||||
REPL-y 0.3.0
|
||||
Clojure 1.5.1
|
||||
Docs: (doc function-name-here)
|
||||
(find-doc "part-of-name-here")
|
||||
Source: (source function-name-here)
|
||||
Javadoc: (javadoc java-object-or-class-here)
|
||||
Exit: Control+D or (exit) or (quit)
|
||||
Results: Stored in vars *1, *2, *3, an exception in *e
|
||||
|
||||
user=>
|
||||
|
||||
Import the interested OpenCV java interfaces.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (import '[org.opencv.core Mat CvType Scalar])
|
||||
org.opencv.core.Scalar
|
||||
|
||||
We're going to mimic almost verbatim the original OpenCV java tutorial
|
||||
to:
|
||||
|
||||
- create a 5x10 matrix with all its elements intialized to 0
|
||||
- change the value of every element of the second row to 1
|
||||
- change the value of every element of the 6th column to 5
|
||||
- print the content of the obtained matrix
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (def m (Mat. 5 10 CvType/CV_8UC1 (Scalar. 0 0)))
|
||||
#'user/m
|
||||
user=> (def mr1 (.row m 1))
|
||||
#'user/mr1
|
||||
user=> (.setTo mr1 (Scalar. 1 0))
|
||||
#<Mat Mat [ 1*10*CV_8UC1, isCont=true, isSubmat=true, nativeObj=0x7fc9dac49880, dataAddr=0x7fc9d9c98d5a ]>
|
||||
user=> (def mc5 (.col m 5))
|
||||
#'user/mc5
|
||||
user=> (.setTo mc5 (Scalar. 5 0))
|
||||
#<Mat Mat [ 5*1*CV_8UC1, isCont=false, isSubmat=true, nativeObj=0x7fc9d9c995a0, dataAddr=0x7fc9d9c98d55 ]>
|
||||
user=> (println (.dump m))
|
||||
[0, 0, 0, 0, 0, 5, 0, 0, 0, 0;
|
||||
1, 1, 1, 1, 1, 5, 1, 1, 1, 1;
|
||||
0, 0, 0, 0, 0, 5, 0, 0, 0, 0;
|
||||
0, 0, 0, 0, 0, 5, 0, 0, 0, 0;
|
||||
0, 0, 0, 0, 0, 5, 0, 0, 0, 0]
|
||||
nil
|
||||
|
||||
If you are accustomed to a functional language all those abused and
|
||||
mutating nouns are going to irritate your preference for verbs. Even
|
||||
if the CLJ interop syntax is very handy and complete, there is still
|
||||
an impedance mismatch between any OOP language and any FP language
|
||||
(bein Scala a mixed paradigms programming language).
|
||||
|
||||
To exit the REPL type ``(exit)``, ``ctr-D`` or ``(quit)`` at the REPL
|
||||
prompt.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (exit)
|
||||
Bye for now!
|
||||
|
||||
Interactively load and blur an image
|
||||
------------------------------------
|
||||
|
||||
In the next sample you will learn how to interactively load and blur and
|
||||
image from the REPL by using the following OpenCV methods:
|
||||
|
||||
- the ``imread`` static method from the ``Highgui`` class to read an
|
||||
image from a file
|
||||
- the ``imwrite`` static method from the ``Highgui`` class to write an
|
||||
image to a file
|
||||
- the ``GaussianBlur`` static method from the ``Imgproc`` class to
|
||||
apply to blur the original image
|
||||
|
||||
We're also going to use the ``Mat`` class which is returned from the
|
||||
``imread`` method and accpeted as the main argument to both the
|
||||
``GaussianBlur`` and the ``imwrite`` methods.
|
||||
|
||||
Add an image to the project
|
||||
---------------------------
|
||||
|
||||
First we want to add an image file to a newly create directory for
|
||||
storing static resources of the project.
|
||||
|
||||
.. image:: images/lena.png
|
||||
:alt: Original Image
|
||||
:align: center
|
||||
|
||||
.. code:: bash
|
||||
|
||||
mkdir -p resources/images
|
||||
cp ~/opt/opencv/doc/tutorials/introduction/desktop_java/images/lena.png resource/images/
|
||||
|
||||
Read the image
|
||||
--------------
|
||||
|
||||
Now launch the REPL as usual and start by importing all the OpenCV
|
||||
classes we're going to use:
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
lein repl
|
||||
nREPL server started on port 50624 on host 127.0.0.1
|
||||
REPL-y 0.3.0
|
||||
Clojure 1.5.1
|
||||
Docs: (doc function-name-here)
|
||||
(find-doc "part-of-name-here")
|
||||
Source: (source function-name-here)
|
||||
Javadoc: (javadoc java-object-or-class-here)
|
||||
Exit: Control+D or (exit) or (quit)
|
||||
Results: Stored in vars *1, *2, *3, an exception in *e
|
||||
|
||||
user=> (import '[org.opencv.core Mat Size CvType]
|
||||
'[org.opencv.highgui Highgui]
|
||||
'[org.opencv.imgproc Imgproc])
|
||||
org.opencv.imgproc.Imgproc
|
||||
|
||||
Now read the image from the ``resources/images/lena.png`` file.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (def lena (Highgui/imread "resources/images/lena.png"))
|
||||
#'user/lena
|
||||
user=> lena
|
||||
#<Mat Mat [ 512*512*CV_8UC3, isCont=true, isSubmat=false, nativeObj=0x7f9ab3054c40, dataAddr=0x19fea9010 ]>
|
||||
|
||||
As you see, by simply evaluating the ``lena`` symbol we know that
|
||||
``lena.png`` is a ``512x512`` matrix of ``CV_8UC3`` elements type. Let's
|
||||
create a new ``Mat`` instance of the same dimensions and elements type.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (def blurred (Mat. 512 512 CvType/CV_8UC3))
|
||||
#'user/blurred
|
||||
user=>
|
||||
|
||||
Now apply a ``GaussianBlur`` filter using ``lena`` as the source matrix
|
||||
and ``blurred`` as the destination matrix.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (Imgproc/GaussianBlur lena blurred (Size. 5 5) 3 3)
|
||||
nil
|
||||
|
||||
As a last step just save the ``blurred`` matrix in a new image file.
|
||||
|
||||
.. code:: clojure
|
||||
|
||||
user=> (Highgui/imwrite "resources/images/blurred.png" blurred)
|
||||
true
|
||||
user=> (exit)
|
||||
Bye for now!
|
||||
|
||||
Following is the new blurred image of Lena.
|
||||
|
||||
.. image:: images/blurred.png
|
||||
:alt: Blurred Image
|
||||
:align: center
|
||||
|
||||
Next Steps
|
||||
==========
|
||||
|
||||
This tutorial only introduces the very basic environment set up to be
|
||||
able to interact with OpenCV in a CLJ REPL.
|
||||
|
||||
I recommend any Clojure newbie to read the `Clojure Java Interop chapter <http://clojure.org/java_interop>`_ to get all you need to know
|
||||
to interoperate with any plain java lib that has not been wrapped in
|
||||
Clojure to make it usable in a more idiomatic and functional way within
|
||||
Clojure.
|
||||
|
||||
The OpenCV Java API does not wrap the ``highgui`` module
|
||||
functionalities depending on ``Qt`` (e.g. ``namedWindow`` and
|
||||
``imshow``. If you want to create windows and show images into them
|
||||
while interacting with OpenCV from the REPL, at the moment you're left
|
||||
at your own. You could use Java Swing to fill the gap.
|
||||
|
||||
|
||||
License
|
||||
-------
|
||||
|
||||
Copyright © 2013 Giacomo (Mimmo) Cosenza aka Magomimmo
|
||||
|
||||
Distributed under the BSD 3-clause License, the same of OpenCV.
|
BIN
doc/tutorials/introduction/clojure_dev_intro/images/blurred.png
Normal file
BIN
doc/tutorials/introduction/clojure_dev_intro/images/blurred.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 351 KiB |
BIN
doc/tutorials/introduction/clojure_dev_intro/images/lena.png
Normal file
BIN
doc/tutorials/introduction/clojure_dev_intro/images/lena.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 606 KiB |
Binary file not shown.
After Width: | Height: | Size: 7.7 KiB |
@ -156,6 +156,21 @@ world of the OpenCV.
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
================ =================================================
|
||||
|ClojureLogo| **Title:** :ref:`clojure_dev_intro`
|
||||
|
||||
*Compatibility:* > OpenCV 2.4.4
|
||||
|
||||
*Author:* |Author_MimmoC|
|
||||
|
||||
A tutorial on how to interactively use OpenCV from the Clojure REPL.
|
||||
|
||||
================ =================================================
|
||||
|
||||
.. |ClojureLogo| image:: images/clojure-logo.png
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
* **Android**
|
||||
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
@ -314,6 +329,7 @@ world of the OpenCV.
|
||||
../windows_visual_studio_image_watch/windows_visual_studio_image_watch
|
||||
../desktop_java/java_dev_intro
|
||||
../java_eclipse/java_eclipse
|
||||
../clojure_dev_intro/clojure_dev_intro
|
||||
../android_binary_package/android_dev_intro
|
||||
../android_binary_package/O4A_SDK
|
||||
../android_binary_package/dev_with_OCV_on_Android
|
||||
|
@ -305,6 +305,32 @@ private:
|
||||
AutoLock& operator = (const AutoLock&);
|
||||
};
|
||||
|
||||
class TLSDataContainer
|
||||
{
|
||||
private:
|
||||
int key_;
|
||||
protected:
|
||||
CV_EXPORTS TLSDataContainer();
|
||||
CV_EXPORTS ~TLSDataContainer(); // virtual is not required
|
||||
public:
|
||||
virtual void* createDataInstance() const = 0;
|
||||
virtual void deleteDataInstance(void* data) const = 0;
|
||||
|
||||
CV_EXPORTS void* getData() const;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class TLSData : protected TLSDataContainer
|
||||
{
|
||||
public:
|
||||
inline TLSData() {}
|
||||
inline ~TLSData() {}
|
||||
inline T* get() const { return (T*)getData(); }
|
||||
private:
|
||||
virtual void* createDataInstance() const { return new T; }
|
||||
virtual void deleteDataInstance(void* data) const { delete (T*)data; }
|
||||
};
|
||||
|
||||
// The CommandLineParser class is designed for command line arguments parsing
|
||||
|
||||
class CV_EXPORTS CommandLineParser
|
||||
|
@ -738,26 +738,6 @@ namespace cv {
|
||||
bool __termination = false;
|
||||
}
|
||||
|
||||
#if defined CVAPI_EXPORTS && defined WIN32 && !defined WINCE
|
||||
#ifdef HAVE_WINRT
|
||||
#pragma warning(disable:4447) // Disable warning 'main' signature found without threading model
|
||||
#endif
|
||||
|
||||
BOOL WINAPI DllMain( HINSTANCE, DWORD, LPVOID );
|
||||
|
||||
BOOL WINAPI DllMain( HINSTANCE, DWORD fdwReason, LPVOID lpReserved )
|
||||
{
|
||||
if( fdwReason == DLL_THREAD_DETACH || fdwReason == DLL_PROCESS_DETACH )
|
||||
{
|
||||
if (lpReserved != NULL) // called after ExitProcess() call
|
||||
cv::__termination = true;
|
||||
cv::deleteThreadAllocData();
|
||||
cv::deleteThreadData();
|
||||
}
|
||||
return TRUE;
|
||||
}
|
||||
#endif
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
@ -841,7 +821,224 @@ void Mutex::lock() { impl->lock(); }
|
||||
void Mutex::unlock() { impl->unlock(); }
|
||||
bool Mutex::trylock() { return impl->trylock(); }
|
||||
|
||||
|
||||
//////////////////////////////// thread-local storage ////////////////////////////////
|
||||
|
||||
class TLSStorage
|
||||
{
|
||||
std::vector<void*> tlsData_;
|
||||
public:
|
||||
TLSStorage() { tlsData_.reserve(16); }
|
||||
~TLSStorage();
|
||||
inline void* getData(int key) const
|
||||
{
|
||||
CV_DbgAssert(key >= 0);
|
||||
return (key < (int)tlsData_.size()) ? tlsData_[key] : NULL;
|
||||
}
|
||||
inline void setData(int key, void* data)
|
||||
{
|
||||
CV_DbgAssert(key >= 0);
|
||||
if (key >= (int)tlsData_.size())
|
||||
{
|
||||
tlsData_.resize(key + 1, NULL);
|
||||
}
|
||||
tlsData_[key] = data;
|
||||
}
|
||||
|
||||
inline static TLSStorage* get();
|
||||
};
|
||||
|
||||
#ifdef WIN32
|
||||
#pragma warning(disable:4505) // unreferenced local function has been removed
|
||||
|
||||
#ifdef HAVE_WINRT
|
||||
// using C++11 thread attribute for local thread data
|
||||
static __declspec( thread ) TLSStorage* g_tlsdata = NULL;
|
||||
|
||||
static void deleteThreadData()
|
||||
{
|
||||
if (g_tlsdata)
|
||||
{
|
||||
delete g_tlsdata;
|
||||
g_tlsdata = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
inline TLSStorage* TLSStorage::get()
|
||||
{
|
||||
if (!g_tlsdata)
|
||||
{
|
||||
g_tlsdata = new TLSStorage;
|
||||
}
|
||||
return g_tlsdata;
|
||||
}
|
||||
#else
|
||||
#ifdef WINCE
|
||||
# define TLS_OUT_OF_INDEXES ((DWORD)0xFFFFFFFF)
|
||||
#endif
|
||||
static DWORD tlsKey = TLS_OUT_OF_INDEXES;
|
||||
|
||||
static void deleteThreadData()
|
||||
{
|
||||
if(tlsKey != TLS_OUT_OF_INDEXES)
|
||||
{
|
||||
delete (TLSStorage*)TlsGetValue(tlsKey);
|
||||
TlsSetValue(tlsKey, NULL);
|
||||
}
|
||||
}
|
||||
|
||||
inline TLSStorage* TLSStorage::get()
|
||||
{
|
||||
if (tlsKey == TLS_OUT_OF_INDEXES)
|
||||
{
|
||||
tlsKey = TlsAlloc();
|
||||
CV_Assert(tlsKey != TLS_OUT_OF_INDEXES);
|
||||
}
|
||||
TLSStorage* d = (TLSStorage*)TlsGetValue(tlsKey);
|
||||
if (!d)
|
||||
{
|
||||
d = new TLSStorage;
|
||||
TlsSetValue(tlsKey, d);
|
||||
}
|
||||
return d;
|
||||
}
|
||||
#endif //HAVE_WINRT
|
||||
|
||||
#if defined CVAPI_EXPORTS && defined WIN32 && !defined WINCE
|
||||
#ifdef HAVE_WINRT
|
||||
#pragma warning(disable:4447) // Disable warning 'main' signature found without threading model
|
||||
#endif
|
||||
|
||||
BOOL WINAPI DllMain(HINSTANCE, DWORD fdwReason, LPVOID);
|
||||
|
||||
BOOL WINAPI DllMain(HINSTANCE, DWORD fdwReason, LPVOID)
|
||||
{
|
||||
if (fdwReason == DLL_THREAD_DETACH || fdwReason == DLL_PROCESS_DETACH)
|
||||
{
|
||||
cv::deleteThreadAllocData();
|
||||
cv::deleteThreadRNGData();
|
||||
cv::deleteThreadData();
|
||||
}
|
||||
return TRUE;
|
||||
}
|
||||
#endif
|
||||
|
||||
#else
|
||||
static pthread_key_t tlsKey = 0;
|
||||
static pthread_once_t tlsKeyOnce = PTHREAD_ONCE_INIT;
|
||||
|
||||
static void deleteTLSStorage(void* data)
|
||||
{
|
||||
delete (TLSStorage*)data;
|
||||
}
|
||||
|
||||
static void makeKey()
|
||||
{
|
||||
int errcode = pthread_key_create(&tlsKey, deleteTLSStorage);
|
||||
CV_Assert(errcode == 0);
|
||||
}
|
||||
|
||||
inline TLSStorage* TLSStorage::get()
|
||||
{
|
||||
pthread_once(&tlsKeyOnce, makeKey);
|
||||
TLSStorage* d = (TLSStorage*)pthread_getspecific(tlsKey);
|
||||
if( !d )
|
||||
{
|
||||
d = new TLSStorage;
|
||||
pthread_setspecific(tlsKey, d);
|
||||
}
|
||||
return d;
|
||||
}
|
||||
#endif
|
||||
|
||||
class TLSContainerStorage
|
||||
{
|
||||
cv::Mutex mutex_;
|
||||
std::vector<TLSDataContainer*> tlsContainers_;
|
||||
public:
|
||||
TLSContainerStorage() { }
|
||||
~TLSContainerStorage()
|
||||
{
|
||||
for (size_t i = 0; i < tlsContainers_.size(); i++)
|
||||
{
|
||||
CV_DbgAssert(tlsContainers_[i] == NULL); // not all keys released
|
||||
tlsContainers_[i] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
int allocateKey(TLSDataContainer* pContainer)
|
||||
{
|
||||
cv::AutoLock lock(mutex_);
|
||||
tlsContainers_.push_back(pContainer);
|
||||
return (int)tlsContainers_.size() - 1;
|
||||
}
|
||||
void releaseKey(int id, TLSDataContainer* pContainer)
|
||||
{
|
||||
cv::AutoLock lock(mutex_);
|
||||
CV_Assert(tlsContainers_[id] == pContainer);
|
||||
tlsContainers_[id] = NULL;
|
||||
// currently, we don't go into thread's TLSData and release data for this key
|
||||
}
|
||||
|
||||
void destroyData(int key, void* data)
|
||||
{
|
||||
cv::AutoLock lock(mutex_);
|
||||
TLSDataContainer* k = tlsContainers_[key];
|
||||
if (!k)
|
||||
return;
|
||||
try
|
||||
{
|
||||
k->deleteDataInstance(data);
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
CV_DbgAssert(k == NULL); // Debug this!
|
||||
}
|
||||
}
|
||||
};
|
||||
static TLSContainerStorage tlsContainerStorage;
|
||||
|
||||
TLSDataContainer::TLSDataContainer()
|
||||
: key_(-1)
|
||||
{
|
||||
key_ = tlsContainerStorage.allocateKey(this);
|
||||
}
|
||||
|
||||
TLSDataContainer::~TLSDataContainer()
|
||||
{
|
||||
tlsContainerStorage.releaseKey(key_, this);
|
||||
key_ = -1;
|
||||
}
|
||||
|
||||
void* TLSDataContainer::getData() const
|
||||
{
|
||||
CV_Assert(key_ >= 0);
|
||||
TLSStorage* tlsData = TLSStorage::get();
|
||||
void* data = tlsData->getData(key_);
|
||||
if (!data)
|
||||
{
|
||||
data = this->createDataInstance();
|
||||
CV_DbgAssert(data != NULL);
|
||||
tlsData->setData(key_, data);
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
TLSStorage::~TLSStorage()
|
||||
{
|
||||
for (int i = 0; i < (int)tlsData_.size(); i++)
|
||||
{
|
||||
void*& data = tlsData_[i];
|
||||
if (data)
|
||||
{
|
||||
tlsContainerStorage.destroyData(i, data);
|
||||
data = NULL;
|
||||
}
|
||||
}
|
||||
tlsData_.clear();
|
||||
}
|
||||
|
||||
} // namespace cv
|
||||
|
||||
//////////////////////////////// thread-local storage ////////////////////////////////
|
||||
|
||||
|
@ -54,8 +54,9 @@ static const int FREAK_NB_SCALES = FREAK::NB_SCALES;
|
||||
static const int FREAK_NB_PAIRS = FREAK::NB_PAIRS;
|
||||
static const int FREAK_NB_ORIENPAIRS = FREAK::NB_ORIENPAIRS;
|
||||
|
||||
// default pairs
|
||||
static const int FREAK_DEF_PAIRS[FREAK::NB_PAIRS] =
|
||||
{ // default pairs
|
||||
{
|
||||
404,431,818,511,181,52,311,874,774,543,719,230,417,205,11,
|
||||
560,149,265,39,306,165,857,250,8,61,15,55,717,44,412,
|
||||
592,134,761,695,660,782,625,487,549,516,271,665,762,392,178,
|
||||
@ -92,15 +93,17 @@ static const int FREAK_DEF_PAIRS[FREAK::NB_PAIRS] =
|
||||
670,249,36,581,389,605,331,518,442,822
|
||||
};
|
||||
|
||||
// used to sort pairs during pairs selection
|
||||
struct PairStat
|
||||
{ // used to sort pairs during pairs selection
|
||||
{
|
||||
double mean;
|
||||
int idx;
|
||||
};
|
||||
|
||||
struct sortMean
|
||||
{
|
||||
bool operator()( const PairStat& a, const PairStat& b ) const {
|
||||
bool operator()( const PairStat& a, const PairStat& b ) const
|
||||
{
|
||||
return a.mean < b.mean;
|
||||
}
|
||||
};
|
||||
@ -130,17 +133,21 @@ void FREAK::buildPattern()
|
||||
radius[6]/2.0, radius[6]/2.0
|
||||
};
|
||||
// fill the lookup table
|
||||
for( int scaleIdx=0; scaleIdx < FREAK_NB_SCALES; ++scaleIdx ) {
|
||||
for( int scaleIdx=0; scaleIdx < FREAK_NB_SCALES; ++scaleIdx )
|
||||
{
|
||||
patternSizes[scaleIdx] = 0; // proper initialization
|
||||
scalingFactor = std::pow(scaleStep,scaleIdx); //scale of the pattern, scaleStep ^ scaleIdx
|
||||
|
||||
for( int orientationIdx = 0; orientationIdx < FREAK_NB_ORIENTATION; ++orientationIdx ) {
|
||||
for( int orientationIdx = 0; orientationIdx < FREAK_NB_ORIENTATION; ++orientationIdx )
|
||||
{
|
||||
theta = double(orientationIdx)* 2*CV_PI/double(FREAK_NB_ORIENTATION); // orientation of the pattern
|
||||
int pointIdx = 0;
|
||||
|
||||
PatternPoint* patternLookupPtr = &patternLookup[0];
|
||||
for( size_t i = 0; i < 8; ++i ) {
|
||||
for( int k = 0 ; k < n[i]; ++k ) {
|
||||
for( size_t i = 0; i < 8; ++i )
|
||||
{
|
||||
for( int k = 0 ; k < n[i]; ++k )
|
||||
{
|
||||
beta = CV_PI/n[i] * (i%2); // orientation offset so that groups of points on each circles are staggered
|
||||
alpha = double(k)* 2*CV_PI/double(n[i])+beta+theta;
|
||||
|
||||
@ -182,7 +189,8 @@ void FREAK::buildPattern()
|
||||
orientationPairs[39].i=30; orientationPairs[39].j=33; orientationPairs[40].i=31; orientationPairs[40].j=34; orientationPairs[41].i=32; orientationPairs[41].j=35;
|
||||
orientationPairs[42].i=36; orientationPairs[42].j=39; orientationPairs[43].i=37; orientationPairs[43].j=40; orientationPairs[44].i=38; orientationPairs[44].j=41;
|
||||
|
||||
for( unsigned m = FREAK_NB_ORIENPAIRS; m--; ) {
|
||||
for( unsigned m = FREAK_NB_ORIENPAIRS; m--; )
|
||||
{
|
||||
const float dx = patternLookup[orientationPairs[m].i].x-patternLookup[orientationPairs[m].j].x;
|
||||
const float dy = patternLookup[orientationPairs[m].i].y-patternLookup[orientationPairs[m].j].y;
|
||||
const float norm_sq = (dx*dx+dy*dy);
|
||||
@ -192,30 +200,37 @@ void FREAK::buildPattern()
|
||||
|
||||
// build the list of description pairs
|
||||
std::vector<DescriptionPair> allPairs;
|
||||
for( unsigned int i = 1; i < (unsigned int)FREAK_NB_POINTS; ++i ) {
|
||||
for( unsigned int i = 1; i < (unsigned int)FREAK_NB_POINTS; ++i )
|
||||
{
|
||||
// (generate all the pairs)
|
||||
for( unsigned int j = 0; (unsigned int)j < i; ++j ) {
|
||||
for( unsigned int j = 0; (unsigned int)j < i; ++j )
|
||||
{
|
||||
DescriptionPair pair = {(uchar)i,(uchar)j};
|
||||
allPairs.push_back(pair);
|
||||
}
|
||||
}
|
||||
// Input vector provided
|
||||
if( !selectedPairs0.empty() ) {
|
||||
if( (int)selectedPairs0.size() == FREAK_NB_PAIRS ) {
|
||||
if( !selectedPairs0.empty() )
|
||||
{
|
||||
if( (int)selectedPairs0.size() == FREAK_NB_PAIRS )
|
||||
{
|
||||
for( int i = 0; i < FREAK_NB_PAIRS; ++i )
|
||||
descriptionPairs[i] = allPairs[selectedPairs0.at(i)];
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
CV_Error(Error::StsVecLengthErr, "Input vector does not match the required size");
|
||||
}
|
||||
}
|
||||
else { // default selected pairs
|
||||
else // default selected pairs
|
||||
{
|
||||
for( int i = 0; i < FREAK_NB_PAIRS; ++i )
|
||||
descriptionPairs[i] = allPairs[FREAK_DEF_PAIRS[i]];
|
||||
}
|
||||
}
|
||||
|
||||
void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const {
|
||||
void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors ) const
|
||||
{
|
||||
|
||||
if( image.empty() )
|
||||
return;
|
||||
@ -236,8 +251,10 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
int direction1;
|
||||
|
||||
// compute the scale index corresponding to the keypoint size and remove keypoints close to the border
|
||||
if( scaleNormalized ) {
|
||||
for( size_t k = keypoints.size(); k--; ) {
|
||||
if( scaleNormalized )
|
||||
{
|
||||
for( size_t k = keypoints.size(); k--; )
|
||||
{
|
||||
//Is k non-zero? If so, decrement it and continue"
|
||||
kpScaleIdx[k] = std::max( (int)(std::log(keypoints[k].size/FREAK_SMALLEST_KP_SIZE)*sizeCst+0.5) ,0);
|
||||
if( kpScaleIdx[k] >= FREAK_NB_SCALES )
|
||||
@ -247,24 +264,29 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] ||
|
||||
keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] ||
|
||||
keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]]
|
||||
) {
|
||||
)
|
||||
{
|
||||
keypoints.erase(kpBegin+k);
|
||||
kpScaleIdx.erase(ScaleIdxBegin+k);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
const int scIdx = std::max( (int)(1.0986122886681*sizeCst+0.5) ,0);
|
||||
for( size_t k = keypoints.size(); k--; ) {
|
||||
for( size_t k = keypoints.size(); k--; )
|
||||
{
|
||||
kpScaleIdx[k] = scIdx; // equivalent to the formule when the scale is normalized with a constant size of keypoints[k].size=3*SMALLEST_KP_SIZE
|
||||
if( kpScaleIdx[k] >= FREAK_NB_SCALES ) {
|
||||
if( kpScaleIdx[k] >= FREAK_NB_SCALES )
|
||||
{
|
||||
kpScaleIdx[k] = FREAK_NB_SCALES-1;
|
||||
}
|
||||
if( keypoints[k].pt.x <= patternSizes[kpScaleIdx[k]] ||
|
||||
keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] ||
|
||||
keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] ||
|
||||
keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]]
|
||||
) {
|
||||
)
|
||||
{
|
||||
keypoints.erase(kpBegin+k);
|
||||
kpScaleIdx.erase(ScaleIdxBegin+k);
|
||||
}
|
||||
@ -272,7 +294,8 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
}
|
||||
|
||||
// allocate descriptor memory, estimate orientations, extract descriptors
|
||||
if( !extAll ) {
|
||||
if( !extAll )
|
||||
{
|
||||
// extract the best comparisons only
|
||||
descriptors = cv::Mat::zeros((int)keypoints.size(), FREAK_NB_PAIRS/8, CV_8U);
|
||||
#if CV_SSE2
|
||||
@ -280,20 +303,25 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
#else
|
||||
std::bitset<FREAK_NB_PAIRS>* ptr = (std::bitset<FREAK_NB_PAIRS>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
|
||||
#endif
|
||||
for( size_t k = keypoints.size(); k--; ) {
|
||||
for( size_t k = keypoints.size(); k--; )
|
||||
{
|
||||
// estimate orientation (gradient)
|
||||
if( !orientationNormalized ) {
|
||||
if( !orientationNormalized )
|
||||
{
|
||||
thetaIdx = 0; // assign 0° to all keypoints
|
||||
keypoints[k].angle = 0.0;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
// get the points intensity value in the un-rotated pattern
|
||||
for( int i = FREAK_NB_POINTS; i--; ) {
|
||||
for( int i = FREAK_NB_POINTS; i--; )
|
||||
{
|
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i);
|
||||
}
|
||||
direction0 = 0;
|
||||
direction1 = 0;
|
||||
for( int m = 45; m--; ) {
|
||||
for( int m = 45; m--; )
|
||||
{
|
||||
//iterate through the orientation pairs
|
||||
const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]);
|
||||
direction0 += delta*(orientationPairs[m].weight_dx)/2048;
|
||||
@ -309,7 +337,8 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
thetaIdx -= FREAK_NB_ORIENTATION;
|
||||
}
|
||||
// extract descriptor at the computed orientation
|
||||
for( int i = FREAK_NB_POINTS; i--; ) {
|
||||
for( int i = FREAK_NB_POINTS; i--; )
|
||||
{
|
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i);
|
||||
}
|
||||
#if CV_SSE2
|
||||
@ -384,24 +413,29 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // extract all possible comparisons for selection
|
||||
else // extract all possible comparisons for selection
|
||||
{
|
||||
descriptors = cv::Mat::zeros((int)keypoints.size(), 128, CV_8U);
|
||||
std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]);
|
||||
|
||||
for( size_t k = keypoints.size(); k--; ) {
|
||||
for( size_t k = keypoints.size(); k--; )
|
||||
{
|
||||
//estimate orientation (gradient)
|
||||
if( !orientationNormalized ) {
|
||||
if( !orientationNormalized )
|
||||
{
|
||||
thetaIdx = 0;//assign 0° to all keypoints
|
||||
keypoints[k].angle = 0.0;
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
//get the points intensity value in the un-rotated pattern
|
||||
for( int i = FREAK_NB_POINTS;i--; )
|
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i);
|
||||
|
||||
direction0 = 0;
|
||||
direction1 = 0;
|
||||
for( int m = 45; m--; ) {
|
||||
for( int m = 45; m--; )
|
||||
{
|
||||
//iterate through the orientation pairs
|
||||
const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]);
|
||||
direction0 += delta*(orientationPairs[m].weight_dx)/2048;
|
||||
@ -418,15 +452,18 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat
|
||||
thetaIdx -= FREAK_NB_ORIENTATION;
|
||||
}
|
||||
// get the points intensity value in the rotated pattern
|
||||
for( int i = FREAK_NB_POINTS; i--; ) {
|
||||
for( int i = FREAK_NB_POINTS; i--; )
|
||||
{
|
||||
pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,
|
||||
keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i);
|
||||
}
|
||||
|
||||
int cnt(0);
|
||||
for( int i = 1; i < FREAK_NB_POINTS; ++i ) {
|
||||
for( int i = 1; i < FREAK_NB_POINTS; ++i )
|
||||
{
|
||||
//(generate all the pairs)
|
||||
for( int j = 0; j < i; ++j ) {
|
||||
for( int j = 0; j < i; ++j )
|
||||
{
|
||||
ptr->set(cnt, pointsValue[i] >= pointsValue[j] );
|
||||
++cnt;
|
||||
}
|
||||
@ -442,7 +479,8 @@ uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral,
|
||||
const float kp_y,
|
||||
const unsigned int scale,
|
||||
const unsigned int rot,
|
||||
const unsigned int point) const {
|
||||
const unsigned int point) const
|
||||
{
|
||||
// get point position in image
|
||||
const PatternPoint& FreakPoint = patternLookup[scale*FREAK_NB_ORIENTATION*FREAK_NB_POINTS + rot*FREAK_NB_POINTS + point];
|
||||
const float xf = FreakPoint.x+kp_x;
|
||||
@ -455,7 +493,8 @@ uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral,
|
||||
const float radius = FreakPoint.sigma;
|
||||
|
||||
// calculate output:
|
||||
if( radius < 0.5 ) {
|
||||
if( radius < 0.5 )
|
||||
{
|
||||
// interpolation multipliers:
|
||||
const int r_x = static_cast<int>((xf-x)*1024);
|
||||
const int r_y = static_cast<int>((yf-y)*1024);
|
||||
@ -507,7 +546,8 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
if( verbose )
|
||||
std::cout << "Number of images: " << images.size() << std::endl;
|
||||
|
||||
for( size_t i = 0;i < images.size(); ++i ) {
|
||||
for( size_t i = 0;i < images.size(); ++i )
|
||||
{
|
||||
Mat descriptorsTmp;
|
||||
computeImpl(images[i],keypoints[i],descriptorsTmp);
|
||||
descriptors.push_back(descriptorsTmp);
|
||||
@ -520,8 +560,10 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
Mat descriptorsFloat = Mat::zeros(descriptors.rows, 903, CV_32F);
|
||||
|
||||
std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(descriptors.rows-1)*descriptors.step[0]);
|
||||
for( int m = descriptors.rows; m--; ) {
|
||||
for( int n = 903; n--; ) {
|
||||
for( int m = descriptors.rows; m--; )
|
||||
{
|
||||
for( int n = 903; n--; )
|
||||
{
|
||||
if( ptr->test(n) == true )
|
||||
descriptorsFloat.at<float>(m,n)=1.0f;
|
||||
}
|
||||
@ -529,7 +571,8 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
}
|
||||
|
||||
std::vector<PairStat> pairStat;
|
||||
for( int n = 903; n--; ) {
|
||||
for( int n = 903; n--; )
|
||||
{
|
||||
// the higher the variance, the better --> mean = 0.5
|
||||
PairStat tmp = { fabs( mean(descriptorsFloat.col(n))[0]-0.5 ) ,n};
|
||||
pairStat.push_back(tmp);
|
||||
@ -538,19 +581,22 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
std::sort( pairStat.begin(),pairStat.end(), sortMean() );
|
||||
|
||||
std::vector<PairStat> bestPairs;
|
||||
for( int m = 0; m < 903; ++m ) {
|
||||
for( int m = 0; m < 903; ++m )
|
||||
{
|
||||
if( verbose )
|
||||
std::cout << m << ":" << bestPairs.size() << " " << std::flush;
|
||||
double corrMax(0);
|
||||
|
||||
for( size_t n = 0; n < bestPairs.size(); ++n ) {
|
||||
for( size_t n = 0; n < bestPairs.size(); ++n )
|
||||
{
|
||||
int idxA = bestPairs[n].idx;
|
||||
int idxB = pairStat[m].idx;
|
||||
double corr(0);
|
||||
// compute correlation between 2 pairs
|
||||
corr = fabs(compareHist(descriptorsFloat.col(idxA), descriptorsFloat.col(idxB), HISTCMP_CORREL));
|
||||
|
||||
if( corr > corrMax ) {
|
||||
if( corr > corrMax )
|
||||
{
|
||||
corrMax = corr;
|
||||
if( corrMax >= corrTresh )
|
||||
break;
|
||||
@ -560,7 +606,8 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
if( corrMax < corrTresh/*0.7*/ )
|
||||
bestPairs.push_back(pairStat[m]);
|
||||
|
||||
if( bestPairs.size() >= 512 ) {
|
||||
if( bestPairs.size() >= 512 )
|
||||
{
|
||||
if( verbose )
|
||||
std::cout << m << std::endl;
|
||||
break;
|
||||
@ -568,11 +615,13 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
}
|
||||
|
||||
std::vector<int> idxBestPairs;
|
||||
if( (int)bestPairs.size() >= FREAK_NB_PAIRS ) {
|
||||
if( (int)bestPairs.size() >= FREAK_NB_PAIRS )
|
||||
{
|
||||
for( int i = 0; i < FREAK_NB_PAIRS; ++i )
|
||||
idxBestPairs.push_back(bestPairs[i].idx);
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
if( verbose )
|
||||
std::cout << "correlation threshold too small (restrictive)" << std::endl;
|
||||
CV_Error(Error::StsError, "correlation threshold too small (restrictive)");
|
||||
@ -583,11 +632,13 @@ std::vector<int> FREAK::selectPairs(const std::vector<Mat>& images
|
||||
|
||||
|
||||
/*
|
||||
// create an image showing the brisk pattern
|
||||
void FREAKImpl::drawPattern()
|
||||
{ // create an image showing the brisk pattern
|
||||
{
|
||||
Mat pattern = Mat::zeros(1000, 1000, CV_8UC3) + Scalar(255,255,255);
|
||||
int sFac = 500 / patternScale;
|
||||
for( int n = 0; n < kNB_POINTS; ++n ) {
|
||||
for( int n = 0; n < kNB_POINTS; ++n )
|
||||
{
|
||||
PatternPoint& pt = patternLookup[n];
|
||||
circle(pattern, Point( pt.x*sFac,pt.y*sFac)+Point(500,500), pt.sigma*sFac, Scalar(0,0,255),2);
|
||||
// rectangle(pattern, Point( (pt.x-pt.sigma)*sFac,(pt.y-pt.sigma)*sFac)+Point(500,500), Point( (pt.x+pt.sigma)*sFac,(pt.y+pt.sigma)*sFac)+Point(500,500), Scalar(0,0,255),2);
|
||||
@ -615,11 +666,13 @@ FREAK::~FREAK()
|
||||
{
|
||||
}
|
||||
|
||||
int FREAK::descriptorSize() const {
|
||||
int FREAK::descriptorSize() const
|
||||
{
|
||||
return FREAK_NB_PAIRS / 8; // descriptor length in bytes
|
||||
}
|
||||
|
||||
int FREAK::descriptorType() const {
|
||||
int FREAK::descriptorType() const
|
||||
{
|
||||
return CV_8U;
|
||||
}
|
||||
|
||||
|
@ -5,4 +5,7 @@ endif()
|
||||
|
||||
set(the_description "OpenCL-accelerated Computer Vision")
|
||||
ocv_define_module(ocl opencv_core opencv_imgproc opencv_features2d opencv_objdetect opencv_video opencv_calib3d opencv_ml "${OPENCL_LIBRARIES}")
|
||||
if(TARGET opencv_test_ocl)
|
||||
target_link_libraries(opencv_test_ocl "${OPENCL_LIBRARIES}")
|
||||
endif()
|
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wshadow)
|
||||
|
@ -25,12 +25,26 @@ Returns the list of devices
|
||||
|
||||
ocl::setDevice
|
||||
--------------
|
||||
Returns void
|
||||
Initialize OpenCL computation context
|
||||
|
||||
.. ocv:function:: void ocl::setDevice( const DeviceInfo* info )
|
||||
|
||||
:param info: device info
|
||||
|
||||
ocl::initializeContext
|
||||
--------------------------------
|
||||
Alternative way to initialize OpenCL computation context.
|
||||
|
||||
.. ocv:function:: void ocl::initializeContext(void* pClPlatform, void* pClContext, void* pClDevice)
|
||||
|
||||
:param pClPlatform: selected ``platform_id`` (via pointer, parameter type is ``cl_platform_id*``)
|
||||
|
||||
:param pClContext: selected ``cl_context`` (via pointer, parameter type is ``cl_context*``)
|
||||
|
||||
:param pClDevice: selected ``cl_device_id`` (via pointer, parameter type is ``cl_device_id*``)
|
||||
|
||||
This function can be used for context initialization with D3D/OpenGL interoperability.
|
||||
|
||||
ocl::setBinaryPath
|
||||
------------------
|
||||
Returns void
|
||||
|
@ -118,6 +118,7 @@ namespace cv
|
||||
const PlatformInfo* platform;
|
||||
|
||||
DeviceInfo();
|
||||
~DeviceInfo();
|
||||
};
|
||||
|
||||
struct PlatformInfo
|
||||
@ -136,6 +137,7 @@ namespace cv
|
||||
std::vector<const DeviceInfo*> devices;
|
||||
|
||||
PlatformInfo();
|
||||
~PlatformInfo();
|
||||
};
|
||||
|
||||
//////////////////////////////// Initialization & Info ////////////////////////
|
||||
@ -151,6 +153,10 @@ namespace cv
|
||||
// set device you want to use
|
||||
CV_EXPORTS void setDevice(const DeviceInfo* info);
|
||||
|
||||
// Initialize from OpenCL handles directly.
|
||||
// Argument types is (pointers): cl_platform_id*, cl_context*, cl_device_id*
|
||||
CV_EXPORTS void initializeContext(void* pClPlatform, void* pClContext, void* pClDevice);
|
||||
|
||||
enum FEATURE_TYPE
|
||||
{
|
||||
FEATURE_CL_DOUBLE = 1,
|
||||
|
@ -175,6 +175,7 @@ namespace cv
|
||||
data = m.data;
|
||||
datastart = m.datastart;
|
||||
dataend = m.dataend;
|
||||
clCxt = m.clCxt;
|
||||
wholerows = m.wholerows;
|
||||
wholecols = m.wholecols;
|
||||
offset = m.offset;
|
||||
|
@ -57,6 +57,12 @@
|
||||
namespace cv {
|
||||
namespace ocl {
|
||||
|
||||
using namespace cl_utils;
|
||||
|
||||
#if defined(WIN32)
|
||||
static bool __termination = false;
|
||||
#endif
|
||||
|
||||
struct __Module
|
||||
{
|
||||
__Module();
|
||||
@ -71,36 +77,10 @@ cv::Mutex& getInitializationMutex()
|
||||
return __module.initializationMutex;
|
||||
}
|
||||
|
||||
|
||||
struct PlatformInfoImpl
|
||||
static cv::Mutex& getCurrentContextMutex()
|
||||
{
|
||||
cl_platform_id platform_id;
|
||||
|
||||
std::vector<int> deviceIDs;
|
||||
|
||||
PlatformInfo info;
|
||||
|
||||
PlatformInfoImpl()
|
||||
: platform_id(NULL)
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
struct DeviceInfoImpl
|
||||
{
|
||||
cl_platform_id platform_id;
|
||||
cl_device_id device_id;
|
||||
|
||||
DeviceInfo info;
|
||||
|
||||
DeviceInfoImpl()
|
||||
: platform_id(NULL), device_id(NULL)
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
static std::vector<PlatformInfoImpl> global_platforms;
|
||||
static std::vector<DeviceInfoImpl> global_devices;
|
||||
return __module.currentContextMutex;
|
||||
}
|
||||
|
||||
static bool parseOpenCLVersion(const std::string& versionStr, int& major, int& minor)
|
||||
{
|
||||
@ -131,6 +111,141 @@ static bool parseOpenCLVersion(const std::string& versionStr, int& major, int& m
|
||||
return true;
|
||||
}
|
||||
|
||||
struct PlatformInfoImpl : public PlatformInfo
|
||||
{
|
||||
cl_platform_id platform_id;
|
||||
|
||||
std::vector<int> deviceIDs;
|
||||
|
||||
PlatformInfoImpl()
|
||||
: platform_id(NULL)
|
||||
{
|
||||
}
|
||||
|
||||
void init(int id, cl_platform_id platform)
|
||||
{
|
||||
CV_Assert(platform_id == NULL);
|
||||
|
||||
this->_id = id;
|
||||
platform_id = platform;
|
||||
|
||||
openCLSafeCall(getStringInfo(clGetPlatformInfo, platform, CL_PLATFORM_PROFILE, this->platformProfile));
|
||||
openCLSafeCall(getStringInfo(clGetPlatformInfo, platform, CL_PLATFORM_VERSION, this->platformVersion));
|
||||
openCLSafeCall(getStringInfo(clGetPlatformInfo, platform, CL_PLATFORM_NAME, this->platformName));
|
||||
openCLSafeCall(getStringInfo(clGetPlatformInfo, platform, CL_PLATFORM_VENDOR, this->platformVendor));
|
||||
openCLSafeCall(getStringInfo(clGetPlatformInfo, platform, CL_PLATFORM_EXTENSIONS, this->platformExtensons));
|
||||
|
||||
parseOpenCLVersion(this->platformVersion,
|
||||
this->platformVersionMajor, this->platformVersionMinor);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
struct DeviceInfoImpl: public DeviceInfo
|
||||
{
|
||||
cl_platform_id platform_id;
|
||||
cl_device_id device_id;
|
||||
|
||||
DeviceInfoImpl()
|
||||
: platform_id(NULL), device_id(NULL)
|
||||
{
|
||||
}
|
||||
|
||||
void init(int id, PlatformInfoImpl& platformInfoImpl, cl_device_id device)
|
||||
{
|
||||
CV_Assert(device_id == NULL);
|
||||
|
||||
this->_id = id;
|
||||
platform_id = platformInfoImpl.platform_id;
|
||||
device_id = device;
|
||||
|
||||
this->platform = &platformInfoImpl;
|
||||
|
||||
cl_device_type type = cl_device_type(-1);
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_TYPE, type));
|
||||
this->deviceType = DeviceType(type);
|
||||
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_PROFILE, this->deviceProfile));
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_VERSION, this->deviceVersion));
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_NAME, this->deviceName));
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_VENDOR, this->deviceVendor));
|
||||
cl_uint vendorID = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_VENDOR_ID, vendorID));
|
||||
this->deviceVendorId = vendorID;
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DRIVER_VERSION, this->deviceDriverVersion));
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_EXTENSIONS, this->deviceExtensions));
|
||||
|
||||
parseOpenCLVersion(this->deviceVersion,
|
||||
this->deviceVersionMajor, this->deviceVersionMinor);
|
||||
|
||||
size_t maxWorkGroupSize = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_WORK_GROUP_SIZE, maxWorkGroupSize));
|
||||
this->maxWorkGroupSize = maxWorkGroupSize;
|
||||
|
||||
cl_uint maxDimensions = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, maxDimensions));
|
||||
std::vector<size_t> maxWorkItemSizes(maxDimensions);
|
||||
openCLSafeCall(clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t) * maxDimensions,
|
||||
(void *)&maxWorkItemSizes[0], 0));
|
||||
this->maxWorkItemSizes = maxWorkItemSizes;
|
||||
|
||||
cl_uint maxComputeUnits = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_COMPUTE_UNITS, maxComputeUnits));
|
||||
this->maxComputeUnits = maxComputeUnits;
|
||||
|
||||
cl_ulong localMemorySize = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_LOCAL_MEM_SIZE, localMemorySize));
|
||||
this->localMemorySize = (size_t)localMemorySize;
|
||||
|
||||
cl_ulong maxMemAllocSize = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, maxMemAllocSize));
|
||||
this->maxMemAllocSize = (size_t)maxMemAllocSize;
|
||||
|
||||
cl_bool unifiedMemory = false;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_HOST_UNIFIED_MEMORY, unifiedMemory));
|
||||
this->isUnifiedMemory = unifiedMemory != 0;
|
||||
|
||||
//initialize extra options for compilation. Currently only fp64 is included.
|
||||
//Assume 4KB is enough to store all possible extensions.
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_EXTENSIONS, this->deviceExtensions));
|
||||
|
||||
size_t fp64_khr = this->deviceExtensions.find("cl_khr_fp64");
|
||||
if(fp64_khr != std::string::npos)
|
||||
{
|
||||
this->compilationExtraOptions += "-D DOUBLE_SUPPORT";
|
||||
this->haveDoubleSupport = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
this->haveDoubleSupport = false;
|
||||
}
|
||||
|
||||
size_t intel_platform = platformInfoImpl.platformVendor.find("Intel");
|
||||
if(intel_platform != std::string::npos)
|
||||
{
|
||||
this->compilationExtraOptions += " -D INTEL_DEVICE";
|
||||
this->isIntelDevice = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
this->isIntelDevice = false;
|
||||
}
|
||||
|
||||
if (id < 0)
|
||||
{
|
||||
#ifdef CL_VERSION_1_2
|
||||
if (this->deviceVersionMajor > 1 || (this->deviceVersionMajor == 1 && this->deviceVersionMinor >= 2))
|
||||
{
|
||||
::clRetainDevice(device);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
static std::vector<PlatformInfoImpl> global_platforms;
|
||||
static std::vector<DeviceInfoImpl> global_devices;
|
||||
|
||||
static void split(const std::string &s, char delim, std::vector<std::string> &elems) {
|
||||
std::stringstream ss(s);
|
||||
std::string item;
|
||||
@ -329,8 +444,6 @@ not_found:
|
||||
static bool __initialized = false;
|
||||
static int initializeOpenCLDevices()
|
||||
{
|
||||
using namespace cl_utils;
|
||||
|
||||
assert(!__initialized);
|
||||
__initialized = true;
|
||||
|
||||
@ -351,19 +464,9 @@ static int initializeOpenCLDevices()
|
||||
for (size_t i = 0; i < platforms.size(); ++i)
|
||||
{
|
||||
PlatformInfoImpl& platformInfo = global_platforms[i];
|
||||
platformInfo.info._id = i;
|
||||
|
||||
cl_platform_id platform = platforms[i];
|
||||
|
||||
platformInfo.platform_id = platform;
|
||||
openCLSafeCall(getStringInfo(clGetPlatformInfo, platform, CL_PLATFORM_PROFILE, platformInfo.info.platformProfile));
|
||||
openCLSafeCall(getStringInfo(clGetPlatformInfo, platform, CL_PLATFORM_VERSION, platformInfo.info.platformVersion));
|
||||
openCLSafeCall(getStringInfo(clGetPlatformInfo, platform, CL_PLATFORM_NAME, platformInfo.info.platformName));
|
||||
openCLSafeCall(getStringInfo(clGetPlatformInfo, platform, CL_PLATFORM_VENDOR, platformInfo.info.platformVendor));
|
||||
openCLSafeCall(getStringInfo(clGetPlatformInfo, platform, CL_PLATFORM_EXTENSIONS, platformInfo.info.platformExtensons));
|
||||
|
||||
parseOpenCLVersion(platformInfo.info.platformVersion,
|
||||
platformInfo.info.platformVersionMajor, platformInfo.info.platformVersionMinor);
|
||||
platformInfo.init(i, platform);
|
||||
|
||||
std::vector<cl_device_id> devices;
|
||||
cl_int status = getDevices(platform, CL_DEVICE_TYPE_ALL, devices);
|
||||
@ -375,89 +478,15 @@ static int initializeOpenCLDevices()
|
||||
int baseIndx = global_devices.size();
|
||||
global_devices.resize(baseIndx + devices.size());
|
||||
platformInfo.deviceIDs.resize(devices.size());
|
||||
platformInfo.info.devices.resize(devices.size());
|
||||
platformInfo.devices.resize(devices.size());
|
||||
|
||||
for(size_t j = 0; j < devices.size(); ++j)
|
||||
{
|
||||
cl_device_id device = devices[j];
|
||||
|
||||
DeviceInfoImpl& deviceInfo = global_devices[baseIndx + j];
|
||||
deviceInfo.info._id = baseIndx + j;
|
||||
deviceInfo.platform_id = platform;
|
||||
deviceInfo.device_id = device;
|
||||
|
||||
deviceInfo.info.platform = &platformInfo.info;
|
||||
platformInfo.deviceIDs[j] = deviceInfo.info._id;
|
||||
|
||||
cl_device_type type = cl_device_type(-1);
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_TYPE, type));
|
||||
deviceInfo.info.deviceType = DeviceType(type);
|
||||
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_PROFILE, deviceInfo.info.deviceProfile));
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_VERSION, deviceInfo.info.deviceVersion));
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_NAME, deviceInfo.info.deviceName));
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_VENDOR, deviceInfo.info.deviceVendor));
|
||||
cl_uint vendorID = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_VENDOR_ID, vendorID));
|
||||
deviceInfo.info.deviceVendorId = vendorID;
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DRIVER_VERSION, deviceInfo.info.deviceDriverVersion));
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_EXTENSIONS, deviceInfo.info.deviceExtensions));
|
||||
|
||||
parseOpenCLVersion(deviceInfo.info.deviceVersion,
|
||||
deviceInfo.info.deviceVersionMajor, deviceInfo.info.deviceVersionMinor);
|
||||
|
||||
size_t maxWorkGroupSize = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_WORK_GROUP_SIZE, maxWorkGroupSize));
|
||||
deviceInfo.info.maxWorkGroupSize = maxWorkGroupSize;
|
||||
|
||||
cl_uint maxDimensions = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, maxDimensions));
|
||||
std::vector<size_t> maxWorkItemSizes(maxDimensions);
|
||||
openCLSafeCall(clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t) * maxDimensions,
|
||||
(void *)&maxWorkItemSizes[0], 0));
|
||||
deviceInfo.info.maxWorkItemSizes = maxWorkItemSizes;
|
||||
|
||||
cl_uint maxComputeUnits = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_COMPUTE_UNITS, maxComputeUnits));
|
||||
deviceInfo.info.maxComputeUnits = maxComputeUnits;
|
||||
|
||||
cl_ulong localMemorySize = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_LOCAL_MEM_SIZE, localMemorySize));
|
||||
deviceInfo.info.localMemorySize = (size_t)localMemorySize;
|
||||
|
||||
cl_ulong maxMemAllocSize = 0;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, maxMemAllocSize));
|
||||
deviceInfo.info.maxMemAllocSize = (size_t)maxMemAllocSize;
|
||||
|
||||
cl_bool unifiedMemory = false;
|
||||
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_HOST_UNIFIED_MEMORY, unifiedMemory));
|
||||
deviceInfo.info.isUnifiedMemory = unifiedMemory != 0;
|
||||
|
||||
//initialize extra options for compilation. Currently only fp64 is included.
|
||||
//Assume 4KB is enough to store all possible extensions.
|
||||
openCLSafeCall(getStringInfo(clGetDeviceInfo, device, CL_DEVICE_EXTENSIONS, deviceInfo.info.deviceExtensions));
|
||||
|
||||
size_t fp64_khr = deviceInfo.info.deviceExtensions.find("cl_khr_fp64");
|
||||
if(fp64_khr != std::string::npos)
|
||||
{
|
||||
deviceInfo.info.compilationExtraOptions += "-D DOUBLE_SUPPORT";
|
||||
deviceInfo.info.haveDoubleSupport = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
deviceInfo.info.haveDoubleSupport = false;
|
||||
}
|
||||
|
||||
size_t intel_platform = platformInfo.info.platformVendor.find("Intel");
|
||||
if(intel_platform != std::string::npos)
|
||||
{
|
||||
deviceInfo.info.compilationExtraOptions += " -D INTEL_DEVICE";
|
||||
deviceInfo.info.isIntelDevice = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
deviceInfo.info.isIntelDevice = false;
|
||||
}
|
||||
platformInfo.deviceIDs[j] = baseIndx + j;
|
||||
deviceInfo.init(baseIndx + j, platformInfo, device);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -468,7 +497,7 @@ static int initializeOpenCLDevices()
|
||||
for(size_t j = 0; j < platformInfo.deviceIDs.size(); ++j)
|
||||
{
|
||||
DeviceInfoImpl& deviceInfo = global_devices[platformInfo.deviceIDs[j]];
|
||||
platformInfo.info.devices[j] = &deviceInfo.info;
|
||||
platformInfo.devices[j] = &deviceInfo;
|
||||
}
|
||||
}
|
||||
|
||||
@ -487,6 +516,8 @@ DeviceInfo::DeviceInfo()
|
||||
// nothing
|
||||
}
|
||||
|
||||
DeviceInfo::~DeviceInfo() { }
|
||||
|
||||
PlatformInfo::PlatformInfo()
|
||||
: _id(-1),
|
||||
platformVersionMajor(0), platformVersionMinor(0)
|
||||
@ -494,40 +525,135 @@ PlatformInfo::PlatformInfo()
|
||||
// nothing
|
||||
}
|
||||
|
||||
PlatformInfo::~PlatformInfo() { }
|
||||
|
||||
class ContextImpl;
|
||||
|
||||
struct CommandQueue
|
||||
{
|
||||
ContextImpl* context_;
|
||||
cl_command_queue clQueue_;
|
||||
|
||||
CommandQueue() : context_(NULL), clQueue_(NULL) { }
|
||||
~CommandQueue() { release(); }
|
||||
|
||||
void create(ContextImpl* context_);
|
||||
void release()
|
||||
{
|
||||
#ifdef WIN32
|
||||
// if process is on termination stage (ExitProcess was called and other threads were terminated)
|
||||
// then disable command queue release because it may cause program hang
|
||||
if (!__termination)
|
||||
#endif
|
||||
{
|
||||
if(clQueue_)
|
||||
{
|
||||
openCLSafeCall(clReleaseCommandQueue(clQueue_)); // some cleanup problems are here
|
||||
}
|
||||
|
||||
}
|
||||
clQueue_ = NULL;
|
||||
context_ = NULL;
|
||||
}
|
||||
};
|
||||
|
||||
cv::TLSData<CommandQueue> commandQueueTLSData;
|
||||
|
||||
//////////////////////////////// OpenCL context ////////////////////////
|
||||
//This is a global singleton class used to represent a OpenCL context.
|
||||
class ContextImpl : public Context
|
||||
{
|
||||
public:
|
||||
const cl_device_id clDeviceID;
|
||||
cl_device_id clDeviceID;
|
||||
cl_context clContext;
|
||||
cl_command_queue clCmdQueue;
|
||||
const DeviceInfo& deviceInfo;
|
||||
const DeviceInfoImpl& deviceInfoImpl;
|
||||
|
||||
protected:
|
||||
ContextImpl(const DeviceInfo& deviceInfo, cl_device_id clDeviceID)
|
||||
: clDeviceID(clDeviceID), clContext(NULL), clCmdQueue(NULL), deviceInfo(deviceInfo)
|
||||
ContextImpl(const DeviceInfoImpl& _deviceInfoImpl, cl_context context)
|
||||
: clDeviceID(_deviceInfoImpl.device_id), clContext(context), deviceInfoImpl(_deviceInfoImpl)
|
||||
{
|
||||
// nothing
|
||||
#ifdef CL_VERSION_1_2
|
||||
if (supportsFeature(FEATURE_CL_VER_1_2))
|
||||
{
|
||||
openCLSafeCall(clRetainDevice(clDeviceID));
|
||||
}
|
||||
#endif
|
||||
openCLSafeCall(clRetainContext(clContext));
|
||||
|
||||
ContextImpl* old = NULL;
|
||||
{
|
||||
cv::AutoLock lock(getCurrentContextMutex());
|
||||
old = currentContext;
|
||||
currentContext = this;
|
||||
}
|
||||
if (old != NULL)
|
||||
{
|
||||
delete old;
|
||||
}
|
||||
}
|
||||
~ContextImpl()
|
||||
{
|
||||
CV_Assert(this != currentContext);
|
||||
|
||||
#ifdef CL_VERSION_1_2
|
||||
if (supportsFeature(FEATURE_CL_VER_1_2))
|
||||
{
|
||||
openCLSafeCall(clReleaseDevice(clDeviceID));
|
||||
}
|
||||
#endif
|
||||
if (deviceInfoImpl._id < 0) // not in the global registry, so we should cleanup it
|
||||
{
|
||||
#ifdef CL_VERSION_1_2
|
||||
if (supportsFeature(FEATURE_CL_VER_1_2))
|
||||
{
|
||||
openCLSafeCall(clReleaseDevice(deviceInfoImpl.device_id));
|
||||
}
|
||||
#endif
|
||||
PlatformInfoImpl* platformImpl = (PlatformInfoImpl*)(deviceInfoImpl.platform);
|
||||
delete platformImpl;
|
||||
delete const_cast<DeviceInfoImpl*>(&deviceInfoImpl);
|
||||
}
|
||||
clDeviceID = NULL;
|
||||
|
||||
#ifdef WIN32
|
||||
// if process is on termination stage (ExitProcess was called and other threads were terminated)
|
||||
// then disable command queue release because it may cause program hang
|
||||
if (!__termination)
|
||||
#endif
|
||||
{
|
||||
if(clContext)
|
||||
{
|
||||
openCLSafeCall(clReleaseContext(clContext));
|
||||
}
|
||||
}
|
||||
clContext = NULL;
|
||||
}
|
||||
~ContextImpl();
|
||||
public:
|
||||
static void setContext(const DeviceInfo* deviceInfo);
|
||||
static void initializeContext(void* pClPlatform, void* pClContext, void* pClDevice);
|
||||
|
||||
bool supportsFeature(FEATURE_TYPE featureType) const;
|
||||
|
||||
static void cleanupContext(void);
|
||||
|
||||
static ContextImpl* getContext();
|
||||
private:
|
||||
ContextImpl(const ContextImpl&); // disabled
|
||||
ContextImpl& operator=(const ContextImpl&); // disabled
|
||||
|
||||
static ContextImpl* currentContext;
|
||||
};
|
||||
|
||||
static ContextImpl* currentContext = NULL;
|
||||
ContextImpl* ContextImpl::currentContext = NULL;
|
||||
|
||||
static bool __deviceSelected = false;
|
||||
|
||||
Context* Context::getContext()
|
||||
{
|
||||
return ContextImpl::getContext();
|
||||
}
|
||||
|
||||
ContextImpl* ContextImpl::getContext()
|
||||
{
|
||||
if (currentContext == NULL)
|
||||
{
|
||||
@ -571,7 +697,7 @@ bool Context::supportsFeature(FEATURE_TYPE featureType) const
|
||||
|
||||
const DeviceInfo& Context::getDeviceInfo() const
|
||||
{
|
||||
return ((ContextImpl*)this)->deviceInfo;
|
||||
return ((ContextImpl*)this)->deviceInfoImpl;
|
||||
}
|
||||
|
||||
const void* Context::getOpenCLContextPtr() const
|
||||
@ -581,7 +707,13 @@ const void* Context::getOpenCLContextPtr() const
|
||||
|
||||
const void* Context::getOpenCLCommandQueuePtr() const
|
||||
{
|
||||
return &(((ContextImpl*)this)->clCmdQueue);
|
||||
ContextImpl* pThis = (ContextImpl*)this;
|
||||
CommandQueue* commandQueue = commandQueueTLSData.get();
|
||||
if (commandQueue->context_ != pThis)
|
||||
{
|
||||
commandQueue->create(pThis);
|
||||
}
|
||||
return &commandQueue->clQueue_;
|
||||
}
|
||||
|
||||
const void* Context::getOpenCLDeviceIDPtr() const
|
||||
@ -595,44 +727,18 @@ bool ContextImpl::supportsFeature(FEATURE_TYPE featureType) const
|
||||
switch (featureType)
|
||||
{
|
||||
case FEATURE_CL_INTEL_DEVICE:
|
||||
return deviceInfo.isIntelDevice;
|
||||
return deviceInfoImpl.isIntelDevice;
|
||||
case FEATURE_CL_DOUBLE:
|
||||
return deviceInfo.haveDoubleSupport;
|
||||
return deviceInfoImpl.haveDoubleSupport;
|
||||
case FEATURE_CL_UNIFIED_MEM:
|
||||
return deviceInfo.isUnifiedMemory;
|
||||
return deviceInfoImpl.isUnifiedMemory;
|
||||
case FEATURE_CL_VER_1_2:
|
||||
return deviceInfo.deviceVersionMajor > 1 || (deviceInfo.deviceVersionMajor == 1 && deviceInfo.deviceVersionMinor >= 2);
|
||||
return deviceInfoImpl.deviceVersionMajor > 1 || (deviceInfoImpl.deviceVersionMajor == 1 && deviceInfoImpl.deviceVersionMinor >= 2);
|
||||
}
|
||||
CV_Error(CV_StsBadArg, "Invalid feature type");
|
||||
return false;
|
||||
}
|
||||
|
||||
#if defined(WIN32)
|
||||
static bool __termination = false;
|
||||
#endif
|
||||
|
||||
ContextImpl::~ContextImpl()
|
||||
{
|
||||
#ifdef WIN32
|
||||
// if process is on termination stage (ExitProcess was called and other threads were terminated)
|
||||
// then disable command queue release because it may cause program hang
|
||||
if (!__termination)
|
||||
#endif
|
||||
{
|
||||
if(clCmdQueue)
|
||||
{
|
||||
openCLSafeCall(clReleaseCommandQueue(clCmdQueue)); // some cleanup problems are here
|
||||
}
|
||||
|
||||
if(clContext)
|
||||
{
|
||||
openCLSafeCall(clReleaseContext(clContext));
|
||||
}
|
||||
}
|
||||
clCmdQueue = NULL;
|
||||
clContext = NULL;
|
||||
}
|
||||
|
||||
void fft_teardown();
|
||||
void clBlasTeardown();
|
||||
|
||||
@ -641,53 +747,69 @@ void ContextImpl::cleanupContext(void)
|
||||
fft_teardown();
|
||||
clBlasTeardown();
|
||||
|
||||
cv::AutoLock lock(__module.currentContextMutex);
|
||||
cv::AutoLock lock(getCurrentContextMutex());
|
||||
if (currentContext)
|
||||
delete currentContext;
|
||||
currentContext = NULL;
|
||||
{
|
||||
ContextImpl* ctx = currentContext;
|
||||
currentContext = NULL;
|
||||
delete ctx;
|
||||
}
|
||||
}
|
||||
|
||||
void ContextImpl::setContext(const DeviceInfo* deviceInfo)
|
||||
{
|
||||
CV_Assert(deviceInfo->_id >= 0 && deviceInfo->_id < (int)global_devices.size());
|
||||
CV_Assert(deviceInfo->_id >= 0); // we can't specify custom devices
|
||||
CV_Assert(deviceInfo->_id < (int)global_devices.size());
|
||||
|
||||
{
|
||||
cv::AutoLock lock(__module.currentContextMutex);
|
||||
cv::AutoLock lock(getCurrentContextMutex());
|
||||
if (currentContext)
|
||||
{
|
||||
if (currentContext->deviceInfo._id == deviceInfo->_id)
|
||||
if (currentContext->deviceInfoImpl._id == deviceInfo->_id)
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
DeviceInfoImpl& infoImpl = global_devices[deviceInfo->_id];
|
||||
CV_Assert(deviceInfo == &infoImpl.info);
|
||||
CV_Assert(deviceInfo == &infoImpl);
|
||||
|
||||
cl_int status = 0;
|
||||
cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM, (cl_context_properties)(infoImpl.platform_id), 0 };
|
||||
cl_context clContext = clCreateContext(cps, 1, &infoImpl.device_id, NULL, NULL, &status);
|
||||
openCLVerifyCall(status);
|
||||
#ifdef PRINT_KERNEL_RUN_TIME
|
||||
cl_command_queue clCmdQueue = clCreateCommandQueue(clContext, infoImpl.device_id, CL_QUEUE_PROFILING_ENABLE, &status);
|
||||
#else /*PRINT_KERNEL_RUN_TIME*/
|
||||
cl_command_queue clCmdQueue = clCreateCommandQueue(clContext, infoImpl.device_id, 0, &status);
|
||||
#endif /*PRINT_KERNEL_RUN_TIME*/
|
||||
|
||||
ContextImpl* ctx = new ContextImpl(infoImpl, clContext);
|
||||
clReleaseContext(clContext);
|
||||
(void)ctx;
|
||||
}
|
||||
|
||||
void ContextImpl::initializeContext(void* pClPlatform, void* pClContext, void* pClDevice)
|
||||
{
|
||||
CV_Assert(pClPlatform != NULL);
|
||||
CV_Assert(pClContext != NULL);
|
||||
CV_Assert(pClDevice != NULL);
|
||||
cl_platform_id platform = *(cl_platform_id*)pClPlatform;
|
||||
cl_context context = *(cl_context*)pClContext;
|
||||
cl_device_id device = *(cl_device_id*)pClDevice;
|
||||
|
||||
PlatformInfoImpl* platformInfoImpl = new PlatformInfoImpl();
|
||||
platformInfoImpl->init(-1, platform);
|
||||
DeviceInfoImpl* deviceInfoImpl = new DeviceInfoImpl();
|
||||
deviceInfoImpl->init(-1, *platformInfoImpl, device);
|
||||
|
||||
ContextImpl* ctx = new ContextImpl(*deviceInfoImpl, context);
|
||||
(void)ctx;
|
||||
}
|
||||
|
||||
void CommandQueue::create(ContextImpl* context)
|
||||
{
|
||||
release();
|
||||
cl_int status = 0;
|
||||
// TODO add CL_QUEUE_PROFILING_ENABLE
|
||||
cl_command_queue clCmdQueue = clCreateCommandQueue(context->clContext, context->clDeviceID, 0, &status);
|
||||
openCLVerifyCall(status);
|
||||
|
||||
ContextImpl* ctx = new ContextImpl(infoImpl.info, infoImpl.device_id);
|
||||
ctx->clCmdQueue = clCmdQueue;
|
||||
ctx->clContext = clContext;
|
||||
|
||||
ContextImpl* old = NULL;
|
||||
{
|
||||
cv::AutoLock lock(__module.currentContextMutex);
|
||||
old = currentContext;
|
||||
currentContext = ctx;
|
||||
}
|
||||
if (old != NULL)
|
||||
{
|
||||
delete old;
|
||||
}
|
||||
context_ = context;
|
||||
clQueue_ = clCmdQueue;
|
||||
}
|
||||
|
||||
int getOpenCLPlatforms(PlatformsInfo& platforms)
|
||||
@ -700,7 +822,7 @@ int getOpenCLPlatforms(PlatformsInfo& platforms)
|
||||
for (size_t id = 0; id < global_platforms.size(); ++id)
|
||||
{
|
||||
PlatformInfoImpl& impl = global_platforms[id];
|
||||
platforms.push_back(&impl.info);
|
||||
platforms.push_back(&impl);
|
||||
}
|
||||
|
||||
return platforms.size();
|
||||
@ -730,9 +852,9 @@ int getOpenCLDevices(std::vector<const DeviceInfo*> &devices, int deviceType, co
|
||||
for (size_t id = 0; id < global_devices.size(); ++id)
|
||||
{
|
||||
DeviceInfoImpl& deviceInfo = global_devices[id];
|
||||
if (((int)deviceInfo.info.deviceType & deviceType) != 0)
|
||||
if (((int)deviceInfo.deviceType & deviceType) != 0)
|
||||
{
|
||||
devices.push_back(&deviceInfo.info);
|
||||
devices.push_back(&deviceInfo);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -765,6 +887,20 @@ void setDevice(const DeviceInfo* info)
|
||||
}
|
||||
}
|
||||
|
||||
void initializeContext(void* pClPlatform, void* pClContext, void* pClDevice)
|
||||
{
|
||||
try
|
||||
{
|
||||
ContextImpl::initializeContext(pClPlatform, pClContext, pClDevice);
|
||||
__deviceSelected = true;
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
__deviceSelected = true;
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
bool supportsFeature(FEATURE_TYPE featureType)
|
||||
{
|
||||
return Context::getContext()->supportsFeature(featureType);
|
||||
|
@ -40,7 +40,7 @@
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "opencv2/core/opencl/runtime/opencl_core.hpp" // for OpenCL types: cl_mem
|
||||
#include "opencv2/core/opencl/runtime/opencl_core.hpp" // for OpenCL types & functions
|
||||
#include "opencv2/core/ocl.hpp"
|
||||
|
||||
TEST(TestAPI, openCLExecuteKernelInterop)
|
||||
@ -127,3 +127,87 @@ TEST(OCL_TestTAPI, performance)
|
||||
t = (double)cv::getTickCount() - t;
|
||||
printf("cpu exec time = %gms per iter\n", t*1000./niters/cv::getTickFrequency());
|
||||
}
|
||||
|
||||
// This test must be DISABLED by default!
|
||||
// (We can't restore original context for other tests)
|
||||
TEST(TestAPI, DISABLED_InitializationFromHandles)
|
||||
{
|
||||
#define MAX_PLATFORMS 16
|
||||
cl_platform_id platforms[MAX_PLATFORMS] = { NULL };
|
||||
cl_uint numPlatforms = 0;
|
||||
cl_int status = ::clGetPlatformIDs(MAX_PLATFORMS, &platforms[0], &numPlatforms);
|
||||
ASSERT_EQ(CL_SUCCESS, status) << "clGetPlatformIDs";
|
||||
ASSERT_NE(0, (int)numPlatforms);
|
||||
|
||||
int selectedPlatform = 0;
|
||||
cl_platform_id platform = platforms[selectedPlatform];
|
||||
|
||||
ASSERT_NE((void*)NULL, platform);
|
||||
|
||||
cl_device_id device = NULL;
|
||||
status = ::clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device, NULL);
|
||||
ASSERT_EQ(CL_SUCCESS, status) << "clGetDeviceIDs";
|
||||
ASSERT_NE((void*)NULL, device);
|
||||
|
||||
cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM, (cl_context_properties)(platform), 0 };
|
||||
cl_context context = ::clCreateContext(cps, 1, &device, NULL, NULL, &status);
|
||||
ASSERT_EQ(CL_SUCCESS, status) << "clCreateContext";
|
||||
ASSERT_NE((void*)NULL, context);
|
||||
|
||||
ASSERT_NO_THROW(cv::ocl::initializeContext(&platform, &context, &device));
|
||||
|
||||
status = ::clReleaseContext(context);
|
||||
ASSERT_EQ(CL_SUCCESS, status) << "clReleaseContext";
|
||||
|
||||
#ifdef CL_VERSION_1_2
|
||||
#if 1
|
||||
{
|
||||
cv::ocl::Context* ctx = cv::ocl::Context::getContext();
|
||||
ASSERT_NE((void*)NULL, ctx);
|
||||
if (ctx->supportsFeature(cv::ocl::FEATURE_CL_VER_1_2)) // device supports OpenCL 1.2+
|
||||
{
|
||||
status = ::clReleaseDevice(device);
|
||||
ASSERT_EQ(CL_SUCCESS, status) << "clReleaseDevice";
|
||||
}
|
||||
}
|
||||
#else // code below doesn't work on Linux (SEGFAULTs on 1.1- devices are not handled via exceptions)
|
||||
try
|
||||
{
|
||||
status = ::clReleaseDevice(device); // NOTE This works only with !DEVICES! that supports OpenCL 1.2
|
||||
(void)status; // no check
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
// nothing, there is no problem
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// print the name of current device
|
||||
cv::ocl::Context* ctx = cv::ocl::Context::getContext();
|
||||
ASSERT_NE((void*)NULL, ctx);
|
||||
const cv::ocl::DeviceInfo& deviceInfo = ctx->getDeviceInfo();
|
||||
std::cout << "Device name: " << deviceInfo.deviceName << std::endl;
|
||||
std::cout << "Platform name: " << deviceInfo.platform->platformName << std::endl;
|
||||
|
||||
ASSERT_EQ(context, *(cl_context*)ctx->getOpenCLContextPtr());
|
||||
ASSERT_EQ(device, *(cl_device_id*)ctx->getOpenCLDeviceIDPtr());
|
||||
|
||||
// do some calculations and check results
|
||||
cv::RNG rng;
|
||||
Size sz(100, 100);
|
||||
cv::Mat srcMat = cvtest::randomMat(rng, sz, CV_32FC4, -10, 10, false);
|
||||
cv::Mat dstMat;
|
||||
|
||||
cv::ocl::oclMat srcGpuMat(srcMat);
|
||||
cv::ocl::oclMat dstGpuMat;
|
||||
|
||||
cv::Scalar v = cv::Scalar::all(1);
|
||||
cv::add(srcMat, v, dstMat);
|
||||
cv::ocl::add(srcGpuMat, v, dstGpuMat);
|
||||
|
||||
cv::Mat dstGpuMatMap;
|
||||
dstGpuMat.download(dstGpuMatMap);
|
||||
|
||||
EXPECT_LE(checkNorm(dstMat, dstGpuMatMap), 1e-3);
|
||||
}
|
||||
|
@ -46,7 +46,7 @@ int main(int argc, char** argv)
|
||||
const char* algorithm_opt = "--algorithm=";
|
||||
const char* maxdisp_opt = "--max-disparity=";
|
||||
const char* blocksize_opt = "--blocksize=";
|
||||
const char* nodisplay_opt = "--no-display=";
|
||||
const char* nodisplay_opt = "--no-display";
|
||||
const char* scale_opt = "--scale=";
|
||||
|
||||
if(argc < 3)
|
||||
|
9
samples/java/clojure/simple-sample/.gitignore
vendored
Normal file
9
samples/java/clojure/simple-sample/.gitignore
vendored
Normal file
@ -0,0 +1,9 @@
|
||||
/target
|
||||
/classes
|
||||
/checkouts
|
||||
pom.xml
|
||||
pom.xml.asc
|
||||
*.jar
|
||||
*.class
|
||||
/.lein-*
|
||||
/.nrepl-port
|
14
samples/java/clojure/simple-sample/project.clj
Normal file
14
samples/java/clojure/simple-sample/project.clj
Normal file
@ -0,0 +1,14 @@
|
||||
(defproject simple-sample "0.1.0-SNAPSHOT"
|
||||
:pom-addition [:developers [:developer {:id "magomimmo"}
|
||||
[:name "Mimmo Cosenza"]
|
||||
[:url "https://github.com/magomimmoo"]]]
|
||||
|
||||
:description "A simple project to start REPLing with OpenCV"
|
||||
:url "http://example.com/FIXME"
|
||||
:license {:name "BSD 3-Clause License"
|
||||
:url "http://opensource.org/licenses/BSD-3-Clause"}
|
||||
:dependencies [[org.clojure/clojure "1.5.1"]
|
||||
[opencv/opencv "2.4.7"]
|
||||
[opencv/opencv-native "2.4.7"]]
|
||||
:main simple-sample.core
|
||||
:injections [(clojure.lang.RT/loadLibrary org.opencv.core.Core/NATIVE_LIBRARY_NAME)])
|
BIN
samples/java/clojure/simple-sample/resources/images/lena.png
Normal file
BIN
samples/java/clojure/simple-sample/resources/images/lena.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 606 KiB |
@ -0,0 +1,16 @@
|
||||
;;; to run this code from the terminal: "$ lein run". It will save a
|
||||
;;; blurred image version of resources/images/lena.png as
|
||||
;;; resources/images/blurred.png
|
||||
|
||||
(ns simple-sample.core
|
||||
(:import [org.opencv.core Point Rect Mat CvType Size Scalar]
|
||||
org.opencv.highgui.Highgui
|
||||
org.opencv.imgproc.Imgproc))
|
||||
|
||||
(defn -main [& args]
|
||||
(let [lena (Highgui/imread "resources/images/lena.png")
|
||||
blurred (Mat. 512 512 CvType/CV_8UC3)]
|
||||
(print "Blurring...")
|
||||
(Imgproc/GaussianBlur lena blurred (Size. 5 5) 3 3)
|
||||
(Highgui/imwrite "resources/images/blurred.png" blurred)
|
||||
(println "done!")))
|
@ -0,0 +1,7 @@
|
||||
(ns simple-sample.core-test
|
||||
(:require [clojure.test :refer :all]
|
||||
[simple-sample.core :refer :all]))
|
||||
|
||||
(deftest a-test
|
||||
(testing "FIXME, I fail."
|
||||
(is (= 0 1))))
|
Loading…
Reference in New Issue
Block a user