removed duplicated data for samples (it is now in samples/cpp)
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 254 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 108 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 25 KiB |
@ -1,221 +0,0 @@
|
||||
//
|
||||
// The full "Square Detector" program.
|
||||
// It loads several images subsequentally and tries to find squares in
|
||||
// each image
|
||||
//
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
|
||||
int thresh = 50;
|
||||
IplImage* img = 0;
|
||||
IplImage* img0 = 0;
|
||||
CvMemStorage* storage = 0;
|
||||
const char* wndname = "Square Detection Demo";
|
||||
|
||||
// helper function:
|
||||
// finds a cosine of angle between vectors
|
||||
// from pt0->pt1 and from pt0->pt2
|
||||
double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 )
|
||||
{
|
||||
double dx1 = pt1->x - pt0->x;
|
||||
double dy1 = pt1->y - pt0->y;
|
||||
double dx2 = pt2->x - pt0->x;
|
||||
double dy2 = pt2->y - pt0->y;
|
||||
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
|
||||
}
|
||||
|
||||
// returns sequence of squares detected on the image.
|
||||
// the sequence is stored in the specified memory storage
|
||||
CvSeq* findSquares4( IplImage* img, CvMemStorage* storage )
|
||||
{
|
||||
CvSeq* contours;
|
||||
int i, c, l, N = 11;
|
||||
CvSize sz = cvSize( img->width & -2, img->height & -2 );
|
||||
IplImage* timg = cvCloneImage( img ); // make a copy of input image
|
||||
IplImage* gray = cvCreateImage( sz, 8, 1 );
|
||||
IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );
|
||||
IplImage* tgray;
|
||||
CvSeq* result;
|
||||
double s, t;
|
||||
// create empty sequence that will contain points -
|
||||
// 4 points per square (the square's vertices)
|
||||
CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage );
|
||||
// select the maximum ROI in the image
|
||||
// with the width and height divisible by 2
|
||||
cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height ));
|
||||
|
||||
// down-scale and upscale the image to filter out the noise
|
||||
cvPyrDown( timg, pyr, 7 );
|
||||
cvPyrUp( pyr, timg, 7 );
|
||||
tgray = cvCreateImage( sz, 8, 1 );
|
||||
|
||||
// find squares in every color plane of the image
|
||||
for( c = 0; c < 3; c++ )
|
||||
{
|
||||
// extract the c-th color plane
|
||||
cvSetImageCOI( timg, c+1 );
|
||||
cvCopy( timg, tgray, 0 );
|
||||
|
||||
// try several threshold levels
|
||||
for( l = 0; l < N; l++ )
|
||||
{
|
||||
// hack: use Canny instead of zero threshold level.
|
||||
// Canny helps to catch squares with gradient shading
|
||||
if( l == 0 )
|
||||
{
|
||||
// apply Canny. Take the upper threshold from slider
|
||||
// and set the lower to 0 (which forces edges merging)
|
||||
cvCanny( tgray, gray, 0, thresh, 5 );
|
||||
// dilate canny output to remove potential
|
||||
// holes between edge segments
|
||||
cvDilate( gray, gray, 0, 1 );
|
||||
}
|
||||
else
|
||||
{
|
||||
// apply threshold if l!=0:
|
||||
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
|
||||
cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY );
|
||||
}
|
||||
|
||||
// find contours and store them all as a list
|
||||
cvFindContours( gray, storage, &contours, sizeof(CvContour),
|
||||
CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );
|
||||
|
||||
// test each contour
|
||||
while( contours )
|
||||
{
|
||||
// approximate contour with accuracy proportional
|
||||
// to the contour perimeter
|
||||
result = cvApproxPoly( contours, sizeof(CvContour), storage,
|
||||
CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 );
|
||||
// square contours should have 4 vertices after approximation
|
||||
// relatively large area (to filter out noisy contours)
|
||||
// and be convex.
|
||||
// Note: absolute value of an area is used because
|
||||
// area may be positive or negative - in accordance with the
|
||||
// contour orientation
|
||||
if( result->total == 4 &&
|
||||
cvContourArea(result,CV_WHOLE_SEQ,0) > 1000 &&
|
||||
cvCheckContourConvexity(result) )
|
||||
{
|
||||
s = 0;
|
||||
|
||||
for( i = 0; i < 5; i++ )
|
||||
{
|
||||
// find minimum angle between joint
|
||||
// edges (maximum of cosine)
|
||||
if( i >= 2 )
|
||||
{
|
||||
t = fabs(angle(
|
||||
(CvPoint*)cvGetSeqElem( result, i ),
|
||||
(CvPoint*)cvGetSeqElem( result, i-2 ),
|
||||
(CvPoint*)cvGetSeqElem( result, i-1 )));
|
||||
s = s > t ? s : t;
|
||||
}
|
||||
}
|
||||
|
||||
// if cosines of all angles are small
|
||||
// (all angles are ~90 degree) then write quandrange
|
||||
// vertices to resultant sequence
|
||||
if( s < 0.3 )
|
||||
for( i = 0; i < 4; i++ )
|
||||
cvSeqPush( squares,
|
||||
(CvPoint*)cvGetSeqElem( result, i ));
|
||||
}
|
||||
|
||||
// take the next contour
|
||||
contours = contours->h_next;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// release all the temporary images
|
||||
cvReleaseImage( &gray );
|
||||
cvReleaseImage( &pyr );
|
||||
cvReleaseImage( &tgray );
|
||||
cvReleaseImage( &timg );
|
||||
|
||||
return squares;
|
||||
}
|
||||
|
||||
|
||||
// the function draws all the squares in the image
|
||||
void drawSquares( IplImage* img, CvSeq* squares )
|
||||
{
|
||||
CvSeqReader reader;
|
||||
IplImage* cpy = cvCloneImage( img );
|
||||
int i;
|
||||
|
||||
// initialize reader of the sequence
|
||||
cvStartReadSeq( squares, &reader, 0 );
|
||||
|
||||
// read 4 sequence elements at a time (all vertices of a square)
|
||||
for( i = 0; i < squares->total; i += 4 )
|
||||
{
|
||||
CvPoint pt[4], *rect = pt;
|
||||
int count = 4;
|
||||
|
||||
// read 4 vertices
|
||||
CV_READ_SEQ_ELEM( pt[0], reader );
|
||||
CV_READ_SEQ_ELEM( pt[1], reader );
|
||||
CV_READ_SEQ_ELEM( pt[2], reader );
|
||||
CV_READ_SEQ_ELEM( pt[3], reader );
|
||||
|
||||
// draw the square as a closed polyline
|
||||
cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
|
||||
}
|
||||
|
||||
// show the resultant image
|
||||
cvShowImage( wndname, cpy );
|
||||
cvReleaseImage( &cpy );
|
||||
}
|
||||
|
||||
|
||||
char* names[] = { "pic1.png", "pic2.png", "pic3.png",
|
||||
"pic4.png", "pic5.png", "pic6.png", 0 };
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
int i, c;
|
||||
// create memory storage that will contain all the dynamic data
|
||||
storage = cvCreateMemStorage(0);
|
||||
|
||||
for( i = 0; names[i] != 0; i++ )
|
||||
{
|
||||
// load i-th image
|
||||
img0 = cvLoadImage( names[i], 1 );
|
||||
if( !img0 )
|
||||
{
|
||||
printf("Couldn't load %s\n", names[i] );
|
||||
continue;
|
||||
}
|
||||
img = cvCloneImage( img0 );
|
||||
|
||||
// create window and a trackbar (slider) with parent "image" and set callback
|
||||
// (the slider regulates upper threshold, passed to Canny edge detector)
|
||||
cvNamedWindow( wndname, 1 );
|
||||
|
||||
// find and draw the squares
|
||||
drawSquares( img, findSquares4( img, storage ) );
|
||||
|
||||
// wait for key.
|
||||
// Also the function cvWaitKey takes care of event processing
|
||||
c = cvWaitKey(0);
|
||||
// release both images
|
||||
cvReleaseImage( &img );
|
||||
cvReleaseImage( &img0 );
|
||||
// clear memory storage - reset free space position
|
||||
cvClearMemStorage( storage );
|
||||
if( (char)c == 27 )
|
||||
break;
|
||||
}
|
||||
|
||||
cvDestroyWindow( wndname );
|
||||
|
||||
cvReleaseMemStorage(&storage);
|
||||
|
||||
return 0;
|
||||
}
|