mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 15:04:01 +08:00
Merge pull request #24084 from asmorkalov:as/stereoRectify
Finalize calib3d module split for fisheye part
This commit is contained in:
commit
9ddf1e5c77
@ -2481,6 +2481,130 @@ void undistortImagePoints(InputArray src, OutputArray dst, InputArray cameraMatr
|
||||
InputArray distCoeffs,
|
||||
TermCriteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 0.01));
|
||||
|
||||
namespace fisheye {
|
||||
|
||||
/** @brief Projects points using fisheye model
|
||||
|
||||
@param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
|
||||
the number of points in the view.
|
||||
@param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
|
||||
vector\<Point2f\>.
|
||||
@param affine
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param alpha The skew coefficient.
|
||||
@param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
|
||||
to components of the focal lengths, coordinates of the principal point, distortion coefficients,
|
||||
rotation vector, translation vector, and the skew. In the old interface different components of
|
||||
the jacobian are returned via different output parameters.
|
||||
|
||||
The function computes projections of 3D points to the image plane given intrinsic and extrinsic
|
||||
camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
|
||||
image points coordinates (as functions of all the input parameters) with respect to the particular
|
||||
parameters, intrinsic and/or extrinsic.
|
||||
*/
|
||||
CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
|
||||
InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
|
||||
|
||||
/** @overload */
|
||||
CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
|
||||
InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
|
||||
|
||||
/** @brief Distorts 2D points using fisheye model.
|
||||
|
||||
@param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
|
||||
the number of points in the view.
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param alpha The skew coefficient.
|
||||
@param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
|
||||
|
||||
Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
|
||||
This means if you want to distort image points you have to multiply them with \f$K^{-1}\f$.
|
||||
*/
|
||||
CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
|
||||
|
||||
/** @brief Undistorts 2D points using fisheye model
|
||||
|
||||
@param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
|
||||
number of points in the view.
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
|
||||
1-channel or 1x1 3-channel
|
||||
@param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
|
||||
@param criteria Termination criteria
|
||||
@param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
|
||||
*/
|
||||
CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
|
||||
InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray(),
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8));
|
||||
|
||||
/** @brief Estimates new camera intrinsic matrix for undistortion or rectification.
|
||||
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param image_size Size of the image
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
|
||||
1-channel or 1x1 3-channel
|
||||
@param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
|
||||
@param balance Sets the new focal length in range between the min focal length and the max focal
|
||||
length. Balance is in range of [0, 1].
|
||||
@param new_size the new size
|
||||
@param fov_scale Divisor for new focal length.
|
||||
*/
|
||||
CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
|
||||
OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
|
||||
|
||||
/** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
|
||||
distortion is used, if R or P is empty identity matrixes are used.
|
||||
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
|
||||
1-channel or 1x1 3-channel
|
||||
@param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
|
||||
@param size Undistorted image size.
|
||||
@param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
|
||||
for details.
|
||||
@param map1 The first output map.
|
||||
@param map2 The second output map.
|
||||
*/
|
||||
CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
|
||||
const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
|
||||
|
||||
/** @brief Transforms an image to compensate for fisheye lens distortion.
|
||||
|
||||
@param distorted image with fisheye lens distortion.
|
||||
@param undistorted Output image with compensated fisheye lens distortion.
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param Knew Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
|
||||
may additionally scale and shift the result by using a different matrix.
|
||||
@param new_size the new size
|
||||
|
||||
The function transforms an image to compensate radial and tangential lens distortion.
|
||||
|
||||
The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap
|
||||
(with bilinear interpolation). See the former function for details of the transformation being
|
||||
performed.
|
||||
|
||||
See below the results of undistortImage.
|
||||
- a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
|
||||
k_4, k_5, k_6) of distortion were optimized under calibration)
|
||||
- b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
|
||||
k_3, k_4) of fisheye distortion were optimized under calibration)
|
||||
- c\) original image was captured with fisheye lens
|
||||
|
||||
Pictures a) and b) almost the same. But if we consider points of image located far from the center
|
||||
of image, we can notice that on image a) these points are distorted.
|
||||
|
||||
![image](pics/fisheye_undistorted.jpg)
|
||||
*/
|
||||
CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
|
||||
InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
|
||||
|
||||
} // namespace fisheye
|
||||
|
||||
/** @brief Octree for 3D vision.
|
||||
*
|
||||
|
@ -1,4 +1,7 @@
|
||||
{
|
||||
"namespaces_dict": {
|
||||
"cv.fisheye": "fisheye"
|
||||
},
|
||||
"func_arg_fix" : {
|
||||
"findFundamentalMat" : { "points1" : {"ctype" : "vector_Point2f"},
|
||||
"points2" : {"ctype" : "vector_Point2f"} },
|
||||
|
@ -556,4 +556,30 @@ public class Cv3dTest extends OpenCVTestCase {
|
||||
}
|
||||
}
|
||||
|
||||
public void testEstimateNewCameraMatrixForUndistortRectify() {
|
||||
Mat K = new Mat().eye(3, 3, CvType.CV_64FC1);
|
||||
Mat K_new = new Mat().eye(3, 3, CvType.CV_64FC1);
|
||||
Mat K_new_truth = new Mat().eye(3, 3, CvType.CV_64FC1);
|
||||
Mat D = new Mat().zeros(4, 1, CvType.CV_64FC1);
|
||||
|
||||
K.put(0,0,600.4447738238429);
|
||||
K.put(1,1,578.9929805505851);
|
||||
K.put(0,2,992.0642578801213);
|
||||
K.put(1,2,549.2682624212172);
|
||||
|
||||
D.put(0,0,-0.05090103223466704);
|
||||
D.put(1,0,0.030944413642173308);
|
||||
D.put(2,0,-0.021509225493198905);
|
||||
D.put(3,0,0.0043378096628297145);
|
||||
|
||||
K_new_truth.put(0,0, 387.5118215642316);
|
||||
K_new_truth.put(0,2, 1033.936556777084);
|
||||
K_new_truth.put(1,1, 373.6673784974842);
|
||||
K_new_truth.put(1,2, 538.794152656429);
|
||||
|
||||
Cv3d.fisheye_estimateNewCameraMatrixForUndistortRectify(K,D,new Size(1920,1080),
|
||||
new Mat().eye(3, 3, CvType.CV_64F), K_new, 0.0, new Size(1920,1080));
|
||||
|
||||
assertMatEqual(K_new, K_new_truth, EPS);
|
||||
}
|
||||
}
|
||||
|
@ -27,4 +27,36 @@ PERF_TEST(Undistort, DISABLED_InitInverseRectificationMap)
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
PERF_TEST(Undistort, fisheye_undistortPoints_100k_10iter)
|
||||
{
|
||||
const int pointsNumber = 100000;
|
||||
const Size imageSize(1280, 800);
|
||||
|
||||
/* Set camera matrix */
|
||||
const Matx33d K(558.478087865323, 0, 620.458515360843,
|
||||
0, 560.506767351568, 381.939424848348,
|
||||
0, 0, 1);
|
||||
|
||||
/* Set distortion coefficients */
|
||||
const Matx14d D(2.81e-06, 1.31e-06, -4.42e-06, -1.25e-06);
|
||||
|
||||
/* Create two-channel points matrix */
|
||||
Mat xy[2] = {};
|
||||
xy[0].create(pointsNumber, 1, CV_64F);
|
||||
theRNG().fill(xy[0], RNG::UNIFORM, 0, imageSize.width); // x
|
||||
xy[1].create(pointsNumber, 1, CV_64F);
|
||||
theRNG().fill(xy[1], RNG::UNIFORM, 0, imageSize.height); // y
|
||||
|
||||
Mat points;
|
||||
merge(xy, 2, points);
|
||||
|
||||
/* Set fixed iteration number to check only c++ code, not algo convergence */
|
||||
TermCriteria termCriteria(TermCriteria::MAX_ITER, 10, 0);
|
||||
|
||||
Mat undistortedPoints;
|
||||
TEST_CYCLE() fisheye::undistortPoints(points, undistortedPoints, K, D, noArray(), noArray(), termCriteria);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
596
modules/3d/src/fisheye.cpp
Normal file
596
modules/3d/src/fisheye.cpp
Normal file
@ -0,0 +1,596 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace cv {
|
||||
|
||||
struct JacobianRow
|
||||
{
|
||||
Vec2d df, dc;
|
||||
Vec4d dk;
|
||||
Vec3d dom, dT;
|
||||
double dalpha;
|
||||
};
|
||||
|
||||
void cv::fisheye::projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
|
||||
InputArray K, InputArray D, double alpha, OutputArray jacobian)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
projectPoints(objectPoints, imagePoints, affine.rvec(), affine.translation(), K, D, alpha, jacobian);
|
||||
}
|
||||
|
||||
void cv::fisheye::projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray _rvec,
|
||||
InputArray _tvec, InputArray _K, InputArray _D, double alpha, OutputArray jacobian)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
// will support only 3-channel data now for points
|
||||
CV_Assert(objectPoints.type() == CV_32FC3 || objectPoints.type() == CV_64FC3);
|
||||
imagePoints.create(objectPoints.size(), CV_MAKETYPE(objectPoints.depth(), 2));
|
||||
size_t n = objectPoints.total();
|
||||
|
||||
CV_Assert(_rvec.total() * _rvec.channels() == 3 && (_rvec.depth() == CV_32F || _rvec.depth() == CV_64F));
|
||||
CV_Assert(_tvec.total() * _tvec.channels() == 3 && (_tvec.depth() == CV_32F || _tvec.depth() == CV_64F));
|
||||
CV_Assert(_tvec.getMat().isContinuous() && _rvec.getMat().isContinuous());
|
||||
|
||||
Vec3d om = _rvec.depth() == CV_32F ? (Vec3d)*_rvec.getMat().ptr<Vec3f>() : *_rvec.getMat().ptr<Vec3d>();
|
||||
Vec3d T = _tvec.depth() == CV_32F ? (Vec3d)*_tvec.getMat().ptr<Vec3f>() : *_tvec.getMat().ptr<Vec3d>();
|
||||
|
||||
CV_Assert(_K.size() == Size(3,3) && (_K.type() == CV_32F || _K.type() == CV_64F) && _D.type() == _K.type() && _D.total() == 4);
|
||||
|
||||
Vec2d f, c;
|
||||
if (_K.depth() == CV_32F)
|
||||
{
|
||||
|
||||
Matx33f K = _K.getMat();
|
||||
f = Vec2f(K(0, 0), K(1, 1));
|
||||
c = Vec2f(K(0, 2), K(1, 2));
|
||||
}
|
||||
else
|
||||
{
|
||||
Matx33d K = _K.getMat();
|
||||
f = Vec2d(K(0, 0), K(1, 1));
|
||||
c = Vec2d(K(0, 2), K(1, 2));
|
||||
}
|
||||
|
||||
Vec4d k = _D.depth() == CV_32F ? (Vec4d)*_D.getMat().ptr<Vec4f>(): *_D.getMat().ptr<Vec4d>();
|
||||
|
||||
const bool isJacobianNeeded = jacobian.needed();
|
||||
JacobianRow *Jn = 0;
|
||||
if (isJacobianNeeded)
|
||||
{
|
||||
int nvars = 2 + 2 + 1 + 4 + 3 + 3; // f, c, alpha, k, om, T,
|
||||
jacobian.create(2*(int)n, nvars, CV_64F);
|
||||
Jn = jacobian.getMat().ptr<JacobianRow>(0);
|
||||
}
|
||||
|
||||
Matx33d R;
|
||||
Matx<double, 3, 9> dRdom;
|
||||
Rodrigues(om, R, dRdom);
|
||||
Affine3d aff(om, T);
|
||||
|
||||
const Vec3f* Xf = objectPoints.getMat().ptr<Vec3f>();
|
||||
const Vec3d* Xd = objectPoints.getMat().ptr<Vec3d>();
|
||||
Vec2f *xpf = imagePoints.getMat().ptr<Vec2f>();
|
||||
Vec2d *xpd = imagePoints.getMat().ptr<Vec2d>();
|
||||
|
||||
for(size_t i = 0; i < n; ++i)
|
||||
{
|
||||
Vec3d Xi = objectPoints.depth() == CV_32F ? (Vec3d)Xf[i] : Xd[i];
|
||||
Vec3d Y = aff*Xi;
|
||||
if (fabs(Y[2]) < DBL_MIN)
|
||||
Y[2] = 1;
|
||||
Vec2d x(Y[0]/Y[2], Y[1]/Y[2]);
|
||||
|
||||
double r2 = x.dot(x);
|
||||
double r = std::sqrt(r2);
|
||||
|
||||
// Angle of the incoming ray:
|
||||
double theta = std::atan(r);
|
||||
|
||||
double theta2 = theta*theta, theta3 = theta2*theta, theta4 = theta2*theta2, theta5 = theta4*theta,
|
||||
theta6 = theta3*theta3, theta7 = theta6*theta, theta8 = theta4*theta4, theta9 = theta8*theta;
|
||||
|
||||
double theta_d = theta + k[0]*theta3 + k[1]*theta5 + k[2]*theta7 + k[3]*theta9;
|
||||
|
||||
double inv_r = r > 1e-8 ? 1.0/r : 1;
|
||||
double cdist = r > 1e-8 ? theta_d * inv_r : 1;
|
||||
|
||||
Vec2d xd1 = x * cdist;
|
||||
Vec2d xd3(xd1[0] + alpha*xd1[1], xd1[1]);
|
||||
Vec2d final_point(xd3[0] * f[0] + c[0], xd3[1] * f[1] + c[1]);
|
||||
|
||||
if (objectPoints.depth() == CV_32F)
|
||||
xpf[i] = final_point;
|
||||
else
|
||||
xpd[i] = final_point;
|
||||
|
||||
if (isJacobianNeeded)
|
||||
{
|
||||
//Vec3d Xi = pdepth == CV_32F ? (Vec3d)Xf[i] : Xd[i];
|
||||
//Vec3d Y = aff*Xi;
|
||||
double dYdR[] = { Xi[0], Xi[1], Xi[2], 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, Xi[0], Xi[1], Xi[2], 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, Xi[0], Xi[1], Xi[2] };
|
||||
|
||||
Matx33d dYdom_data = Matx<double, 3, 9>(dYdR) * dRdom.t();
|
||||
const Vec3d *dYdom = (Vec3d*)dYdom_data.val;
|
||||
|
||||
Matx33d dYdT_data = Matx33d::eye();
|
||||
const Vec3d *dYdT = (Vec3d*)dYdT_data.val;
|
||||
|
||||
//Vec2d x(Y[0]/Y[2], Y[1]/Y[2]);
|
||||
Vec3d dxdom[2];
|
||||
dxdom[0] = (1.0/Y[2]) * dYdom[0] - x[0]/Y[2] * dYdom[2];
|
||||
dxdom[1] = (1.0/Y[2]) * dYdom[1] - x[1]/Y[2] * dYdom[2];
|
||||
|
||||
Vec3d dxdT[2];
|
||||
dxdT[0] = (1.0/Y[2]) * dYdT[0] - x[0]/Y[2] * dYdT[2];
|
||||
dxdT[1] = (1.0/Y[2]) * dYdT[1] - x[1]/Y[2] * dYdT[2];
|
||||
|
||||
//double r2 = x.dot(x);
|
||||
Vec3d dr2dom = 2 * x[0] * dxdom[0] + 2 * x[1] * dxdom[1];
|
||||
Vec3d dr2dT = 2 * x[0] * dxdT[0] + 2 * x[1] * dxdT[1];
|
||||
|
||||
//double r = std::sqrt(r2);
|
||||
double drdr2 = r > 1e-8 ? 1.0/(2*r) : 1;
|
||||
Vec3d drdom = drdr2 * dr2dom;
|
||||
Vec3d drdT = drdr2 * dr2dT;
|
||||
|
||||
// Angle of the incoming ray:
|
||||
//double theta = atan(r);
|
||||
double dthetadr = 1.0/(1+r2);
|
||||
Vec3d dthetadom = dthetadr * drdom;
|
||||
Vec3d dthetadT = dthetadr * drdT;
|
||||
|
||||
//double theta_d = theta + k[0]*theta3 + k[1]*theta5 + k[2]*theta7 + k[3]*theta9;
|
||||
double dtheta_ddtheta = 1 + 3*k[0]*theta2 + 5*k[1]*theta4 + 7*k[2]*theta6 + 9*k[3]*theta8;
|
||||
Vec3d dtheta_ddom = dtheta_ddtheta * dthetadom;
|
||||
Vec3d dtheta_ddT = dtheta_ddtheta * dthetadT;
|
||||
Vec4d dtheta_ddk = Vec4d(theta3, theta5, theta7, theta9);
|
||||
|
||||
//double inv_r = r > 1e-8 ? 1.0/r : 1;
|
||||
//double cdist = r > 1e-8 ? theta_d / r : 1;
|
||||
Vec3d dcdistdom = inv_r * (dtheta_ddom - cdist*drdom);
|
||||
Vec3d dcdistdT = inv_r * (dtheta_ddT - cdist*drdT);
|
||||
Vec4d dcdistdk = inv_r * dtheta_ddk;
|
||||
|
||||
//Vec2d xd1 = x * cdist;
|
||||
Vec4d dxd1dk[2];
|
||||
Vec3d dxd1dom[2], dxd1dT[2];
|
||||
dxd1dom[0] = x[0] * dcdistdom + cdist * dxdom[0];
|
||||
dxd1dom[1] = x[1] * dcdistdom + cdist * dxdom[1];
|
||||
dxd1dT[0] = x[0] * dcdistdT + cdist * dxdT[0];
|
||||
dxd1dT[1] = x[1] * dcdistdT + cdist * dxdT[1];
|
||||
dxd1dk[0] = x[0] * dcdistdk;
|
||||
dxd1dk[1] = x[1] * dcdistdk;
|
||||
|
||||
//Vec2d xd3(xd1[0] + alpha*xd1[1], xd1[1]);
|
||||
Vec4d dxd3dk[2];
|
||||
Vec3d dxd3dom[2], dxd3dT[2];
|
||||
dxd3dom[0] = dxd1dom[0] + alpha * dxd1dom[1];
|
||||
dxd3dom[1] = dxd1dom[1];
|
||||
dxd3dT[0] = dxd1dT[0] + alpha * dxd1dT[1];
|
||||
dxd3dT[1] = dxd1dT[1];
|
||||
dxd3dk[0] = dxd1dk[0] + alpha * dxd1dk[1];
|
||||
dxd3dk[1] = dxd1dk[1];
|
||||
|
||||
Vec2d dxd3dalpha(xd1[1], 0);
|
||||
|
||||
//final jacobian
|
||||
Jn[0].dom = f[0] * dxd3dom[0];
|
||||
Jn[1].dom = f[1] * dxd3dom[1];
|
||||
|
||||
Jn[0].dT = f[0] * dxd3dT[0];
|
||||
Jn[1].dT = f[1] * dxd3dT[1];
|
||||
|
||||
Jn[0].dk = f[0] * dxd3dk[0];
|
||||
Jn[1].dk = f[1] * dxd3dk[1];
|
||||
|
||||
Jn[0].dalpha = f[0] * dxd3dalpha[0];
|
||||
Jn[1].dalpha = 0; //f[1] * dxd3dalpha[1];
|
||||
|
||||
Jn[0].df = Vec2d(xd3[0], 0);
|
||||
Jn[1].df = Vec2d(0, xd3[1]);
|
||||
|
||||
Jn[0].dc = Vec2d(1, 0);
|
||||
Jn[1].dc = Vec2d(0, 1);
|
||||
|
||||
//step to jacobian rows for next point
|
||||
Jn += 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fisheye::distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
// will support only 2-channel data now for points
|
||||
CV_Assert(undistorted.type() == CV_32FC2 || undistorted.type() == CV_64FC2);
|
||||
distorted.create(undistorted.size(), undistorted.type());
|
||||
size_t n = undistorted.total();
|
||||
|
||||
CV_Assert(K.size() == Size(3,3) && (K.type() == CV_32F || K.type() == CV_64F) && D.total() == 4);
|
||||
|
||||
Vec2d f, c;
|
||||
if (K.depth() == CV_32F)
|
||||
{
|
||||
Matx33f camMat = K.getMat();
|
||||
f = Vec2f(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2f(camMat(0, 2), camMat(1, 2));
|
||||
}
|
||||
else
|
||||
{
|
||||
Matx33d camMat = K.getMat();
|
||||
f = Vec2d(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2d(camMat(0 ,2), camMat(1, 2));
|
||||
}
|
||||
|
||||
Vec4d k = D.depth() == CV_32F ? (Vec4d)*D.getMat().ptr<Vec4f>(): *D.getMat().ptr<Vec4d>();
|
||||
|
||||
const Vec2f* Xf = undistorted.getMat().ptr<Vec2f>();
|
||||
const Vec2d* Xd = undistorted.getMat().ptr<Vec2d>();
|
||||
Vec2f *xpf = distorted.getMat().ptr<Vec2f>();
|
||||
Vec2d *xpd = distorted.getMat().ptr<Vec2d>();
|
||||
|
||||
for(size_t i = 0; i < n; ++i)
|
||||
{
|
||||
Vec2d x = undistorted.depth() == CV_32F ? (Vec2d)Xf[i] : Xd[i];
|
||||
|
||||
double r2 = x.dot(x);
|
||||
double r = std::sqrt(r2);
|
||||
|
||||
// Angle of the incoming ray:
|
||||
double theta = std::atan(r);
|
||||
|
||||
double theta2 = theta*theta, theta3 = theta2*theta, theta4 = theta2*theta2, theta5 = theta4*theta,
|
||||
theta6 = theta3*theta3, theta7 = theta6*theta, theta8 = theta4*theta4, theta9 = theta8*theta;
|
||||
|
||||
double theta_d = theta + k[0]*theta3 + k[1]*theta5 + k[2]*theta7 + k[3]*theta9;
|
||||
|
||||
double inv_r = r > 1e-8 ? 1.0/r : 1;
|
||||
double cdist = r > 1e-8 ? theta_d * inv_r : 1;
|
||||
|
||||
Vec2d xd1 = x * cdist;
|
||||
Vec2d xd3(xd1[0] + alpha*xd1[1], xd1[1]);
|
||||
Vec2d final_point(xd3[0] * f[0] + c[0], xd3[1] * f[1] + c[1]);
|
||||
|
||||
if (undistorted.depth() == CV_32F)
|
||||
xpf[i] = final_point;
|
||||
else
|
||||
xpd[i] = final_point;
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fisheye::undistortPoints( InputArray distorted, OutputArray undistorted, InputArray K, InputArray D,
|
||||
InputArray R, InputArray P, TermCriteria criteria)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
// will support only 2-channel data now for points
|
||||
CV_Assert(distorted.type() == CV_32FC2 || distorted.type() == CV_64FC2);
|
||||
undistorted.create(distorted.size(), distorted.type());
|
||||
|
||||
CV_Assert(P.empty() || P.size() == Size(3, 3) || P.size() == Size(4, 3));
|
||||
CV_Assert(R.empty() || R.size() == Size(3, 3) || R.total() * R.channels() == 3);
|
||||
CV_Assert(D.total() == 4 && K.size() == Size(3, 3) && (K.depth() == CV_32F || K.depth() == CV_64F));
|
||||
|
||||
CV_Assert(criteria.isValid());
|
||||
|
||||
Vec2d f, c;
|
||||
if (K.depth() == CV_32F)
|
||||
{
|
||||
Matx33f camMat = K.getMat();
|
||||
f = Vec2f(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2f(camMat(0, 2), camMat(1, 2));
|
||||
}
|
||||
else
|
||||
{
|
||||
Matx33d camMat = K.getMat();
|
||||
f = Vec2d(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2d(camMat(0, 2), camMat(1, 2));
|
||||
}
|
||||
|
||||
Vec4d k = D.depth() == CV_32F ? (Vec4d)*D.getMat().ptr<Vec4f>(): *D.getMat().ptr<Vec4d>();
|
||||
|
||||
Matx33d RR = Matx33d::eye();
|
||||
if (!R.empty() && R.total() * R.channels() == 3)
|
||||
{
|
||||
Vec3d rvec;
|
||||
R.getMat().convertTo(rvec, CV_64F);
|
||||
RR = cv::Affine3d(rvec).rotation();
|
||||
}
|
||||
else if (!R.empty() && R.size() == Size(3, 3))
|
||||
R.getMat().convertTo(RR, CV_64F);
|
||||
|
||||
if(!P.empty())
|
||||
{
|
||||
Matx33d PP;
|
||||
P.getMat().colRange(0, 3).convertTo(PP, CV_64F);
|
||||
RR = PP * RR;
|
||||
}
|
||||
|
||||
// start undistorting
|
||||
const Vec2f* srcf = distorted.getMat().ptr<Vec2f>();
|
||||
const Vec2d* srcd = distorted.getMat().ptr<Vec2d>();
|
||||
Vec2f* dstf = undistorted.getMat().ptr<Vec2f>();
|
||||
Vec2d* dstd = undistorted.getMat().ptr<Vec2d>();
|
||||
|
||||
size_t n = distorted.total();
|
||||
int sdepth = distorted.depth();
|
||||
|
||||
const bool isEps = (criteria.type & TermCriteria::EPS) != 0;
|
||||
|
||||
/* Define max count for solver iterations */
|
||||
int maxCount = std::numeric_limits<int>::max();
|
||||
if (criteria.type & TermCriteria::MAX_ITER) {
|
||||
maxCount = criteria.maxCount;
|
||||
}
|
||||
|
||||
|
||||
for(size_t i = 0; i < n; i++ )
|
||||
{
|
||||
Vec2d pi = sdepth == CV_32F ? (Vec2d)srcf[i] : srcd[i]; // image point
|
||||
Vec2d pw((pi[0] - c[0])/f[0], (pi[1] - c[1])/f[1]); // world point
|
||||
|
||||
double theta_d = sqrt(pw[0]*pw[0] + pw[1]*pw[1]);
|
||||
|
||||
// the current camera model is only valid up to 180 FOV
|
||||
// for larger FOV the loop below does not converge
|
||||
// clip values so we still get plausible results for super fisheye images > 180 grad
|
||||
theta_d = min(max(-CV_PI/2., theta_d), CV_PI/2.);
|
||||
|
||||
bool converged = false;
|
||||
double theta = theta_d;
|
||||
|
||||
double scale = 0.0;
|
||||
|
||||
if (!isEps || fabs(theta_d) > criteria.epsilon)
|
||||
{
|
||||
// compensate distortion iteratively using Newton method
|
||||
|
||||
for (int j = 0; j < maxCount; j++)
|
||||
{
|
||||
double theta2 = theta*theta, theta4 = theta2*theta2, theta6 = theta4*theta2, theta8 = theta6*theta2;
|
||||
double k0_theta2 = k[0] * theta2, k1_theta4 = k[1] * theta4, k2_theta6 = k[2] * theta6, k3_theta8 = k[3] * theta8;
|
||||
/* new_theta = theta - theta_fix, theta_fix = f0(theta) / f0'(theta) */
|
||||
double theta_fix = (theta * (1 + k0_theta2 + k1_theta4 + k2_theta6 + k3_theta8) - theta_d) /
|
||||
(1 + 3*k0_theta2 + 5*k1_theta4 + 7*k2_theta6 + 9*k3_theta8);
|
||||
theta = theta - theta_fix;
|
||||
|
||||
if (isEps && (fabs(theta_fix) < criteria.epsilon))
|
||||
{
|
||||
converged = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
scale = std::tan(theta) / theta_d;
|
||||
}
|
||||
else
|
||||
{
|
||||
converged = true;
|
||||
}
|
||||
|
||||
// theta is monotonously increasing or decreasing depending on the sign of theta
|
||||
// if theta has flipped, it might converge due to symmetry but on the opposite of the camera center
|
||||
// so we can check whether theta has changed the sign during the optimization
|
||||
bool theta_flipped = ((theta_d < 0 && theta > 0) || (theta_d > 0 && theta < 0));
|
||||
|
||||
if ((converged || !isEps) && !theta_flipped)
|
||||
{
|
||||
Vec2d pu = pw * scale; //undistorted point
|
||||
|
||||
// reproject
|
||||
Vec3d pr = RR * Vec3d(pu[0], pu[1], 1.0); // rotated point optionally multiplied by new camera matrix
|
||||
Vec2d fi(pr[0]/pr[2], pr[1]/pr[2]); // final
|
||||
|
||||
if( sdepth == CV_32F )
|
||||
dstf[i] = fi;
|
||||
else
|
||||
dstd[i] = fi;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Vec2d fi(std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN());
|
||||
Vec2d fi(-1000000.0, -1000000.0);
|
||||
|
||||
if( sdepth == CV_32F )
|
||||
dstf[i] = fi;
|
||||
else
|
||||
dstd[i] = fi;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fisheye::initUndistortRectifyMap( InputArray K, InputArray D, InputArray R, InputArray P,
|
||||
const cv::Size& size, int m1type, OutputArray map1, OutputArray map2 )
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
CV_Assert( m1type == CV_16SC2 || m1type == CV_32F || m1type <=0 );
|
||||
map1.create( size, m1type <= 0 ? CV_16SC2 : m1type );
|
||||
map2.create( size, map1.type() == CV_16SC2 ? CV_16UC1 : CV_32F );
|
||||
|
||||
CV_Assert((K.depth() == CV_32F || K.depth() == CV_64F) && (D.depth() == CV_32F || D.depth() == CV_64F));
|
||||
CV_Assert((P.empty() || P.depth() == CV_32F || P.depth() == CV_64F) && (R.empty() || R.depth() == CV_32F || R.depth() == CV_64F));
|
||||
CV_Assert(K.size() == Size(3, 3) && (D.empty() || D.total() == 4));
|
||||
CV_Assert(R.empty() || R.size() == Size(3, 3) || R.total() * R.channels() == 3);
|
||||
CV_Assert(P.empty() || P.size() == Size(3, 3) || P.size() == Size(4, 3));
|
||||
|
||||
Vec2d f, c;
|
||||
if (K.depth() == CV_32F)
|
||||
{
|
||||
Matx33f camMat = K.getMat();
|
||||
f = Vec2f(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2f(camMat(0, 2), camMat(1, 2));
|
||||
}
|
||||
else
|
||||
{
|
||||
Matx33d camMat = K.getMat();
|
||||
f = Vec2d(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2d(camMat(0, 2), camMat(1, 2));
|
||||
}
|
||||
|
||||
Vec4d k = Vec4d::all(0);
|
||||
if (!D.empty())
|
||||
k = D.depth() == CV_32F ? (Vec4d)*D.getMat().ptr<Vec4f>(): *D.getMat().ptr<Vec4d>();
|
||||
|
||||
Matx33d RR = Matx33d::eye();
|
||||
if (!R.empty() && R.total() * R.channels() == 3)
|
||||
{
|
||||
Vec3d rvec;
|
||||
R.getMat().convertTo(rvec, CV_64F);
|
||||
RR = Affine3d(rvec).rotation();
|
||||
}
|
||||
else if (!R.empty() && R.size() == Size(3, 3))
|
||||
R.getMat().convertTo(RR, CV_64F);
|
||||
|
||||
Matx33d PP = Matx33d::eye();
|
||||
if (!P.empty())
|
||||
P.getMat().colRange(0, 3).convertTo(PP, CV_64F);
|
||||
|
||||
Matx33d iR = (PP * RR).inv(cv::DECOMP_SVD);
|
||||
|
||||
for( int i = 0; i < size.height; ++i)
|
||||
{
|
||||
float* m1f = map1.getMat().ptr<float>(i);
|
||||
float* m2f = map2.getMat().ptr<float>(i);
|
||||
short* m1 = (short*)m1f;
|
||||
ushort* m2 = (ushort*)m2f;
|
||||
|
||||
double _x = i*iR(0, 1) + iR(0, 2),
|
||||
_y = i*iR(1, 1) + iR(1, 2),
|
||||
_w = i*iR(2, 1) + iR(2, 2);
|
||||
|
||||
for( int j = 0; j < size.width; ++j)
|
||||
{
|
||||
double u, v;
|
||||
if( _w <= 0)
|
||||
{
|
||||
u = (_x > 0) ? -std::numeric_limits<double>::infinity() : std::numeric_limits<double>::infinity();
|
||||
v = (_y > 0) ? -std::numeric_limits<double>::infinity() : std::numeric_limits<double>::infinity();
|
||||
}
|
||||
else
|
||||
{
|
||||
double x = _x/_w, y = _y/_w;
|
||||
|
||||
double r = sqrt(x*x + y*y);
|
||||
double theta = std::atan(r);
|
||||
|
||||
double theta2 = theta*theta, theta4 = theta2*theta2, theta6 = theta4*theta2, theta8 = theta4*theta4;
|
||||
double theta_d = theta * (1 + k[0]*theta2 + k[1]*theta4 + k[2]*theta6 + k[3]*theta8);
|
||||
|
||||
double scale = (r == 0) ? 1.0 : theta_d / r;
|
||||
u = f[0]*x*scale + c[0];
|
||||
v = f[1]*y*scale + c[1];
|
||||
}
|
||||
|
||||
if( m1type == CV_16SC2 )
|
||||
{
|
||||
int iu = cv::saturate_cast<int>(u*cv::INTER_TAB_SIZE);
|
||||
int iv = cv::saturate_cast<int>(v*cv::INTER_TAB_SIZE);
|
||||
m1[j*2+0] = (short)(iu >> cv::INTER_BITS);
|
||||
m1[j*2+1] = (short)(iv >> cv::INTER_BITS);
|
||||
m2[j] = (ushort)((iv & (cv::INTER_TAB_SIZE-1))*cv::INTER_TAB_SIZE + (iu & (cv::INTER_TAB_SIZE-1)));
|
||||
}
|
||||
else if( m1type == CV_32FC1 )
|
||||
{
|
||||
m1f[j] = (float)u;
|
||||
m2f[j] = (float)v;
|
||||
}
|
||||
|
||||
_x += iR(0, 0);
|
||||
_y += iR(1, 0);
|
||||
_w += iR(2, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cv::fisheye::estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
|
||||
OutputArray P, double balance, const Size& new_size, double fov_scale)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
CV_Assert( K.size() == Size(3, 3) && (K.depth() == CV_32F || K.depth() == CV_64F));
|
||||
CV_Assert(D.empty() || ((D.total() == 4) && (D.depth() == CV_32F || D.depth() == CV_64F)));
|
||||
|
||||
int w = image_size.width, h = image_size.height;
|
||||
balance = std::min(std::max(balance, 0.0), 1.0);
|
||||
|
||||
Mat points(1, 4, CV_64FC2);
|
||||
Vec2d* pptr = points.ptr<Vec2d>();
|
||||
pptr[0] = Vec2d(w/2, 0);
|
||||
pptr[1] = Vec2d(w, h/2);
|
||||
pptr[2] = Vec2d(w/2, h);
|
||||
pptr[3] = Vec2d(0, h/2);
|
||||
|
||||
fisheye::undistortPoints(points, points, K, D, R);
|
||||
cv::Scalar center_mass = mean(points);
|
||||
Vec2d cn(center_mass.val);
|
||||
|
||||
double aspect_ratio = (K.depth() == CV_32F) ? K.getMat().at<float >(0,0)/K.getMat().at<float> (1,1)
|
||||
: K.getMat().at<double>(0,0)/K.getMat().at<double>(1,1);
|
||||
|
||||
// convert to identity ratio
|
||||
cn[1] *= aspect_ratio;
|
||||
for(size_t i = 0; i < points.total(); ++i)
|
||||
pptr[i][1] *= aspect_ratio;
|
||||
|
||||
double minx = DBL_MAX, miny = DBL_MAX, maxx = -DBL_MAX, maxy = -DBL_MAX;
|
||||
for(size_t i = 0; i < points.total(); ++i)
|
||||
{
|
||||
miny = std::min(miny, pptr[i][1]);
|
||||
maxy = std::max(maxy, pptr[i][1]);
|
||||
minx = std::min(minx, pptr[i][0]);
|
||||
maxx = std::max(maxx, pptr[i][0]);
|
||||
}
|
||||
|
||||
double f1 = w * 0.5/(cn[0] - minx);
|
||||
double f2 = w * 0.5/(maxx - cn[0]);
|
||||
double f3 = h * 0.5 * aspect_ratio/(cn[1] - miny);
|
||||
double f4 = h * 0.5 * aspect_ratio/(maxy - cn[1]);
|
||||
|
||||
double fmin = std::min(f1, std::min(f2, std::min(f3, f4)));
|
||||
double fmax = std::max(f1, std::max(f2, std::max(f3, f4)));
|
||||
|
||||
double f = balance * fmin + (1.0 - balance) * fmax;
|
||||
f *= fov_scale > 0 ? 1.0/fov_scale : 1.0;
|
||||
|
||||
Vec2d new_f(f, f), new_c = -cn * f + Vec2d(w, h * aspect_ratio) * 0.5;
|
||||
|
||||
// restore aspect ratio
|
||||
new_f[1] /= aspect_ratio;
|
||||
new_c[1] /= aspect_ratio;
|
||||
|
||||
if (!new_size.empty())
|
||||
{
|
||||
double rx = new_size.width /(double)image_size.width;
|
||||
double ry = new_size.height/(double)image_size.height;
|
||||
|
||||
new_f[0] *= rx; new_f[1] *= ry;
|
||||
new_c[0] *= rx; new_c[1] *= ry;
|
||||
}
|
||||
|
||||
Mat(Matx33d(new_f[0], 0, new_c[0],
|
||||
0, new_f[1], new_c[1],
|
||||
0, 0, 1)).convertTo(P, P.empty() ? K.type() : P.type());
|
||||
}
|
||||
|
||||
void cv::fisheye::undistortImage(InputArray distorted, OutputArray undistorted,
|
||||
InputArray K, InputArray D, InputArray Knew, const Size& new_size)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Size size = !new_size.empty() ? new_size : distorted.size();
|
||||
|
||||
Mat map1, map2;
|
||||
fisheye::initUndistortRectifyMap(K, D, Matx33d::eye(), Knew, size, CV_16SC2, map1, map2 );
|
||||
cv::remap(distorted, undistorted, map1, map2, INTER_LINEAR, BORDER_CONSTANT);
|
||||
}
|
||||
|
||||
} // namespace cv
|
388
modules/3d/test/test_fisheye.cpp
Normal file
388
modules/3d/test/test_fisheye.cpp
Normal file
@ -0,0 +1,388 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <opencv2/ts/cuda_test.hpp> // EXPECT_MAT_NEAR
|
||||
#include "opencv2/videoio.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
class fisheyeTest : public ::testing::Test {
|
||||
|
||||
protected:
|
||||
const static cv::Size imageSize;
|
||||
const static cv::Matx33d K;
|
||||
const static cv::Vec4d D;
|
||||
std::string datasets_repository_path;
|
||||
|
||||
virtual void SetUp() {
|
||||
datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cv/cameracalibration/fisheye");
|
||||
}
|
||||
|
||||
protected:
|
||||
std::string combine(const std::string& _item1, const std::string& _item2);
|
||||
};
|
||||
|
||||
const cv::Size fisheyeTest::imageSize(1280, 800);
|
||||
|
||||
const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843,
|
||||
0, 560.506767351568, 381.939424848348,
|
||||
0, 0, 1);
|
||||
|
||||
const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371);
|
||||
|
||||
std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2)
|
||||
{
|
||||
std::string item1 = _item1, item2 = _item2;
|
||||
std::replace(item1.begin(), item1.end(), '\\', '/');
|
||||
std::replace(item2.begin(), item2.end(), '\\', '/');
|
||||
|
||||
if (item1.empty())
|
||||
return item2;
|
||||
|
||||
if (item2.empty())
|
||||
return item1;
|
||||
|
||||
char last = item1[item1.size()-1];
|
||||
return item1 + (last != '/' ? "/" : "") + item2;
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, projectPoints)
|
||||
{
|
||||
double cols = this->imageSize.width,
|
||||
rows = this->imageSize.height;
|
||||
|
||||
const int N = 20;
|
||||
cv::Mat distorted0(1, N*N, CV_64FC2), undist1, undist2, distorted1, distorted2;
|
||||
undist2.create(distorted0.size(), CV_MAKETYPE(distorted0.depth(), 3));
|
||||
cv::Vec2d* pts = distorted0.ptr<cv::Vec2d>();
|
||||
|
||||
cv::Vec2d c(this->K(0, 2), this->K(1, 2));
|
||||
for(int y = 0, k = 0; y < N; ++y)
|
||||
for(int x = 0; x < N; ++x)
|
||||
{
|
||||
cv::Vec2d point(x*cols/(N-1.f), y*rows/(N-1.f));
|
||||
pts[k++] = (point - c) * 0.85 + c;
|
||||
}
|
||||
|
||||
cv::fisheye::undistortPoints(distorted0, undist1, this->K, this->D);
|
||||
|
||||
cv::Vec2d* u1 = undist1.ptr<cv::Vec2d>();
|
||||
cv::Vec3d* u2 = undist2.ptr<cv::Vec3d>();
|
||||
for(int i = 0; i < (int)distorted0.total(); ++i)
|
||||
u2[i] = cv::Vec3d(u1[i][0], u1[i][1], 1.0);
|
||||
|
||||
cv::fisheye::distortPoints(undist1, distorted1, this->K, this->D);
|
||||
cv::fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), this->K, this->D);
|
||||
|
||||
EXPECT_MAT_NEAR(distorted0, distorted1, 1e-10);
|
||||
EXPECT_MAT_NEAR(distorted0, distorted2, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, distortUndistortPoints)
|
||||
{
|
||||
int width = imageSize.width;
|
||||
int height = imageSize.height;
|
||||
|
||||
/* Create test points */
|
||||
std::vector<cv::Point2d> points0Vector;
|
||||
cv::Mat principalPoints = (cv::Mat_<double>(5, 2) << K(0, 2), K(1, 2), // (cx, cy)
|
||||
/* Image corners */
|
||||
0, 0,
|
||||
0, height,
|
||||
width, 0,
|
||||
width, height
|
||||
);
|
||||
|
||||
/* Random points inside image */
|
||||
cv::Mat xy[2] = {};
|
||||
xy[0].create(100, 1, CV_64F);
|
||||
theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, width); // x
|
||||
xy[1].create(100, 1, CV_64F);
|
||||
theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, height); // y
|
||||
|
||||
cv::Mat randomPoints;
|
||||
merge(xy, 2, randomPoints);
|
||||
|
||||
cv::Mat points0;
|
||||
cv::vconcat(principalPoints.reshape(2), randomPoints, points0);
|
||||
|
||||
/* Test with random D set */
|
||||
for (size_t i = 0; i < 10; ++i) {
|
||||
cv::Mat distortion(1, 4, CV_64F);
|
||||
theRNG().fill(distortion, cv::RNG::UNIFORM, -0.00001, 0.00001);
|
||||
|
||||
/* Distort -> Undistort */
|
||||
cv::Mat distortedPoints;
|
||||
cv::fisheye::distortPoints(points0, distortedPoints, K, distortion);
|
||||
cv::Mat undistortedPoints;
|
||||
cv::fisheye::undistortPoints(distortedPoints, undistortedPoints, K, distortion);
|
||||
|
||||
EXPECT_MAT_NEAR(points0, undistortedPoints, 1e-8);
|
||||
|
||||
/* Undistort -> Distort */
|
||||
cv::fisheye::undistortPoints(points0, undistortedPoints, K, distortion);
|
||||
cv::fisheye::distortPoints(undistortedPoints, distortedPoints, K, distortion);
|
||||
|
||||
EXPECT_MAT_NEAR(points0, distortedPoints, 1e-8);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, undistortImage)
|
||||
{
|
||||
// we use it to reduce patch size for images in testdata
|
||||
auto throwAwayHalf = [](Mat img)
|
||||
{
|
||||
int whalf = img.cols / 2, hhalf = img.rows / 2;
|
||||
Rect tl(0, 0, whalf, hhalf), br(whalf, hhalf, whalf, hhalf);
|
||||
img(tl) = 0;
|
||||
img(br) = 0;
|
||||
};
|
||||
|
||||
cv::Matx33d theK = this->K;
|
||||
cv::Mat theD = cv::Mat(this->D);
|
||||
std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg");
|
||||
cv::Matx33d newK = theK;
|
||||
cv::Mat distorted = cv::imread(file), undistorted;
|
||||
{
|
||||
newK(0, 0) = 100;
|
||||
newK(1, 1) = 100;
|
||||
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
|
||||
std::string imageFilename = combine(datasets_repository_path, "new_f_100.png");
|
||||
cv::Mat correct = cv::imread(imageFilename);
|
||||
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
|
||||
|
||||
throwAwayHalf(correct);
|
||||
throwAwayHalf(undistorted);
|
||||
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
||||
}
|
||||
{
|
||||
double balance = 1.0;
|
||||
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance);
|
||||
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
|
||||
std::string imageFilename = combine(datasets_repository_path, "balance_1.0.png");
|
||||
cv::Mat correct = cv::imread(imageFilename);
|
||||
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
|
||||
|
||||
throwAwayHalf(correct);
|
||||
throwAwayHalf(undistorted);
|
||||
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
||||
}
|
||||
|
||||
{
|
||||
double balance = 0.0;
|
||||
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance);
|
||||
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
|
||||
std::string imageFilename = combine(datasets_repository_path, "balance_0.0.png");
|
||||
cv::Mat correct = cv::imread(imageFilename);
|
||||
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
|
||||
|
||||
throwAwayHalf(correct);
|
||||
throwAwayHalf(undistorted);
|
||||
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, undistortAndDistortImage)
|
||||
{
|
||||
cv::Matx33d K_src = this->K;
|
||||
cv::Mat D_src = cv::Mat(this->D);
|
||||
std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg");
|
||||
cv::Matx33d K_dst = K_src;
|
||||
cv::Mat image = cv::imread(file), image_projected;
|
||||
cv::Vec4d D_dst_vec (-1.0, 0.0, 0.0, 0.0);
|
||||
cv::Mat D_dst = cv::Mat(D_dst_vec);
|
||||
|
||||
int imageWidth = (int)this->imageSize.width;
|
||||
int imageHeight = (int)this->imageSize.height;
|
||||
|
||||
cv::Mat imagePoints(imageHeight, imageWidth, CV_32FC2), undPoints, distPoints;
|
||||
cv::Vec2f* pts = imagePoints.ptr<cv::Vec2f>();
|
||||
|
||||
for(int y = 0, k = 0; y < imageHeight; ++y)
|
||||
{
|
||||
for(int x = 0; x < imageWidth; ++x)
|
||||
{
|
||||
cv::Vec2f point((float)x, (float)y);
|
||||
pts[k++] = point;
|
||||
}
|
||||
}
|
||||
|
||||
cv::fisheye::undistortPoints(imagePoints, undPoints, K_dst, D_dst);
|
||||
cv::fisheye::distortPoints(undPoints, distPoints, K_src, D_src);
|
||||
cv::remap(image, image_projected, distPoints, cv::noArray(), cv::INTER_LINEAR);
|
||||
|
||||
float dx, dy, r_sq;
|
||||
float R_MAX = 250;
|
||||
float imageCenterX = (float)imageWidth / 2;
|
||||
float imageCenterY = (float)imageHeight / 2;
|
||||
|
||||
cv::Mat undPointsGt(imageHeight, imageWidth, CV_32FC2);
|
||||
cv::Mat imageGt(imageHeight, imageWidth, CV_8UC3);
|
||||
|
||||
for(int y = 0; y < imageHeight; ++y)
|
||||
{
|
||||
for(int x = 0; x < imageWidth; ++x)
|
||||
{
|
||||
dx = x - imageCenterX;
|
||||
dy = y - imageCenterY;
|
||||
r_sq = dy * dy + dx * dx;
|
||||
|
||||
Vec2f & und_vec = undPoints.at<Vec2f>(y,x);
|
||||
Vec3b & pixel = image_projected.at<Vec3b>(y,x);
|
||||
|
||||
Vec2f & undist_vec_gt = undPointsGt.at<Vec2f>(y,x);
|
||||
Vec3b & pixel_gt = imageGt.at<Vec3b>(y,x);
|
||||
|
||||
if (r_sq > R_MAX * R_MAX)
|
||||
{
|
||||
|
||||
undist_vec_gt[0] = -1e6;
|
||||
undist_vec_gt[1] = -1e6;
|
||||
|
||||
pixel_gt[0] = 0;
|
||||
pixel_gt[1] = 0;
|
||||
pixel_gt[2] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
undist_vec_gt[0] = und_vec[0];
|
||||
undist_vec_gt[1] = und_vec[1];
|
||||
|
||||
pixel_gt[0] = pixel[0];
|
||||
pixel_gt[1] = pixel[1];
|
||||
pixel_gt[2] = pixel[2];
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
EXPECT_MAT_NEAR(undPoints, undPointsGt, 1e-10);
|
||||
EXPECT_MAT_NEAR(image_projected, imageGt, 1e-10);
|
||||
|
||||
Vec2f dist_point_1 = distPoints.at<Vec2f>(400, 640);
|
||||
Vec2f dist_point_1_gt(640.044f, 400.041f);
|
||||
|
||||
Vec2f dist_point_2 = distPoints.at<Vec2f>(400, 440);
|
||||
Vec2f dist_point_2_gt(409.731f, 403.029f);
|
||||
|
||||
Vec2f dist_point_3 = distPoints.at<Vec2f>(200, 640);
|
||||
Vec2f dist_point_3_gt(643.341f, 168.896f);
|
||||
|
||||
Vec2f dist_point_4 = distPoints.at<Vec2f>(300, 480);
|
||||
Vec2f dist_point_4_gt(463.402f, 290.317f);
|
||||
|
||||
Vec2f dist_point_5 = distPoints.at<Vec2f>(550, 750);
|
||||
Vec2f dist_point_5_gt(797.51f, 611.637f);
|
||||
|
||||
EXPECT_MAT_NEAR(dist_point_1, dist_point_1_gt, 1e-2);
|
||||
EXPECT_MAT_NEAR(dist_point_2, dist_point_2_gt, 1e-2);
|
||||
EXPECT_MAT_NEAR(dist_point_3, dist_point_3_gt, 1e-2);
|
||||
EXPECT_MAT_NEAR(dist_point_4, dist_point_4_gt, 1e-2);
|
||||
EXPECT_MAT_NEAR(dist_point_5, dist_point_5_gt, 1e-2);
|
||||
|
||||
// Add the "--test_debug" to arguments for file output
|
||||
if (cvtest::debugLevel > 0)
|
||||
cv::imwrite(combine(datasets_repository_path, "new_distortion.png"), image_projected);
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, jacobians)
|
||||
{
|
||||
int n = 10;
|
||||
cv::Mat X(1, n, CV_64FC3);
|
||||
cv::Mat om(3, 1, CV_64F), theT(3, 1, CV_64F);
|
||||
cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F);
|
||||
cv::Mat k(4, 1, CV_64F);
|
||||
double alpha;
|
||||
|
||||
cv::RNG r;
|
||||
|
||||
r.fill(X, cv::RNG::NORMAL, 2, 1);
|
||||
X = cv::abs(X) * 10;
|
||||
|
||||
r.fill(om, cv::RNG::NORMAL, 0, 1);
|
||||
om = cv::abs(om);
|
||||
|
||||
r.fill(theT, cv::RNG::NORMAL, 0, 1);
|
||||
theT = cv::abs(theT); theT.at<double>(2) = 4; theT *= 10;
|
||||
|
||||
r.fill(f, cv::RNG::NORMAL, 0, 1);
|
||||
f = cv::abs(f) * 1000;
|
||||
|
||||
r.fill(c, cv::RNG::NORMAL, 0, 1);
|
||||
c = cv::abs(c) * 1000;
|
||||
|
||||
r.fill(k, cv::RNG::NORMAL, 0, 1);
|
||||
k*= 0.5;
|
||||
|
||||
alpha = 0.01*r.gaussian(1);
|
||||
|
||||
cv::Mat x1, x2, xpred;
|
||||
cv::Matx33d theK(f.at<double>(0), alpha * f.at<double>(0), c.at<double>(0),
|
||||
0, f.at<double>(1), c.at<double>(1),
|
||||
0, 0, 1);
|
||||
|
||||
cv::Mat jacobians;
|
||||
cv::fisheye::projectPoints(X, x1, om, theT, theK, k, alpha, jacobians);
|
||||
|
||||
//test on T:
|
||||
cv::Mat dT(3, 1, CV_64FC1);
|
||||
r.fill(dT, cv::RNG::NORMAL, 0, 1);
|
||||
dT *= 1e-9*cv::norm(theT);
|
||||
cv::Mat T2 = theT + dT;
|
||||
cv::fisheye::projectPoints(X, x2, om, T2, theK, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
|
||||
//test on om:
|
||||
cv::Mat dom(3, 1, CV_64FC1);
|
||||
r.fill(dom, cv::RNG::NORMAL, 0, 1);
|
||||
dom *= 1e-9*cv::norm(om);
|
||||
cv::Mat om2 = om + dom;
|
||||
cv::fisheye::projectPoints(X, x2, om2, theT, theK, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
|
||||
//test on f:
|
||||
cv::Mat df(2, 1, CV_64FC1);
|
||||
r.fill(df, cv::RNG::NORMAL, 0, 1);
|
||||
df *= 1e-9*cv::norm(f);
|
||||
cv::Matx33d K2 = theK + cv::Matx33d(df.at<double>(0), df.at<double>(0) * alpha, 0, 0, df.at<double>(1), 0, 0, 0, 0);
|
||||
cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
|
||||
//test on c:
|
||||
cv::Mat dc(2, 1, CV_64FC1);
|
||||
r.fill(dc, cv::RNG::NORMAL, 0, 1);
|
||||
dc *= 1e-9*cv::norm(c);
|
||||
K2 = theK + cv::Matx33d(0, 0, dc.at<double>(0), 0, 0, dc.at<double>(1), 0, 0, 0);
|
||||
cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
|
||||
//test on k:
|
||||
cv::Mat dk(4, 1, CV_64FC1);
|
||||
r.fill(dk, cv::RNG::NORMAL, 0, 1);
|
||||
dk *= 1e-9*cv::norm(k);
|
||||
cv::Mat k2 = k + dk;
|
||||
cv::fisheye::projectPoints(X, x2, om, theT, theK, k2, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
|
||||
//test on alpha:
|
||||
cv::Mat dalpha(1, 1, CV_64FC1);
|
||||
r.fill(dalpha, cv::RNG::NORMAL, 0, 1);
|
||||
dalpha *= 1e-9*cv::norm(f);
|
||||
double alpha2 = alpha + dalpha.at<double>(0);
|
||||
K2 = theK + cv::Matx33d(0, f.at<double>(0) * dalpha.at<double>(0), 0, 0, 0, 0, 0, 0, 0);
|
||||
cv::fisheye::projectPoints(X, x2, om, theT, theK, k, alpha2, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
}
|
||||
|
||||
}}
|
@ -443,7 +443,7 @@ enum { CALIB_USE_INTRINSIC_GUESS = 0x00001, //!< Use user provided intrinsics as
|
||||
CALIB_FIX_INTRINSIC = 0x00100, //!< For stereo and milti-camera calibration only. Do not optimize cameras intrinsics
|
||||
CALIB_SAME_FOCAL_LENGTH = 0x00200, //!< For stereo calibration only. Use the same focal length for cameras in pair.
|
||||
// for stereo rectification
|
||||
CALIB_ZERO_DISPARITY = 0x00400, //!< For @ref stereoRectify only. See the function description for more details.
|
||||
CALIB_ZERO_DISPARITY = 0x00400, //!< Deprecated synonim of @ref STEREO_ZERO_DISPARITY. See @ref stereoRectify.
|
||||
CALIB_USE_LU = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
|
||||
CALIB_USE_EXTRINSIC_GUESS = (1 << 22), //!< For stereo calibration only. Use user provided extrinsics (R, T) as initial point for optimization
|
||||
// fisheye only flags
|
||||
@ -1486,128 +1486,6 @@ using cv::CALIB_FIX_PRINCIPAL_POINT;
|
||||
using cv::CALIB_ZERO_DISPARITY;
|
||||
using cv::CALIB_FIX_FOCAL_LENGTH;
|
||||
|
||||
/** @brief Projects points using fisheye model
|
||||
|
||||
@param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
|
||||
the number of points in the view.
|
||||
@param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
|
||||
vector\<Point2f\>.
|
||||
@param affine
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param alpha The skew coefficient.
|
||||
@param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
|
||||
to components of the focal lengths, coordinates of the principal point, distortion coefficients,
|
||||
rotation vector, translation vector, and the skew. In the old interface different components of
|
||||
the jacobian are returned via different output parameters.
|
||||
|
||||
The function computes projections of 3D points to the image plane given intrinsic and extrinsic
|
||||
camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
|
||||
image points coordinates (as functions of all the input parameters) with respect to the particular
|
||||
parameters, intrinsic and/or extrinsic.
|
||||
*/
|
||||
CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
|
||||
InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
|
||||
|
||||
/** @overload */
|
||||
CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
|
||||
InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
|
||||
|
||||
/** @brief Distorts 2D points using fisheye model.
|
||||
|
||||
@param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
|
||||
the number of points in the view.
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param alpha The skew coefficient.
|
||||
@param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
|
||||
|
||||
Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
|
||||
This means if you want to distort image points you have to multiply them with \f$K^{-1}\f$.
|
||||
*/
|
||||
CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
|
||||
|
||||
/** @brief Undistorts 2D points using fisheye model
|
||||
|
||||
@param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
|
||||
number of points in the view.
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
|
||||
1-channel or 1x1 3-channel
|
||||
@param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
|
||||
@param criteria Termination criteria
|
||||
@param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
|
||||
*/
|
||||
CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
|
||||
InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray(),
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10, 1e-8));
|
||||
|
||||
|
||||
/** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
|
||||
distortion is used, if R or P is empty identity matrixes are used.
|
||||
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
|
||||
1-channel or 1x1 3-channel
|
||||
@param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
|
||||
@param size Undistorted image size.
|
||||
@param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
|
||||
for details.
|
||||
@param map1 The first output map.
|
||||
@param map2 The second output map.
|
||||
*/
|
||||
CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
|
||||
const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
|
||||
|
||||
/** @brief Transforms an image to compensate for fisheye lens distortion.
|
||||
|
||||
@param distorted image with fisheye lens distortion.
|
||||
@param undistorted Output image with compensated fisheye lens distortion.
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param Knew Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
|
||||
may additionally scale and shift the result by using a different matrix.
|
||||
@param new_size the new size
|
||||
|
||||
The function transforms an image to compensate radial and tangential lens distortion.
|
||||
|
||||
The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap
|
||||
(with bilinear interpolation). See the former function for details of the transformation being
|
||||
performed.
|
||||
|
||||
See below the results of undistortImage.
|
||||
- a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
|
||||
k_4, k_5, k_6) of distortion were optimized under calibration)
|
||||
- b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
|
||||
k_3, k_4) of fisheye distortion were optimized under calibration)
|
||||
- c\) original image was captured with fisheye lens
|
||||
|
||||
Pictures a) and b) almost the same. But if we consider points of image located far from the center
|
||||
of image, we can notice that on image a) these points are distorted.
|
||||
|
||||
![image](pics/fisheye_undistorted.jpg)
|
||||
*/
|
||||
CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
|
||||
InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
|
||||
|
||||
/** @brief Estimates new camera intrinsic matrix for undistortion or rectification.
|
||||
|
||||
@param K Camera intrinsic matrix \f$cameramatrix{K}\f$.
|
||||
@param image_size Size of the image
|
||||
@param D Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.
|
||||
@param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
|
||||
1-channel or 1x1 3-channel
|
||||
@param P New camera intrinsic matrix (3x3) or new projection matrix (3x4)
|
||||
@param balance Sets the new focal length in range between the min focal length and the max focal
|
||||
length. Balance is in range of [0, 1].
|
||||
@param new_size the new size
|
||||
@param fov_scale Divisor for new focal length.
|
||||
*/
|
||||
CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
|
||||
OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
|
||||
|
||||
/** @brief Performs camera calibration
|
||||
|
||||
@param objectPoints vector of vectors of calibration pattern points in the calibration pattern
|
||||
@ -1647,40 +1525,6 @@ CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArray
|
||||
InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
|
||||
|
||||
/** @brief Stereo rectification for fisheye camera model
|
||||
|
||||
@param K1 First camera intrinsic matrix.
|
||||
@param D1 First camera distortion parameters.
|
||||
@param K2 Second camera intrinsic matrix.
|
||||
@param D2 Second camera distortion parameters.
|
||||
@param imageSize Size of the image used for stereo calibration.
|
||||
@param R Rotation matrix between the coordinate systems of the first and the second
|
||||
cameras.
|
||||
@param tvec Translation vector between coordinate systems of the cameras.
|
||||
@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
|
||||
@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
|
||||
@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
|
||||
camera.
|
||||
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
|
||||
camera.
|
||||
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
|
||||
@param flags Operation flags that may be zero or @ref CALIB_ZERO_DISPARITY . If the flag is set,
|
||||
the function makes the principal points of each camera have the same pixel coordinates in the
|
||||
rectified views. And if the flag is not set, the function may still shift the images in the
|
||||
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
|
||||
useful image area.
|
||||
@param newImageSize New image resolution after rectification. The same size should be passed to
|
||||
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
|
||||
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
|
||||
preserve details in the original image, especially when there is a big radial distortion.
|
||||
@param balance Sets the new focal length in range between the min focal length and the max focal
|
||||
length. Balance is in range of [0, 1].
|
||||
@param fov_scale Divisor for new focal length.
|
||||
*/
|
||||
CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
|
||||
OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
|
||||
double balance = 0.0, double fov_scale = 1.0);
|
||||
|
||||
/** @brief Performs stereo calibration
|
||||
|
||||
@param objectPoints Vector of vectors of the calibration pattern points.
|
||||
|
@ -125,32 +125,4 @@ public class CalibTest extends OpenCVTestCase {
|
||||
assertEquals((1 << 17), Calib.CALIB_USE_LU);
|
||||
assertEquals((1 << 22), Calib.CALIB_USE_EXTRINSIC_GUESS);
|
||||
}
|
||||
|
||||
public void testEstimateNewCameraMatrixForUndistortRectify() {
|
||||
Mat K = new Mat().eye(3, 3, CvType.CV_64FC1);
|
||||
Mat K_new = new Mat().eye(3, 3, CvType.CV_64FC1);
|
||||
Mat K_new_truth = new Mat().eye(3, 3, CvType.CV_64FC1);
|
||||
Mat D = new Mat().zeros(4, 1, CvType.CV_64FC1);
|
||||
|
||||
K.put(0,0,600.4447738238429);
|
||||
K.put(1,1,578.9929805505851);
|
||||
K.put(0,2,992.0642578801213);
|
||||
K.put(1,2,549.2682624212172);
|
||||
|
||||
D.put(0,0,-0.05090103223466704);
|
||||
D.put(1,0,0.030944413642173308);
|
||||
D.put(2,0,-0.021509225493198905);
|
||||
D.put(3,0,0.0043378096628297145);
|
||||
|
||||
K_new_truth.put(0,0, 387.5118215642316);
|
||||
K_new_truth.put(0,2, 1033.936556777084);
|
||||
K_new_truth.put(1,1, 373.6673784974842);
|
||||
K_new_truth.put(1,2, 538.794152656429);
|
||||
|
||||
Calib.fisheye_estimateNewCameraMatrixForUndistortRectify(K,D,new Size(1920,1080),
|
||||
new Mat().eye(3, 3, CvType.CV_64F), K_new, 0.0, new Size(1920,1080));
|
||||
|
||||
assertMatEqual(K_new, K_new_truth, EPS);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -1,40 +0,0 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html
|
||||
#include "perf_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
PERF_TEST(Undistort, fisheye_undistortPoints_100k_10iter)
|
||||
{
|
||||
const int pointsNumber = 100000;
|
||||
const Size imageSize(1280, 800);
|
||||
|
||||
/* Set camera matrix */
|
||||
const Matx33d K(558.478087865323, 0, 620.458515360843,
|
||||
0, 560.506767351568, 381.939424848348,
|
||||
0, 0, 1);
|
||||
|
||||
/* Set distortion coefficients */
|
||||
const Matx14d D(2.81e-06, 1.31e-06, -4.42e-06, -1.25e-06);
|
||||
|
||||
/* Create two-channel points matrix */
|
||||
Mat xy[2] = {};
|
||||
xy[0].create(pointsNumber, 1, CV_64F);
|
||||
theRNG().fill(xy[0], RNG::UNIFORM, 0, imageSize.width); // x
|
||||
xy[1].create(pointsNumber, 1, CV_64F);
|
||||
theRNG().fill(xy[1], RNG::UNIFORM, 0, imageSize.height); // y
|
||||
|
||||
Mat points;
|
||||
merge(xy, 2, points);
|
||||
|
||||
/* Set fixed iteration number to check only c++ code, not algo convergence */
|
||||
TermCriteria termCriteria(TermCriteria::MAX_ITER, 10, 0);
|
||||
|
||||
Mat undistortedPoints;
|
||||
TEST_CYCLE() fisheye::undistortPoints(points, undistortedPoints, K, D, noArray(), noArray(), termCriteria);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
}} // namespace
|
@ -47,701 +47,10 @@
|
||||
namespace cv {
|
||||
namespace {
|
||||
|
||||
struct JacobianRow
|
||||
{
|
||||
Vec2d df, dc;
|
||||
Vec4d dk;
|
||||
Vec3d dom, dT;
|
||||
double dalpha;
|
||||
};
|
||||
|
||||
void subMatrix(const Mat& src, Mat& dst, const std::vector<uchar>& cols, const std::vector<uchar>& rows);
|
||||
|
||||
}}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// cv::fisheye::projectPoints
|
||||
|
||||
void cv::fisheye::projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
|
||||
InputArray K, InputArray D, double alpha, OutputArray jacobian)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
projectPoints(objectPoints, imagePoints, affine.rvec(), affine.translation(), K, D, alpha, jacobian);
|
||||
}
|
||||
|
||||
void cv::fisheye::projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray _rvec,
|
||||
InputArray _tvec, InputArray _K, InputArray _D, double alpha, OutputArray jacobian)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
// will support only 3-channel data now for points
|
||||
CV_Assert(objectPoints.type() == CV_32FC3 || objectPoints.type() == CV_64FC3);
|
||||
imagePoints.create(objectPoints.size(), CV_MAKETYPE(objectPoints.depth(), 2));
|
||||
size_t n = objectPoints.total();
|
||||
|
||||
CV_Assert(_rvec.total() * _rvec.channels() == 3 && (_rvec.depth() == CV_32F || _rvec.depth() == CV_64F));
|
||||
CV_Assert(_tvec.total() * _tvec.channels() == 3 && (_tvec.depth() == CV_32F || _tvec.depth() == CV_64F));
|
||||
CV_Assert(_tvec.getMat().isContinuous() && _rvec.getMat().isContinuous());
|
||||
|
||||
Vec3d om = _rvec.depth() == CV_32F ? (Vec3d)*_rvec.getMat().ptr<Vec3f>() : *_rvec.getMat().ptr<Vec3d>();
|
||||
Vec3d T = _tvec.depth() == CV_32F ? (Vec3d)*_tvec.getMat().ptr<Vec3f>() : *_tvec.getMat().ptr<Vec3d>();
|
||||
|
||||
CV_Assert(_K.size() == Size(3,3) && (_K.type() == CV_32F || _K.type() == CV_64F) && _D.type() == _K.type() && _D.total() == 4);
|
||||
|
||||
Vec2d f, c;
|
||||
if (_K.depth() == CV_32F)
|
||||
{
|
||||
|
||||
Matx33f K = _K.getMat();
|
||||
f = Vec2f(K(0, 0), K(1, 1));
|
||||
c = Vec2f(K(0, 2), K(1, 2));
|
||||
}
|
||||
else
|
||||
{
|
||||
Matx33d K = _K.getMat();
|
||||
f = Vec2d(K(0, 0), K(1, 1));
|
||||
c = Vec2d(K(0, 2), K(1, 2));
|
||||
}
|
||||
|
||||
Vec4d k = _D.depth() == CV_32F ? (Vec4d)*_D.getMat().ptr<Vec4f>(): *_D.getMat().ptr<Vec4d>();
|
||||
|
||||
const bool isJacobianNeeded = jacobian.needed();
|
||||
JacobianRow *Jn = 0;
|
||||
if (isJacobianNeeded)
|
||||
{
|
||||
int nvars = 2 + 2 + 1 + 4 + 3 + 3; // f, c, alpha, k, om, T,
|
||||
jacobian.create(2*(int)n, nvars, CV_64F);
|
||||
Jn = jacobian.getMat().ptr<JacobianRow>(0);
|
||||
}
|
||||
|
||||
Matx33d R;
|
||||
Matx<double, 3, 9> dRdom;
|
||||
Rodrigues(om, R, dRdom);
|
||||
Affine3d aff(om, T);
|
||||
|
||||
const Vec3f* Xf = objectPoints.getMat().ptr<Vec3f>();
|
||||
const Vec3d* Xd = objectPoints.getMat().ptr<Vec3d>();
|
||||
Vec2f *xpf = imagePoints.getMat().ptr<Vec2f>();
|
||||
Vec2d *xpd = imagePoints.getMat().ptr<Vec2d>();
|
||||
|
||||
for(size_t i = 0; i < n; ++i)
|
||||
{
|
||||
Vec3d Xi = objectPoints.depth() == CV_32F ? (Vec3d)Xf[i] : Xd[i];
|
||||
Vec3d Y = aff*Xi;
|
||||
if (fabs(Y[2]) < DBL_MIN)
|
||||
Y[2] = 1;
|
||||
Vec2d x(Y[0]/Y[2], Y[1]/Y[2]);
|
||||
|
||||
double r2 = x.dot(x);
|
||||
double r = std::sqrt(r2);
|
||||
|
||||
// Angle of the incoming ray:
|
||||
double theta = std::atan(r);
|
||||
|
||||
double theta2 = theta*theta, theta3 = theta2*theta, theta4 = theta2*theta2, theta5 = theta4*theta,
|
||||
theta6 = theta3*theta3, theta7 = theta6*theta, theta8 = theta4*theta4, theta9 = theta8*theta;
|
||||
|
||||
double theta_d = theta + k[0]*theta3 + k[1]*theta5 + k[2]*theta7 + k[3]*theta9;
|
||||
|
||||
double inv_r = r > 1e-8 ? 1.0/r : 1;
|
||||
double cdist = r > 1e-8 ? theta_d * inv_r : 1;
|
||||
|
||||
Vec2d xd1 = x * cdist;
|
||||
Vec2d xd3(xd1[0] + alpha*xd1[1], xd1[1]);
|
||||
Vec2d final_point(xd3[0] * f[0] + c[0], xd3[1] * f[1] + c[1]);
|
||||
|
||||
if (objectPoints.depth() == CV_32F)
|
||||
xpf[i] = final_point;
|
||||
else
|
||||
xpd[i] = final_point;
|
||||
|
||||
if (isJacobianNeeded)
|
||||
{
|
||||
//Vec3d Xi = pdepth == CV_32F ? (Vec3d)Xf[i] : Xd[i];
|
||||
//Vec3d Y = aff*Xi;
|
||||
double dYdR[] = { Xi[0], Xi[1], Xi[2], 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, Xi[0], Xi[1], Xi[2], 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, Xi[0], Xi[1], Xi[2] };
|
||||
|
||||
Matx33d dYdom_data = Matx<double, 3, 9>(dYdR) * dRdom.t();
|
||||
const Vec3d *dYdom = (Vec3d*)dYdom_data.val;
|
||||
|
||||
Matx33d dYdT_data = Matx33d::eye();
|
||||
const Vec3d *dYdT = (Vec3d*)dYdT_data.val;
|
||||
|
||||
//Vec2d x(Y[0]/Y[2], Y[1]/Y[2]);
|
||||
Vec3d dxdom[2];
|
||||
dxdom[0] = (1.0/Y[2]) * dYdom[0] - x[0]/Y[2] * dYdom[2];
|
||||
dxdom[1] = (1.0/Y[2]) * dYdom[1] - x[1]/Y[2] * dYdom[2];
|
||||
|
||||
Vec3d dxdT[2];
|
||||
dxdT[0] = (1.0/Y[2]) * dYdT[0] - x[0]/Y[2] * dYdT[2];
|
||||
dxdT[1] = (1.0/Y[2]) * dYdT[1] - x[1]/Y[2] * dYdT[2];
|
||||
|
||||
//double r2 = x.dot(x);
|
||||
Vec3d dr2dom = 2 * x[0] * dxdom[0] + 2 * x[1] * dxdom[1];
|
||||
Vec3d dr2dT = 2 * x[0] * dxdT[0] + 2 * x[1] * dxdT[1];
|
||||
|
||||
//double r = std::sqrt(r2);
|
||||
double drdr2 = r > 1e-8 ? 1.0/(2*r) : 1;
|
||||
Vec3d drdom = drdr2 * dr2dom;
|
||||
Vec3d drdT = drdr2 * dr2dT;
|
||||
|
||||
// Angle of the incoming ray:
|
||||
//double theta = atan(r);
|
||||
double dthetadr = 1.0/(1+r2);
|
||||
Vec3d dthetadom = dthetadr * drdom;
|
||||
Vec3d dthetadT = dthetadr * drdT;
|
||||
|
||||
//double theta_d = theta + k[0]*theta3 + k[1]*theta5 + k[2]*theta7 + k[3]*theta9;
|
||||
double dtheta_ddtheta = 1 + 3*k[0]*theta2 + 5*k[1]*theta4 + 7*k[2]*theta6 + 9*k[3]*theta8;
|
||||
Vec3d dtheta_ddom = dtheta_ddtheta * dthetadom;
|
||||
Vec3d dtheta_ddT = dtheta_ddtheta * dthetadT;
|
||||
Vec4d dtheta_ddk = Vec4d(theta3, theta5, theta7, theta9);
|
||||
|
||||
//double inv_r = r > 1e-8 ? 1.0/r : 1;
|
||||
//double cdist = r > 1e-8 ? theta_d / r : 1;
|
||||
Vec3d dcdistdom = inv_r * (dtheta_ddom - cdist*drdom);
|
||||
Vec3d dcdistdT = inv_r * (dtheta_ddT - cdist*drdT);
|
||||
Vec4d dcdistdk = inv_r * dtheta_ddk;
|
||||
|
||||
//Vec2d xd1 = x * cdist;
|
||||
Vec4d dxd1dk[2];
|
||||
Vec3d dxd1dom[2], dxd1dT[2];
|
||||
dxd1dom[0] = x[0] * dcdistdom + cdist * dxdom[0];
|
||||
dxd1dom[1] = x[1] * dcdistdom + cdist * dxdom[1];
|
||||
dxd1dT[0] = x[0] * dcdistdT + cdist * dxdT[0];
|
||||
dxd1dT[1] = x[1] * dcdistdT + cdist * dxdT[1];
|
||||
dxd1dk[0] = x[0] * dcdistdk;
|
||||
dxd1dk[1] = x[1] * dcdistdk;
|
||||
|
||||
//Vec2d xd3(xd1[0] + alpha*xd1[1], xd1[1]);
|
||||
Vec4d dxd3dk[2];
|
||||
Vec3d dxd3dom[2], dxd3dT[2];
|
||||
dxd3dom[0] = dxd1dom[0] + alpha * dxd1dom[1];
|
||||
dxd3dom[1] = dxd1dom[1];
|
||||
dxd3dT[0] = dxd1dT[0] + alpha * dxd1dT[1];
|
||||
dxd3dT[1] = dxd1dT[1];
|
||||
dxd3dk[0] = dxd1dk[0] + alpha * dxd1dk[1];
|
||||
dxd3dk[1] = dxd1dk[1];
|
||||
|
||||
Vec2d dxd3dalpha(xd1[1], 0);
|
||||
|
||||
//final jacobian
|
||||
Jn[0].dom = f[0] * dxd3dom[0];
|
||||
Jn[1].dom = f[1] * dxd3dom[1];
|
||||
|
||||
Jn[0].dT = f[0] * dxd3dT[0];
|
||||
Jn[1].dT = f[1] * dxd3dT[1];
|
||||
|
||||
Jn[0].dk = f[0] * dxd3dk[0];
|
||||
Jn[1].dk = f[1] * dxd3dk[1];
|
||||
|
||||
Jn[0].dalpha = f[0] * dxd3dalpha[0];
|
||||
Jn[1].dalpha = 0; //f[1] * dxd3dalpha[1];
|
||||
|
||||
Jn[0].df = Vec2d(xd3[0], 0);
|
||||
Jn[1].df = Vec2d(0, xd3[1]);
|
||||
|
||||
Jn[0].dc = Vec2d(1, 0);
|
||||
Jn[1].dc = Vec2d(0, 1);
|
||||
|
||||
//step to jacobian rows for next point
|
||||
Jn += 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// cv::fisheye::distortPoints
|
||||
|
||||
void cv::fisheye::distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
// will support only 2-channel data now for points
|
||||
CV_Assert(undistorted.type() == CV_32FC2 || undistorted.type() == CV_64FC2);
|
||||
distorted.create(undistorted.size(), undistorted.type());
|
||||
size_t n = undistorted.total();
|
||||
|
||||
CV_Assert(K.size() == Size(3,3) && (K.type() == CV_32F || K.type() == CV_64F) && D.total() == 4);
|
||||
|
||||
Vec2d f, c;
|
||||
if (K.depth() == CV_32F)
|
||||
{
|
||||
Matx33f camMat = K.getMat();
|
||||
f = Vec2f(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2f(camMat(0, 2), camMat(1, 2));
|
||||
}
|
||||
else
|
||||
{
|
||||
Matx33d camMat = K.getMat();
|
||||
f = Vec2d(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2d(camMat(0 ,2), camMat(1, 2));
|
||||
}
|
||||
|
||||
Vec4d k = D.depth() == CV_32F ? (Vec4d)*D.getMat().ptr<Vec4f>(): *D.getMat().ptr<Vec4d>();
|
||||
|
||||
const Vec2f* Xf = undistorted.getMat().ptr<Vec2f>();
|
||||
const Vec2d* Xd = undistorted.getMat().ptr<Vec2d>();
|
||||
Vec2f *xpf = distorted.getMat().ptr<Vec2f>();
|
||||
Vec2d *xpd = distorted.getMat().ptr<Vec2d>();
|
||||
|
||||
for(size_t i = 0; i < n; ++i)
|
||||
{
|
||||
Vec2d x = undistorted.depth() == CV_32F ? (Vec2d)Xf[i] : Xd[i];
|
||||
|
||||
double r2 = x.dot(x);
|
||||
double r = std::sqrt(r2);
|
||||
|
||||
// Angle of the incoming ray:
|
||||
double theta = std::atan(r);
|
||||
|
||||
double theta2 = theta*theta, theta3 = theta2*theta, theta4 = theta2*theta2, theta5 = theta4*theta,
|
||||
theta6 = theta3*theta3, theta7 = theta6*theta, theta8 = theta4*theta4, theta9 = theta8*theta;
|
||||
|
||||
double theta_d = theta + k[0]*theta3 + k[1]*theta5 + k[2]*theta7 + k[3]*theta9;
|
||||
|
||||
double inv_r = r > 1e-8 ? 1.0/r : 1;
|
||||
double cdist = r > 1e-8 ? theta_d * inv_r : 1;
|
||||
|
||||
Vec2d xd1 = x * cdist;
|
||||
Vec2d xd3(xd1[0] + alpha*xd1[1], xd1[1]);
|
||||
Vec2d final_point(xd3[0] * f[0] + c[0], xd3[1] * f[1] + c[1]);
|
||||
|
||||
if (undistorted.depth() == CV_32F)
|
||||
xpf[i] = final_point;
|
||||
else
|
||||
xpd[i] = final_point;
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// cv::fisheye::undistortPoints
|
||||
|
||||
void cv::fisheye::undistortPoints( InputArray distorted, OutputArray undistorted, InputArray K, InputArray D,
|
||||
InputArray R, InputArray P, TermCriteria criteria)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
// will support only 2-channel data now for points
|
||||
CV_Assert(distorted.type() == CV_32FC2 || distorted.type() == CV_64FC2);
|
||||
undistorted.create(distorted.size(), distorted.type());
|
||||
|
||||
CV_Assert(P.empty() || P.size() == Size(3, 3) || P.size() == Size(4, 3));
|
||||
CV_Assert(R.empty() || R.size() == Size(3, 3) || R.total() * R.channels() == 3);
|
||||
CV_Assert(D.total() == 4 && K.size() == Size(3, 3) && (K.depth() == CV_32F || K.depth() == CV_64F));
|
||||
|
||||
CV_Assert(criteria.isValid());
|
||||
|
||||
Vec2d f, c;
|
||||
if (K.depth() == CV_32F)
|
||||
{
|
||||
Matx33f camMat = K.getMat();
|
||||
f = Vec2f(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2f(camMat(0, 2), camMat(1, 2));
|
||||
}
|
||||
else
|
||||
{
|
||||
Matx33d camMat = K.getMat();
|
||||
f = Vec2d(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2d(camMat(0, 2), camMat(1, 2));
|
||||
}
|
||||
|
||||
Vec4d k = D.depth() == CV_32F ? (Vec4d)*D.getMat().ptr<Vec4f>(): *D.getMat().ptr<Vec4d>();
|
||||
|
||||
Matx33d RR = Matx33d::eye();
|
||||
if (!R.empty() && R.total() * R.channels() == 3)
|
||||
{
|
||||
Vec3d rvec;
|
||||
R.getMat().convertTo(rvec, CV_64F);
|
||||
RR = cv::Affine3d(rvec).rotation();
|
||||
}
|
||||
else if (!R.empty() && R.size() == Size(3, 3))
|
||||
R.getMat().convertTo(RR, CV_64F);
|
||||
|
||||
if(!P.empty())
|
||||
{
|
||||
Matx33d PP;
|
||||
P.getMat().colRange(0, 3).convertTo(PP, CV_64F);
|
||||
RR = PP * RR;
|
||||
}
|
||||
|
||||
// start undistorting
|
||||
const Vec2f* srcf = distorted.getMat().ptr<Vec2f>();
|
||||
const Vec2d* srcd = distorted.getMat().ptr<Vec2d>();
|
||||
Vec2f* dstf = undistorted.getMat().ptr<Vec2f>();
|
||||
Vec2d* dstd = undistorted.getMat().ptr<Vec2d>();
|
||||
|
||||
size_t n = distorted.total();
|
||||
int sdepth = distorted.depth();
|
||||
|
||||
const bool isEps = (criteria.type & TermCriteria::EPS) != 0;
|
||||
|
||||
/* Define max count for solver iterations */
|
||||
int maxCount = std::numeric_limits<int>::max();
|
||||
if (criteria.type & TermCriteria::MAX_ITER) {
|
||||
maxCount = criteria.maxCount;
|
||||
}
|
||||
|
||||
|
||||
for(size_t i = 0; i < n; i++ )
|
||||
{
|
||||
Vec2d pi = sdepth == CV_32F ? (Vec2d)srcf[i] : srcd[i]; // image point
|
||||
Vec2d pw((pi[0] - c[0])/f[0], (pi[1] - c[1])/f[1]); // world point
|
||||
|
||||
double theta_d = sqrt(pw[0]*pw[0] + pw[1]*pw[1]);
|
||||
|
||||
// the current camera model is only valid up to 180 FOV
|
||||
// for larger FOV the loop below does not converge
|
||||
// clip values so we still get plausible results for super fisheye images > 180 grad
|
||||
theta_d = min(max(-CV_PI/2., theta_d), CV_PI/2.);
|
||||
|
||||
bool converged = false;
|
||||
double theta = theta_d;
|
||||
|
||||
double scale = 0.0;
|
||||
|
||||
if (!isEps || fabs(theta_d) > criteria.epsilon)
|
||||
{
|
||||
// compensate distortion iteratively using Newton method
|
||||
|
||||
for (int j = 0; j < maxCount; j++)
|
||||
{
|
||||
double theta2 = theta*theta, theta4 = theta2*theta2, theta6 = theta4*theta2, theta8 = theta6*theta2;
|
||||
double k0_theta2 = k[0] * theta2, k1_theta4 = k[1] * theta4, k2_theta6 = k[2] * theta6, k3_theta8 = k[3] * theta8;
|
||||
/* new_theta = theta - theta_fix, theta_fix = f0(theta) / f0'(theta) */
|
||||
double theta_fix = (theta * (1 + k0_theta2 + k1_theta4 + k2_theta6 + k3_theta8) - theta_d) /
|
||||
(1 + 3*k0_theta2 + 5*k1_theta4 + 7*k2_theta6 + 9*k3_theta8);
|
||||
theta = theta - theta_fix;
|
||||
|
||||
if (isEps && (fabs(theta_fix) < criteria.epsilon))
|
||||
{
|
||||
converged = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
scale = std::tan(theta) / theta_d;
|
||||
}
|
||||
else
|
||||
{
|
||||
converged = true;
|
||||
}
|
||||
|
||||
// theta is monotonously increasing or decreasing depending on the sign of theta
|
||||
// if theta has flipped, it might converge due to symmetry but on the opposite of the camera center
|
||||
// so we can check whether theta has changed the sign during the optimization
|
||||
bool theta_flipped = ((theta_d < 0 && theta > 0) || (theta_d > 0 && theta < 0));
|
||||
|
||||
if ((converged || !isEps) && !theta_flipped)
|
||||
{
|
||||
Vec2d pu = pw * scale; //undistorted point
|
||||
|
||||
// reproject
|
||||
Vec3d pr = RR * Vec3d(pu[0], pu[1], 1.0); // rotated point optionally multiplied by new camera matrix
|
||||
Vec2d fi(pr[0]/pr[2], pr[1]/pr[2]); // final
|
||||
|
||||
if( sdepth == CV_32F )
|
||||
dstf[i] = fi;
|
||||
else
|
||||
dstd[i] = fi;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Vec2d fi(std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN());
|
||||
Vec2d fi(-1000000.0, -1000000.0);
|
||||
|
||||
if( sdepth == CV_32F )
|
||||
dstf[i] = fi;
|
||||
else
|
||||
dstd[i] = fi;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// cv::fisheye::initUndistortRectifyMap
|
||||
|
||||
void cv::fisheye::initUndistortRectifyMap( InputArray K, InputArray D, InputArray R, InputArray P,
|
||||
const cv::Size& size, int m1type, OutputArray map1, OutputArray map2 )
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
CV_Assert( m1type == CV_16SC2 || m1type == CV_32F || m1type <=0 );
|
||||
map1.create( size, m1type <= 0 ? CV_16SC2 : m1type );
|
||||
map2.create( size, map1.type() == CV_16SC2 ? CV_16UC1 : CV_32F );
|
||||
|
||||
CV_Assert((K.depth() == CV_32F || K.depth() == CV_64F) && (D.depth() == CV_32F || D.depth() == CV_64F));
|
||||
CV_Assert((P.empty() || P.depth() == CV_32F || P.depth() == CV_64F) && (R.empty() || R.depth() == CV_32F || R.depth() == CV_64F));
|
||||
CV_Assert(K.size() == Size(3, 3) && (D.empty() || D.total() == 4));
|
||||
CV_Assert(R.empty() || R.size() == Size(3, 3) || R.total() * R.channels() == 3);
|
||||
CV_Assert(P.empty() || P.size() == Size(3, 3) || P.size() == Size(4, 3));
|
||||
|
||||
Vec2d f, c;
|
||||
if (K.depth() == CV_32F)
|
||||
{
|
||||
Matx33f camMat = K.getMat();
|
||||
f = Vec2f(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2f(camMat(0, 2), camMat(1, 2));
|
||||
}
|
||||
else
|
||||
{
|
||||
Matx33d camMat = K.getMat();
|
||||
f = Vec2d(camMat(0, 0), camMat(1, 1));
|
||||
c = Vec2d(camMat(0, 2), camMat(1, 2));
|
||||
}
|
||||
|
||||
Vec4d k = Vec4d::all(0);
|
||||
if (!D.empty())
|
||||
k = D.depth() == CV_32F ? (Vec4d)*D.getMat().ptr<Vec4f>(): *D.getMat().ptr<Vec4d>();
|
||||
|
||||
Matx33d RR = Matx33d::eye();
|
||||
if (!R.empty() && R.total() * R.channels() == 3)
|
||||
{
|
||||
Vec3d rvec;
|
||||
R.getMat().convertTo(rvec, CV_64F);
|
||||
RR = Affine3d(rvec).rotation();
|
||||
}
|
||||
else if (!R.empty() && R.size() == Size(3, 3))
|
||||
R.getMat().convertTo(RR, CV_64F);
|
||||
|
||||
Matx33d PP = Matx33d::eye();
|
||||
if (!P.empty())
|
||||
P.getMat().colRange(0, 3).convertTo(PP, CV_64F);
|
||||
|
||||
Matx33d iR = (PP * RR).inv(cv::DECOMP_SVD);
|
||||
|
||||
for( int i = 0; i < size.height; ++i)
|
||||
{
|
||||
float* m1f = map1.getMat().ptr<float>(i);
|
||||
float* m2f = map2.getMat().ptr<float>(i);
|
||||
short* m1 = (short*)m1f;
|
||||
ushort* m2 = (ushort*)m2f;
|
||||
|
||||
double _x = i*iR(0, 1) + iR(0, 2),
|
||||
_y = i*iR(1, 1) + iR(1, 2),
|
||||
_w = i*iR(2, 1) + iR(2, 2);
|
||||
|
||||
for( int j = 0; j < size.width; ++j)
|
||||
{
|
||||
double u, v;
|
||||
if( _w <= 0)
|
||||
{
|
||||
u = (_x > 0) ? -std::numeric_limits<double>::infinity() : std::numeric_limits<double>::infinity();
|
||||
v = (_y > 0) ? -std::numeric_limits<double>::infinity() : std::numeric_limits<double>::infinity();
|
||||
}
|
||||
else
|
||||
{
|
||||
double x = _x/_w, y = _y/_w;
|
||||
|
||||
double r = sqrt(x*x + y*y);
|
||||
double theta = std::atan(r);
|
||||
|
||||
double theta2 = theta*theta, theta4 = theta2*theta2, theta6 = theta4*theta2, theta8 = theta4*theta4;
|
||||
double theta_d = theta * (1 + k[0]*theta2 + k[1]*theta4 + k[2]*theta6 + k[3]*theta8);
|
||||
|
||||
double scale = (r == 0) ? 1.0 : theta_d / r;
|
||||
u = f[0]*x*scale + c[0];
|
||||
v = f[1]*y*scale + c[1];
|
||||
}
|
||||
|
||||
if( m1type == CV_16SC2 )
|
||||
{
|
||||
int iu = cv::saturate_cast<int>(u*cv::INTER_TAB_SIZE);
|
||||
int iv = cv::saturate_cast<int>(v*cv::INTER_TAB_SIZE);
|
||||
m1[j*2+0] = (short)(iu >> cv::INTER_BITS);
|
||||
m1[j*2+1] = (short)(iv >> cv::INTER_BITS);
|
||||
m2[j] = (ushort)((iv & (cv::INTER_TAB_SIZE-1))*cv::INTER_TAB_SIZE + (iu & (cv::INTER_TAB_SIZE-1)));
|
||||
}
|
||||
else if( m1type == CV_32FC1 )
|
||||
{
|
||||
m1f[j] = (float)u;
|
||||
m2f[j] = (float)v;
|
||||
}
|
||||
|
||||
_x += iR(0, 0);
|
||||
_y += iR(1, 0);
|
||||
_w += iR(2, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// cv::fisheye::undistortImage
|
||||
|
||||
void cv::fisheye::undistortImage(InputArray distorted, OutputArray undistorted,
|
||||
InputArray K, InputArray D, InputArray Knew, const Size& new_size)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Size size = !new_size.empty() ? new_size : distorted.size();
|
||||
|
||||
Mat map1, map2;
|
||||
fisheye::initUndistortRectifyMap(K, D, Matx33d::eye(), Knew, size, CV_16SC2, map1, map2 );
|
||||
cv::remap(distorted, undistorted, map1, map2, INTER_LINEAR, BORDER_CONSTANT);
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// cv::fisheye::estimateNewCameraMatrixForUndistortRectify
|
||||
|
||||
void cv::fisheye::estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
|
||||
OutputArray P, double balance, const Size& new_size, double fov_scale)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
CV_Assert( K.size() == Size(3, 3) && (K.depth() == CV_32F || K.depth() == CV_64F));
|
||||
CV_Assert(D.empty() || ((D.total() == 4) && (D.depth() == CV_32F || D.depth() == CV_64F)));
|
||||
|
||||
int w = image_size.width, h = image_size.height;
|
||||
balance = std::min(std::max(balance, 0.0), 1.0);
|
||||
|
||||
Mat points(1, 4, CV_64FC2);
|
||||
Vec2d* pptr = points.ptr<Vec2d>();
|
||||
pptr[0] = Vec2d(w/2, 0);
|
||||
pptr[1] = Vec2d(w, h/2);
|
||||
pptr[2] = Vec2d(w/2, h);
|
||||
pptr[3] = Vec2d(0, h/2);
|
||||
|
||||
fisheye::undistortPoints(points, points, K, D, R);
|
||||
cv::Scalar center_mass = mean(points);
|
||||
Vec2d cn(center_mass.val);
|
||||
|
||||
double aspect_ratio = (K.depth() == CV_32F) ? K.getMat().at<float >(0,0)/K.getMat().at<float> (1,1)
|
||||
: K.getMat().at<double>(0,0)/K.getMat().at<double>(1,1);
|
||||
|
||||
// convert to identity ratio
|
||||
cn[1] *= aspect_ratio;
|
||||
for(size_t i = 0; i < points.total(); ++i)
|
||||
pptr[i][1] *= aspect_ratio;
|
||||
|
||||
double minx = DBL_MAX, miny = DBL_MAX, maxx = -DBL_MAX, maxy = -DBL_MAX;
|
||||
for(size_t i = 0; i < points.total(); ++i)
|
||||
{
|
||||
miny = std::min(miny, pptr[i][1]);
|
||||
maxy = std::max(maxy, pptr[i][1]);
|
||||
minx = std::min(minx, pptr[i][0]);
|
||||
maxx = std::max(maxx, pptr[i][0]);
|
||||
}
|
||||
|
||||
double f1 = w * 0.5/(cn[0] - minx);
|
||||
double f2 = w * 0.5/(maxx - cn[0]);
|
||||
double f3 = h * 0.5 * aspect_ratio/(cn[1] - miny);
|
||||
double f4 = h * 0.5 * aspect_ratio/(maxy - cn[1]);
|
||||
|
||||
double fmin = std::min(f1, std::min(f2, std::min(f3, f4)));
|
||||
double fmax = std::max(f1, std::max(f2, std::max(f3, f4)));
|
||||
|
||||
double f = balance * fmin + (1.0 - balance) * fmax;
|
||||
f *= fov_scale > 0 ? 1.0/fov_scale : 1.0;
|
||||
|
||||
Vec2d new_f(f, f), new_c = -cn * f + Vec2d(w, h * aspect_ratio) * 0.5;
|
||||
|
||||
// restore aspect ratio
|
||||
new_f[1] /= aspect_ratio;
|
||||
new_c[1] /= aspect_ratio;
|
||||
|
||||
if (!new_size.empty())
|
||||
{
|
||||
double rx = new_size.width /(double)image_size.width;
|
||||
double ry = new_size.height/(double)image_size.height;
|
||||
|
||||
new_f[0] *= rx; new_f[1] *= ry;
|
||||
new_c[0] *= rx; new_c[1] *= ry;
|
||||
}
|
||||
|
||||
Mat(Matx33d(new_f[0], 0, new_c[0],
|
||||
0, new_f[1], new_c[1],
|
||||
0, 0, 1)).convertTo(P, P.empty() ? K.type() : P.type());
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// cv::fisheye::stereoRectify
|
||||
|
||||
void cv::fisheye::stereoRectify( InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size& imageSize,
|
||||
InputArray _R, InputArray _tvec, OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2,
|
||||
OutputArray Q, int flags, const Size& newImageSize, double balance, double fov_scale)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
CV_Assert((_R.size() == Size(3, 3) || _R.total() * _R.channels() == 3) && (_R.depth() == CV_32F || _R.depth() == CV_64F));
|
||||
CV_Assert(_tvec.total() * _tvec.channels() == 3 && (_tvec.depth() == CV_32F || _tvec.depth() == CV_64F));
|
||||
|
||||
|
||||
Mat aaa = _tvec.getMat().reshape(3, 1);
|
||||
|
||||
Vec3d rvec; // Rodrigues vector
|
||||
if (_R.size() == Size(3, 3))
|
||||
{
|
||||
Matx33d rmat;
|
||||
_R.getMat().convertTo(rmat, CV_64F);
|
||||
rvec = Affine3d(rmat).rvec();
|
||||
}
|
||||
else if (_R.total() * _R.channels() == 3)
|
||||
_R.getMat().convertTo(rvec, CV_64F);
|
||||
|
||||
Vec3d tvec;
|
||||
_tvec.getMat().convertTo(tvec, CV_64F);
|
||||
|
||||
// rectification algorithm
|
||||
rvec *= -0.5; // get average rotation
|
||||
|
||||
Matx33d r_r;
|
||||
Rodrigues(rvec, r_r); // rotate cameras to same orientation by averaging
|
||||
|
||||
Vec3d t = r_r * tvec;
|
||||
Vec3d uu(t[0] > 0 ? 1 : -1, 0, 0);
|
||||
|
||||
// calculate global Z rotation
|
||||
Vec3d ww = t.cross(uu);
|
||||
double nw = norm(ww);
|
||||
if (nw > 0.0)
|
||||
ww *= std::acos(fabs(t[0])/cv::norm(t))/nw;
|
||||
|
||||
Matx33d wr;
|
||||
Rodrigues(ww, wr);
|
||||
|
||||
// apply to both views
|
||||
Matx33d ri1 = wr * r_r.t();
|
||||
Mat(ri1, false).convertTo(R1, R1.empty() ? CV_64F : R1.type());
|
||||
Matx33d ri2 = wr * r_r;
|
||||
Mat(ri2, false).convertTo(R2, R2.empty() ? CV_64F : R2.type());
|
||||
Vec3d tnew = ri2 * tvec;
|
||||
|
||||
// calculate projection/camera matrices. these contain the relevant rectified image internal params (fx, fy=fx, cx, cy)
|
||||
Matx33d newK1, newK2;
|
||||
estimateNewCameraMatrixForUndistortRectify(K1, D1, imageSize, R1, newK1, balance, newImageSize, fov_scale);
|
||||
estimateNewCameraMatrixForUndistortRectify(K2, D2, imageSize, R2, newK2, balance, newImageSize, fov_scale);
|
||||
|
||||
double fc_new = std::min(newK1(1,1), newK2(1,1));
|
||||
Point2d cc_new[2] = { Vec2d(newK1(0, 2), newK1(1, 2)), Vec2d(newK2(0, 2), newK2(1, 2)) };
|
||||
|
||||
// Vertical focal length must be the same for both images to keep the epipolar constraint use fy for fx also.
|
||||
// For simplicity, set the principal points for both cameras to be the average
|
||||
// of the two principal points (either one of or both x- and y- coordinates)
|
||||
if( flags & CALIB_ZERO_DISPARITY )
|
||||
cc_new[0] = cc_new[1] = (cc_new[0] + cc_new[1]) * 0.5;
|
||||
else
|
||||
cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5;
|
||||
|
||||
Mat(Matx34d(fc_new, 0, cc_new[0].x, 0,
|
||||
0, fc_new, cc_new[0].y, 0,
|
||||
0, 0, 1, 0), false).convertTo(P1, P1.empty() ? CV_64F : P1.type());
|
||||
|
||||
Mat(Matx34d(fc_new, 0, cc_new[1].x, tnew[0]*fc_new, // baseline * focal length;,
|
||||
0, fc_new, cc_new[1].y, 0,
|
||||
0, 0, 1, 0), false).convertTo(P2, P2.empty() ? CV_64F : P2.type());
|
||||
|
||||
if (Q.needed())
|
||||
Mat(Matx44d(1, 0, 0, -cc_new[0].x,
|
||||
0, 1, 0, -cc_new[0].y,
|
||||
0, 0, 0, fc_new,
|
||||
0, 0, -1./tnew[0], (cc_new[0].x - cc_new[1].x)/tnew[0]), false).convertTo(Q, Q.empty() ? CV_64F : Q.depth());
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// cv::fisheye::calibrate
|
||||
|
||||
|
@ -1226,10 +1226,6 @@ public:
|
||||
~CV_StereoCalibrationTest();
|
||||
void clear();
|
||||
protected:
|
||||
bool checkPandROI( int test_case_idx,
|
||||
const Mat& M, const Mat& D, const Mat& R,
|
||||
const Mat& P, Size imgsize, Rect roi );
|
||||
|
||||
// covers of tested functions
|
||||
virtual double calibrateStereoCamera( const vector<vector<Point3f> >& objectPoints,
|
||||
const vector<vector<Point2f> >& imagePoints1,
|
||||
@ -1278,52 +1274,6 @@ void CV_StereoCalibrationTest::clear()
|
||||
cvtest::BaseTest::clear();
|
||||
}
|
||||
|
||||
bool CV_StereoCalibrationTest::checkPandROI( int test_case_idx, const Mat& M, const Mat& D, const Mat& R,
|
||||
const Mat& P, Size imgsize, Rect roi )
|
||||
{
|
||||
const double eps = 0.05;
|
||||
const int N = 21;
|
||||
int x, y, k;
|
||||
vector<Point2f> pts, upts;
|
||||
|
||||
// step 1. check that all the original points belong to the destination image
|
||||
for( y = 0; y < N; y++ )
|
||||
for( x = 0; x < N; x++ )
|
||||
pts.push_back(Point2f((float)x*imgsize.width/(N-1), (float)y*imgsize.height/(N-1)));
|
||||
|
||||
undistortPoints(pts, upts, M, D, R, P );
|
||||
for( k = 0; k < N*N; k++ )
|
||||
if( upts[k].x < -imgsize.width*eps || upts[k].x > imgsize.width*(1+eps) ||
|
||||
upts[k].y < -imgsize.height*eps || upts[k].y > imgsize.height*(1+eps) )
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Test #%d. The point (%g, %g) was mapped to (%g, %g) which is out of image\n",
|
||||
test_case_idx, pts[k].x, pts[k].y, upts[k].x, upts[k].y);
|
||||
return false;
|
||||
}
|
||||
|
||||
// step 2. check that all the points inside ROI belong to the original source image
|
||||
Mat temp(imgsize, CV_8U), utemp, map1, map2;
|
||||
temp = Scalar::all(1);
|
||||
initUndistortRectifyMap(M, D, R, P, imgsize, CV_16SC2, map1, map2);
|
||||
remap(temp, utemp, map1, map2, INTER_LINEAR);
|
||||
|
||||
if(roi.x < 0 || roi.y < 0 || roi.x + roi.width > imgsize.width || roi.y + roi.height > imgsize.height)
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Test #%d. The ROI=(%d, %d, %d, %d) is outside of the imge rectangle\n",
|
||||
test_case_idx, roi.x, roi.y, roi.width, roi.height);
|
||||
return false;
|
||||
}
|
||||
double s = sum(utemp(roi))[0];
|
||||
if( s > roi.area() || roi.area() - s > roi.area()*(1-eps) )
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Test #%d. The ratio of black pixels inside the valid ROI (~%g%%) is too large\n",
|
||||
test_case_idx, s*100./roi.area());
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int CV_StereoCalibrationTest::compare(double* val, double* ref_val, int len,
|
||||
double eps, const char* param_name )
|
||||
{
|
||||
@ -1529,38 +1479,6 @@ void CV_StereoCalibrationTest::run( int )
|
||||
Mat R1, R2, P1, P2, Q;
|
||||
Rect roi1, roi2;
|
||||
rectify(M1, D1, M2, D2, imgsize, R, T, R1, R2, P1, P2, Q, 1, imgsize, &roi1, &roi2, 0);
|
||||
Mat eye33 = Mat::eye(3,3,CV_64F);
|
||||
Mat R1t = R1.t(), R2t = R2.t();
|
||||
|
||||
if( cvtest::norm(R1t*R1 - eye33, NORM_L2) > 0.01 ||
|
||||
cvtest::norm(R2t*R2 - eye33, NORM_L2) > 0.01 ||
|
||||
abs(determinant(F)) > 0.01)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "The computed (by rectify) R1 and R2 are not orthogonal,"
|
||||
"or the computed (by calibrate) F is not singular, testcase %d\n", testcase);
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
return;
|
||||
}
|
||||
|
||||
if(!checkPandROI(testcase, M1, D1, R1, P1, imgsize, roi1))
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
if(!checkPandROI(testcase, M2, D2, R2, P2, imgsize, roi2))
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
//check that Tx after rectification is equal to distance between cameras
|
||||
double tx = fabs(P2.at<double>(0, 3) / P2.at<double>(0, 0));
|
||||
if (fabs(tx - cvtest::norm(T, NORM_L2)) > 1e-5)
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
//check that Q reprojects points before the camera
|
||||
double testPoint[4] = {0.0, 0.0, 100.0, 1.0};
|
||||
@ -1826,7 +1744,7 @@ void CV_StereoCalibrationTest_CPP::rectify( const Mat& cameraMatrix1, const Mat&
|
||||
Rect* validPixROI1, Rect* validPixROI2, int flags )
|
||||
{
|
||||
stereoRectify( cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2,
|
||||
imageSize, R, T, R1, R2, P1, P2, Q, flags, alpha, newImageSize,validPixROI1, validPixROI2 );
|
||||
imageSize, R, T, R1, R2, P1, P2, Q, flags, alpha, newImageSize, validPixROI1, validPixROI2 );
|
||||
}
|
||||
|
||||
bool CV_StereoCalibrationTest_CPP::rectifyUncalibrated( const Mat& points1,
|
||||
@ -2223,82 +2141,6 @@ TEST(Calib3d_StereoCalibrate_CPP, extended)
|
||||
EXPECT_TRUE(err.total() == 2);
|
||||
}
|
||||
|
||||
TEST(Calib3d_StereoCalibrate, regression_10791)
|
||||
{
|
||||
const Matx33d M1(
|
||||
853.1387981631528, 0, 704.154907802121,
|
||||
0, 853.6445089162528, 520.3600712930319,
|
||||
0, 0, 1
|
||||
);
|
||||
const Matx33d M2(
|
||||
848.6090216909176, 0, 701.6162856852185,
|
||||
0, 849.7040162357157, 509.1864036137,
|
||||
0, 0, 1
|
||||
);
|
||||
const Matx<double, 14, 1> D1(-6.463598629567206, 79.00104930508179, -0.0001006144444464403, -0.0005437499822299972,
|
||||
12.56900616588467, -6.056719942752855, 76.3842481414836, 45.57460250612659,
|
||||
0, 0, 0, 0, 0, 0);
|
||||
const Matx<double, 14, 1> D2(0.6123436439798265, -0.4671756923224087, -0.0001261947899033442, -0.000597334584036978,
|
||||
-0.05660119809538371, 1.037075740629769, -0.3076042835831711, -0.2502169324283623,
|
||||
0, 0, 0, 0, 0, 0);
|
||||
|
||||
const Matx33d R(
|
||||
0.9999926627018476, -0.0001095586963765905, 0.003829169539302921,
|
||||
0.0001021735876758584, 0.9999981346680941, 0.0019287874145156,
|
||||
-0.003829373712065528, -0.001928382022437616, 0.9999908085776333
|
||||
);
|
||||
const Matx31d T(-58.9161771697128, -0.01581306249996402, -0.8492960216760961);
|
||||
|
||||
const Size imageSize(1280, 960);
|
||||
|
||||
Mat R1, R2, P1, P2, Q;
|
||||
Rect roi1, roi2;
|
||||
stereoRectify(M1, D1, M2, D2, imageSize, R, T,
|
||||
R1, R2, P1, P2, Q,
|
||||
CALIB_ZERO_DISPARITY, 1, imageSize, &roi1, &roi2);
|
||||
|
||||
EXPECT_GE(roi1.area(), 400*300) << roi1;
|
||||
EXPECT_GE(roi2.area(), 400*300) << roi2;
|
||||
}
|
||||
|
||||
TEST(Calib3d_StereoCalibrate, regression_11131)
|
||||
{
|
||||
const Matx33d M1(
|
||||
1457.572438721727, 0, 1212.945694211622,
|
||||
0, 1457.522226502963, 1007.32058848921,
|
||||
0, 0, 1
|
||||
);
|
||||
const Matx33d M2(
|
||||
1460.868570835972, 0, 1215.024068023046,
|
||||
0, 1460.791367088, 1011.107202932225,
|
||||
0, 0, 1
|
||||
);
|
||||
const Matx<double, 5, 1> D1(0, 0, 0, 0, 0);
|
||||
const Matx<double, 5, 1> D2(0, 0, 0, 0, 0);
|
||||
|
||||
const Matx33d R(
|
||||
0.9985404059825475, 0.02963547172078553, -0.04515303352041626,
|
||||
-0.03103795276460111, 0.9990471552537432, -0.03068268351343364,
|
||||
0.04420071389006859, 0.03203935697372317, 0.9985087763742083
|
||||
);
|
||||
const Matx31d T(0.9995500167379527, 0.0116311595111068, 0.02764923448462666);
|
||||
|
||||
const Size imageSize(2456, 2058);
|
||||
|
||||
Mat R1, R2, P1, P2, Q;
|
||||
Rect roi1, roi2;
|
||||
stereoRectify(M1, D1, M2, D2, imageSize, R, T,
|
||||
R1, R2, P1, P2, Q,
|
||||
CALIB_ZERO_DISPARITY, 1, imageSize, &roi1, &roi2);
|
||||
|
||||
EXPECT_GT(P1.at<double>(0, 0), 0);
|
||||
EXPECT_GT(P2.at<double>(0, 0), 0);
|
||||
EXPECT_GT(R1.at<double>(0, 0), 0);
|
||||
EXPECT_GT(R2.at<double>(0, 0), 0);
|
||||
EXPECT_GE(roi1.area(), 400*300) << roi1;
|
||||
EXPECT_GE(roi2.area(), 400*300) << roi2;
|
||||
}
|
||||
|
||||
TEST(Calib_StereoCalibrate, regression_22421)
|
||||
{
|
||||
cv::Mat K1, K2, dist1, dist2;
|
||||
|
@ -63,347 +63,37 @@ protected:
|
||||
|
||||
protected:
|
||||
std::string combine(const std::string& _item1, const std::string& _item2);
|
||||
static void merge4(const cv::Mat& tl, const cv::Mat& tr, const cv::Mat& bl, const cv::Mat& br, cv::Mat& merged);
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// TESTS::
|
||||
const cv::Size fisheyeTest::imageSize(1280, 800);
|
||||
|
||||
TEST_F(fisheyeTest, projectPoints)
|
||||
{
|
||||
double cols = this->imageSize.width,
|
||||
rows = this->imageSize.height;
|
||||
|
||||
const int N = 20;
|
||||
cv::Mat distorted0(1, N*N, CV_64FC2), undist1, undist2, distorted1, distorted2;
|
||||
undist2.create(distorted0.size(), CV_MAKETYPE(distorted0.depth(), 3));
|
||||
cv::Vec2d* pts = distorted0.ptr<cv::Vec2d>();
|
||||
|
||||
cv::Vec2d c(this->K(0, 2), this->K(1, 2));
|
||||
for(int y = 0, k = 0; y < N; ++y)
|
||||
for(int x = 0; x < N; ++x)
|
||||
{
|
||||
cv::Vec2d point(x*cols/(N-1.f), y*rows/(N-1.f));
|
||||
pts[k++] = (point - c) * 0.85 + c;
|
||||
}
|
||||
|
||||
cv::fisheye::undistortPoints(distorted0, undist1, this->K, this->D);
|
||||
|
||||
cv::Vec2d* u1 = undist1.ptr<cv::Vec2d>();
|
||||
cv::Vec3d* u2 = undist2.ptr<cv::Vec3d>();
|
||||
for(int i = 0; i < (int)distorted0.total(); ++i)
|
||||
u2[i] = cv::Vec3d(u1[i][0], u1[i][1], 1.0);
|
||||
|
||||
cv::fisheye::distortPoints(undist1, distorted1, this->K, this->D);
|
||||
cv::fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), this->K, this->D);
|
||||
|
||||
EXPECT_MAT_NEAR(distorted0, distorted1, 1e-10);
|
||||
EXPECT_MAT_NEAR(distorted0, distorted2, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, distortUndistortPoints)
|
||||
{
|
||||
int width = imageSize.width;
|
||||
int height = imageSize.height;
|
||||
|
||||
/* Create test points */
|
||||
std::vector<cv::Point2d> points0Vector;
|
||||
cv::Mat principalPoints = (cv::Mat_<double>(5, 2) << K(0, 2), K(1, 2), // (cx, cy)
|
||||
/* Image corners */
|
||||
0, 0,
|
||||
0, height,
|
||||
width, 0,
|
||||
width, height
|
||||
);
|
||||
|
||||
/* Random points inside image */
|
||||
cv::Mat xy[2] = {};
|
||||
xy[0].create(100, 1, CV_64F);
|
||||
theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, width); // x
|
||||
xy[1].create(100, 1, CV_64F);
|
||||
theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, height); // y
|
||||
|
||||
cv::Mat randomPoints;
|
||||
merge(xy, 2, randomPoints);
|
||||
|
||||
cv::Mat points0;
|
||||
cv::vconcat(principalPoints.reshape(2), randomPoints, points0);
|
||||
|
||||
/* Test with random D set */
|
||||
for (size_t i = 0; i < 10; ++i) {
|
||||
cv::Mat distortion(1, 4, CV_64F);
|
||||
theRNG().fill(distortion, cv::RNG::UNIFORM, -0.00001, 0.00001);
|
||||
|
||||
/* Distort -> Undistort */
|
||||
cv::Mat distortedPoints;
|
||||
cv::fisheye::distortPoints(points0, distortedPoints, K, distortion);
|
||||
cv::Mat undistortedPoints;
|
||||
cv::fisheye::undistortPoints(distortedPoints, undistortedPoints, K, distortion);
|
||||
|
||||
EXPECT_MAT_NEAR(points0, undistortedPoints, 1e-8);
|
||||
|
||||
/* Undistort -> Distort */
|
||||
cv::fisheye::undistortPoints(points0, undistortedPoints, K, distortion);
|
||||
cv::fisheye::distortPoints(undistortedPoints, distortedPoints, K, distortion);
|
||||
|
||||
EXPECT_MAT_NEAR(points0, distortedPoints, 1e-8);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, undistortImage)
|
||||
{
|
||||
// we use it to reduce patch size for images in testdata
|
||||
auto throwAwayHalf = [](Mat img)
|
||||
{
|
||||
int whalf = img.cols / 2, hhalf = img.rows / 2;
|
||||
Rect tl(0, 0, whalf, hhalf), br(whalf, hhalf, whalf, hhalf);
|
||||
img(tl) = 0;
|
||||
img(br) = 0;
|
||||
};
|
||||
|
||||
cv::Matx33d theK = this->K;
|
||||
cv::Mat theD = cv::Mat(this->D);
|
||||
std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg");
|
||||
cv::Matx33d newK = theK;
|
||||
cv::Mat distorted = cv::imread(file), undistorted;
|
||||
{
|
||||
newK(0, 0) = 100;
|
||||
newK(1, 1) = 100;
|
||||
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
|
||||
std::string imageFilename = combine(datasets_repository_path, "new_f_100.png");
|
||||
cv::Mat correct = cv::imread(imageFilename);
|
||||
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
|
||||
|
||||
throwAwayHalf(correct);
|
||||
throwAwayHalf(undistorted);
|
||||
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
||||
}
|
||||
{
|
||||
double balance = 1.0;
|
||||
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance);
|
||||
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
|
||||
std::string imageFilename = combine(datasets_repository_path, "balance_1.0.png");
|
||||
cv::Mat correct = cv::imread(imageFilename);
|
||||
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
|
||||
|
||||
throwAwayHalf(correct);
|
||||
throwAwayHalf(undistorted);
|
||||
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
||||
}
|
||||
|
||||
{
|
||||
double balance = 0.0;
|
||||
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance);
|
||||
cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
|
||||
std::string imageFilename = combine(datasets_repository_path, "balance_0.0.png");
|
||||
cv::Mat correct = cv::imread(imageFilename);
|
||||
ASSERT_FALSE(correct.empty()) << "Correct image " << imageFilename.c_str() << " can not be read" << std::endl;
|
||||
|
||||
throwAwayHalf(correct);
|
||||
throwAwayHalf(undistorted);
|
||||
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, undistortAndDistortImage)
|
||||
{
|
||||
cv::Matx33d K_src = this->K;
|
||||
cv::Mat D_src = cv::Mat(this->D);
|
||||
std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg");
|
||||
cv::Matx33d K_dst = K_src;
|
||||
cv::Mat image = cv::imread(file), image_projected;
|
||||
cv::Vec4d D_dst_vec (-1.0, 0.0, 0.0, 0.0);
|
||||
cv::Mat D_dst = cv::Mat(D_dst_vec);
|
||||
|
||||
int imageWidth = (int)this->imageSize.width;
|
||||
int imageHeight = (int)this->imageSize.height;
|
||||
|
||||
cv::Mat imagePoints(imageHeight, imageWidth, CV_32FC2), undPoints, distPoints;
|
||||
cv::Vec2f* pts = imagePoints.ptr<cv::Vec2f>();
|
||||
|
||||
for(int y = 0, k = 0; y < imageHeight; ++y)
|
||||
{
|
||||
for(int x = 0; x < imageWidth; ++x)
|
||||
{
|
||||
cv::Vec2f point((float)x, (float)y);
|
||||
pts[k++] = point;
|
||||
}
|
||||
}
|
||||
|
||||
cv::fisheye::undistortPoints(imagePoints, undPoints, K_dst, D_dst);
|
||||
cv::fisheye::distortPoints(undPoints, distPoints, K_src, D_src);
|
||||
cv::remap(image, image_projected, distPoints, cv::noArray(), cv::INTER_LINEAR);
|
||||
|
||||
float dx, dy, r_sq;
|
||||
float R_MAX = 250;
|
||||
float imageCenterX = (float)imageWidth / 2;
|
||||
float imageCenterY = (float)imageHeight / 2;
|
||||
|
||||
cv::Mat undPointsGt(imageHeight, imageWidth, CV_32FC2);
|
||||
cv::Mat imageGt(imageHeight, imageWidth, CV_8UC3);
|
||||
|
||||
for(int y = 0; y < imageHeight; ++y)
|
||||
{
|
||||
for(int x = 0; x < imageWidth; ++x)
|
||||
{
|
||||
dx = x - imageCenterX;
|
||||
dy = y - imageCenterY;
|
||||
r_sq = dy * dy + dx * dx;
|
||||
|
||||
Vec2f & und_vec = undPoints.at<Vec2f>(y,x);
|
||||
Vec3b & pixel = image_projected.at<Vec3b>(y,x);
|
||||
|
||||
Vec2f & undist_vec_gt = undPointsGt.at<Vec2f>(y,x);
|
||||
Vec3b & pixel_gt = imageGt.at<Vec3b>(y,x);
|
||||
|
||||
if (r_sq > R_MAX * R_MAX)
|
||||
{
|
||||
|
||||
undist_vec_gt[0] = -1e6;
|
||||
undist_vec_gt[1] = -1e6;
|
||||
|
||||
pixel_gt[0] = 0;
|
||||
pixel_gt[1] = 0;
|
||||
pixel_gt[2] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
undist_vec_gt[0] = und_vec[0];
|
||||
undist_vec_gt[1] = und_vec[1];
|
||||
|
||||
pixel_gt[0] = pixel[0];
|
||||
pixel_gt[1] = pixel[1];
|
||||
pixel_gt[2] = pixel[2];
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
EXPECT_MAT_NEAR(undPoints, undPointsGt, 1e-10);
|
||||
EXPECT_MAT_NEAR(image_projected, imageGt, 1e-10);
|
||||
|
||||
Vec2f dist_point_1 = distPoints.at<Vec2f>(400, 640);
|
||||
Vec2f dist_point_1_gt(640.044f, 400.041f);
|
||||
|
||||
Vec2f dist_point_2 = distPoints.at<Vec2f>(400, 440);
|
||||
Vec2f dist_point_2_gt(409.731f, 403.029f);
|
||||
|
||||
Vec2f dist_point_3 = distPoints.at<Vec2f>(200, 640);
|
||||
Vec2f dist_point_3_gt(643.341f, 168.896f);
|
||||
|
||||
Vec2f dist_point_4 = distPoints.at<Vec2f>(300, 480);
|
||||
Vec2f dist_point_4_gt(463.402f, 290.317f);
|
||||
|
||||
Vec2f dist_point_5 = distPoints.at<Vec2f>(550, 750);
|
||||
Vec2f dist_point_5_gt(797.51f, 611.637f);
|
||||
|
||||
EXPECT_MAT_NEAR(dist_point_1, dist_point_1_gt, 1e-2);
|
||||
EXPECT_MAT_NEAR(dist_point_2, dist_point_2_gt, 1e-2);
|
||||
EXPECT_MAT_NEAR(dist_point_3, dist_point_3_gt, 1e-2);
|
||||
EXPECT_MAT_NEAR(dist_point_4, dist_point_4_gt, 1e-2);
|
||||
EXPECT_MAT_NEAR(dist_point_5, dist_point_5_gt, 1e-2);
|
||||
|
||||
// Add the "--test_debug" to arguments for file output
|
||||
if (cvtest::debugLevel > 0)
|
||||
cv::imwrite(combine(datasets_repository_path, "new_distortion.png"), image_projected);
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, jacobians)
|
||||
{
|
||||
int n = 10;
|
||||
cv::Mat X(1, n, CV_64FC3);
|
||||
cv::Mat om(3, 1, CV_64F), theT(3, 1, CV_64F);
|
||||
cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F);
|
||||
cv::Mat k(4, 1, CV_64F);
|
||||
double alpha;
|
||||
|
||||
cv::RNG r;
|
||||
|
||||
r.fill(X, cv::RNG::NORMAL, 2, 1);
|
||||
X = cv::abs(X) * 10;
|
||||
|
||||
r.fill(om, cv::RNG::NORMAL, 0, 1);
|
||||
om = cv::abs(om);
|
||||
|
||||
r.fill(theT, cv::RNG::NORMAL, 0, 1);
|
||||
theT = cv::abs(theT); theT.at<double>(2) = 4; theT *= 10;
|
||||
|
||||
r.fill(f, cv::RNG::NORMAL, 0, 1);
|
||||
f = cv::abs(f) * 1000;
|
||||
|
||||
r.fill(c, cv::RNG::NORMAL, 0, 1);
|
||||
c = cv::abs(c) * 1000;
|
||||
|
||||
r.fill(k, cv::RNG::NORMAL, 0, 1);
|
||||
k*= 0.5;
|
||||
|
||||
alpha = 0.01*r.gaussian(1);
|
||||
|
||||
cv::Mat x1, x2, xpred;
|
||||
cv::Matx33d theK(f.at<double>(0), alpha * f.at<double>(0), c.at<double>(0),
|
||||
0, f.at<double>(1), c.at<double>(1),
|
||||
const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843,
|
||||
0, 560.506767351568, 381.939424848348,
|
||||
0, 0, 1);
|
||||
|
||||
cv::Mat jacobians;
|
||||
cv::fisheye::projectPoints(X, x1, om, theT, theK, k, alpha, jacobians);
|
||||
const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371);
|
||||
|
||||
//test on T:
|
||||
cv::Mat dT(3, 1, CV_64FC1);
|
||||
r.fill(dT, cv::RNG::NORMAL, 0, 1);
|
||||
dT *= 1e-9*cv::norm(theT);
|
||||
cv::Mat T2 = theT + dT;
|
||||
cv::fisheye::projectPoints(X, x2, om, T2, theK, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
|
||||
//test on om:
|
||||
cv::Mat dom(3, 1, CV_64FC1);
|
||||
r.fill(dom, cv::RNG::NORMAL, 0, 1);
|
||||
dom *= 1e-9*cv::norm(om);
|
||||
cv::Mat om2 = om + dom;
|
||||
cv::fisheye::projectPoints(X, x2, om2, theT, theK, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
const cv::Matx33d fisheyeTest::R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03,
|
||||
-6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02,
|
||||
-5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01);
|
||||
|
||||
//test on f:
|
||||
cv::Mat df(2, 1, CV_64FC1);
|
||||
r.fill(df, cv::RNG::NORMAL, 0, 1);
|
||||
df *= 1e-9*cv::norm(f);
|
||||
cv::Matx33d K2 = theK + cv::Matx33d(df.at<double>(0), df.at<double>(0) * alpha, 0, 0, df.at<double>(1), 0, 0, 0, 0);
|
||||
cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
const cv::Vec3d fisheyeTest::T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04);
|
||||
|
||||
//test on c:
|
||||
cv::Mat dc(2, 1, CV_64FC1);
|
||||
r.fill(dc, cv::RNG::NORMAL, 0, 1);
|
||||
dc *= 1e-9*cv::norm(c);
|
||||
K2 = theK + cv::Matx33d(0, 0, dc.at<double>(0), 0, 0, dc.at<double>(1), 0, 0, 0);
|
||||
cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2)
|
||||
{
|
||||
std::string item1 = _item1, item2 = _item2;
|
||||
std::replace(item1.begin(), item1.end(), '\\', '/');
|
||||
std::replace(item2.begin(), item2.end(), '\\', '/');
|
||||
|
||||
//test on k:
|
||||
cv::Mat dk(4, 1, CV_64FC1);
|
||||
r.fill(dk, cv::RNG::NORMAL, 0, 1);
|
||||
dk *= 1e-9*cv::norm(k);
|
||||
cv::Mat k2 = k + dk;
|
||||
cv::fisheye::projectPoints(X, x2, om, theT, theK, k2, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
if (item1.empty())
|
||||
return item2;
|
||||
|
||||
//test on alpha:
|
||||
cv::Mat dalpha(1, 1, CV_64FC1);
|
||||
r.fill(dalpha, cv::RNG::NORMAL, 0, 1);
|
||||
dalpha *= 1e-9*cv::norm(f);
|
||||
double alpha2 = alpha + dalpha.at<double>(0);
|
||||
K2 = theK + cv::Matx33d(0, f.at<double>(0) * dalpha.at<double>(0), 0, 0, 0, 0, 0, 0, 0);
|
||||
cv::fisheye::projectPoints(X, x2, om, theT, theK, k, alpha2, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
if (item2.empty())
|
||||
return item1;
|
||||
|
||||
char last = item1[item1.size()-1];
|
||||
return item1 + (last != '/' ? "/" : "") + item2;
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, Calibration)
|
||||
@ -605,113 +295,6 @@ TEST_F(fisheyeTest, EstimateUncertainties)
|
||||
CV_Assert(errors.alpha == 0);
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, stereoRectify)
|
||||
{
|
||||
// For consistency purposes
|
||||
CV_StaticAssert(
|
||||
static_cast<int>(cv::CALIB_ZERO_DISPARITY) == static_cast<int>(cv::CALIB_ZERO_DISPARITY),
|
||||
"For the purpose of continuity the following should be true: cv::CALIB_ZERO_DISPARITY == cv::CALIB_ZERO_DISPARITY"
|
||||
);
|
||||
|
||||
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
||||
|
||||
cv::Size calibration_size = this->imageSize, requested_size = calibration_size;
|
||||
cv::Matx33d K1 = this->K, K2 = K1;
|
||||
cv::Mat D1 = cv::Mat(this->D), D2 = D1;
|
||||
|
||||
cv::Vec3d theT = this->T;
|
||||
cv::Matx33d theR = this->R;
|
||||
|
||||
double balance = 0.0, fov_scale = 1.1;
|
||||
cv::Mat R1, R2, P1, P2, Q;
|
||||
cv::fisheye::stereoRectify(K1, D1, K2, D2, calibration_size, theR, theT, R1, R2, P1, P2, Q,
|
||||
cv::CALIB_ZERO_DISPARITY, requested_size, balance, fov_scale);
|
||||
|
||||
// Collected with these CMake flags: -DWITH_IPP=OFF -DCV_ENABLE_INTRINSICS=OFF -DCV_DISABLE_OPTIMIZATION=ON -DCMAKE_BUILD_TYPE=Debug
|
||||
cv::Matx33d R1_ref(
|
||||
0.9992853269091279, 0.03779164101000276, -0.0007920188690205426,
|
||||
-0.03778569762983931, 0.9992646472015868, 0.006511981857667881,
|
||||
0.001037534936357442, -0.006477400933964018, 0.9999784831677112
|
||||
);
|
||||
cv::Matx33d R2_ref(
|
||||
0.9994868963898833, -0.03197579751378937, -0.001868774538573449,
|
||||
0.03196298186616116, 0.9994677442608699, -0.0065265589947392,
|
||||
0.002076471801477729, 0.006463478587068991, 0.9999769555891836
|
||||
);
|
||||
cv::Matx34d P1_ref(
|
||||
420.9684016542647, 0, 586.3059567784627, 0,
|
||||
0, 420.9684016542647, 374.8571836462291, 0,
|
||||
0, 0, 1, 0
|
||||
);
|
||||
cv::Matx34d P2_ref(
|
||||
420.9684016542647, 0, 586.3059567784627, -41.78881938824554,
|
||||
0, 420.9684016542647, 374.8571836462291, 0,
|
||||
0, 0, 1, 0
|
||||
);
|
||||
cv::Matx44d Q_ref(
|
||||
1, 0, 0, -586.3059567784627,
|
||||
0, 1, 0, -374.8571836462291,
|
||||
0, 0, 0, 420.9684016542647,
|
||||
0, 0, 10.07370889670733, -0
|
||||
);
|
||||
|
||||
const double eps = 1e-10;
|
||||
EXPECT_MAT_NEAR(R1_ref, R1, eps);
|
||||
EXPECT_MAT_NEAR(R2_ref, R2, eps);
|
||||
EXPECT_MAT_NEAR(P1_ref, P1, eps);
|
||||
EXPECT_MAT_NEAR(P2_ref, P2, eps);
|
||||
EXPECT_MAT_NEAR(Q_ref, Q, eps);
|
||||
|
||||
if (::testing::Test::HasFailure())
|
||||
{
|
||||
std::cout << "Actual values are:" << std::endl
|
||||
<< "R1 =" << std::endl << R1 << std::endl
|
||||
<< "R2 =" << std::endl << R2 << std::endl
|
||||
<< "P1 =" << std::endl << P1 << std::endl
|
||||
<< "P2 =" << std::endl << P2 << std::endl
|
||||
<< "Q =" << std::endl << Q << std::endl;
|
||||
}
|
||||
|
||||
if (cvtest::debugLevel == 0)
|
||||
return;
|
||||
// DEBUG code is below
|
||||
|
||||
cv::Mat lmapx, lmapy, rmapx, rmapy;
|
||||
//rewrite for fisheye
|
||||
cv::fisheye::initUndistortRectifyMap(K1, D1, R1, P1, requested_size, CV_32F, lmapx, lmapy);
|
||||
cv::fisheye::initUndistortRectifyMap(K2, D2, R2, P2, requested_size, CV_32F, rmapx, rmapy);
|
||||
|
||||
cv::Mat l, r, lundist, rundist;
|
||||
for (int i = 0; i < 34; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("image %d", i));
|
||||
l = imread(combine(folder, cv::format("left/stereo_pair_%03d.jpg", i)), cv::IMREAD_COLOR);
|
||||
r = imread(combine(folder, cv::format("right/stereo_pair_%03d.jpg", i)), cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(l.empty());
|
||||
ASSERT_FALSE(r.empty());
|
||||
|
||||
int ndisp = 128;
|
||||
cv::rectangle(l, cv::Rect(255, 0, 829, l.rows-1), cv::Scalar(0, 0, 255));
|
||||
cv::rectangle(r, cv::Rect(255, 0, 829, l.rows-1), cv::Scalar(0, 0, 255));
|
||||
cv::rectangle(r, cv::Rect(255-ndisp, 0, 829+ndisp ,l.rows-1), cv::Scalar(0, 0, 255));
|
||||
cv::remap(l, lundist, lmapx, lmapy, cv::INTER_LINEAR);
|
||||
cv::remap(r, rundist, rmapx, rmapy, cv::INTER_LINEAR);
|
||||
|
||||
for (int ii = 0; ii < lundist.rows; ii += 20)
|
||||
{
|
||||
cv::line(lundist, cv::Point(0, ii), cv::Point(lundist.cols, ii), cv::Scalar(0, 255, 0));
|
||||
cv::line(rundist, cv::Point(0, ii), cv::Point(lundist.cols, ii), cv::Scalar(0, 255, 0));
|
||||
}
|
||||
|
||||
cv::Mat rectification;
|
||||
merge4(l, r, lundist, rundist, rectification);
|
||||
|
||||
// Add the "--test_debug" to arguments for file output
|
||||
if (cvtest::debugLevel > 0)
|
||||
cv::imwrite(cv::format("fisheye_rectification_AB_%03d.png", i), rectification);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, stereoCalibrate)
|
||||
{
|
||||
const int n_images = 34;
|
||||
@ -992,53 +575,6 @@ TEST_F(fisheyeTest, stereoCalibrateWithPerViewTransformations)
|
||||
EXPECT_NEAR(rmsErrorStereoCalib, rmsErrorFromReprojectedImgPts, 1e-4);
|
||||
}
|
||||
|
||||
|
||||
TEST_F(fisheyeTest, estimateNewCameraMatrixForUndistortRectify)
|
||||
{
|
||||
cv::Size size(1920, 1080);
|
||||
|
||||
cv::Mat K_fullhd(3, 3, cv::DataType<double>::type);
|
||||
K_fullhd.at<double>(0, 0) = 600.44477382;
|
||||
K_fullhd.at<double>(0, 1) = 0.0;
|
||||
K_fullhd.at<double>(0, 2) = 992.06425788;
|
||||
|
||||
K_fullhd.at<double>(1, 0) = 0.0;
|
||||
K_fullhd.at<double>(1, 1) = 578.99298055;
|
||||
K_fullhd.at<double>(1, 2) = 549.26826242;
|
||||
|
||||
K_fullhd.at<double>(2, 0) = 0.0;
|
||||
K_fullhd.at<double>(2, 1) = 0.0;
|
||||
K_fullhd.at<double>(2, 2) = 1.0;
|
||||
|
||||
cv::Mat K_new_truth(3, 3, cv::DataType<double>::type);
|
||||
|
||||
K_new_truth.at<double>(0, 0) = 387.5118215642316;
|
||||
K_new_truth.at<double>(0, 1) = 0.0;
|
||||
K_new_truth.at<double>(0, 2) = 1033.936556777084;
|
||||
|
||||
K_new_truth.at<double>(1, 0) = 0.0;
|
||||
K_new_truth.at<double>(1, 1) = 373.6673784974842;
|
||||
K_new_truth.at<double>(1, 2) = 538.794152656429;
|
||||
|
||||
K_new_truth.at<double>(2, 0) = 0.0;
|
||||
K_new_truth.at<double>(2, 1) = 0.0;
|
||||
K_new_truth.at<double>(2, 2) = 1.0;
|
||||
|
||||
cv::Mat D_fullhd(4, 1, cv::DataType<double>::type);
|
||||
D_fullhd.at<double>(0, 0) = -0.05090103223466704;
|
||||
D_fullhd.at<double>(1, 0) = 0.030944413642173308;
|
||||
D_fullhd.at<double>(2, 0) = -0.021509225493198905;
|
||||
D_fullhd.at<double>(3, 0) = 0.0043378096628297145;
|
||||
cv::Mat E = cv::Mat::eye(3, 3, cv::DataType<double>::type);
|
||||
|
||||
cv::Mat K_new(3, 3, cv::DataType<double>::type);
|
||||
|
||||
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K_fullhd, D_fullhd, size, E, K_new, 0.0, size);
|
||||
|
||||
EXPECT_MAT_NEAR(K_new, K_new_truth, 1e-6);
|
||||
}
|
||||
|
||||
|
||||
TEST_F(fisheyeTest, multiview_calibration)
|
||||
{
|
||||
const int n_images = 34;
|
||||
@ -1114,54 +650,4 @@ TEST_F(fisheyeTest, multiview_calibration)
|
||||
EXPECT_MAT_NEAR(distortions[1], D2_correct, 5e-2);
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// fisheyeTest::
|
||||
|
||||
const cv::Size fisheyeTest::imageSize(1280, 800);
|
||||
|
||||
const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843,
|
||||
0, 560.506767351568, 381.939424848348,
|
||||
0, 0, 1);
|
||||
|
||||
const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371);
|
||||
|
||||
|
||||
const cv::Matx33d fisheyeTest::R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03,
|
||||
-6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02,
|
||||
-5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01);
|
||||
|
||||
const cv::Vec3d fisheyeTest::T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04);
|
||||
|
||||
std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2)
|
||||
{
|
||||
std::string item1 = _item1, item2 = _item2;
|
||||
std::replace(item1.begin(), item1.end(), '\\', '/');
|
||||
std::replace(item2.begin(), item2.end(), '\\', '/');
|
||||
|
||||
if (item1.empty())
|
||||
return item2;
|
||||
|
||||
if (item2.empty())
|
||||
return item1;
|
||||
|
||||
char last = item1[item1.size()-1];
|
||||
return item1 + (last != '/' ? "/" : "") + item2;
|
||||
}
|
||||
|
||||
void fisheyeTest::merge4(const cv::Mat& tl, const cv::Mat& tr, const cv::Mat& bl, const cv::Mat& br, cv::Mat& merged)
|
||||
{
|
||||
int type = tl.type();
|
||||
cv::Size sz = tl.size();
|
||||
ASSERT_EQ(type, tr.type()); ASSERT_EQ(type, bl.type()); ASSERT_EQ(type, br.type());
|
||||
ASSERT_EQ(sz.width, tr.cols); ASSERT_EQ(sz.width, bl.cols); ASSERT_EQ(sz.width, br.cols);
|
||||
ASSERT_EQ(sz.height, tr.rows); ASSERT_EQ(sz.height, bl.rows); ASSERT_EQ(sz.height, br.rows);
|
||||
|
||||
merged.create(cv::Size(sz.width * 2, sz.height * 2), type);
|
||||
tl.copyTo(merged(cv::Rect(0, 0, sz.width, sz.height)));
|
||||
tr.copyTo(merged(cv::Rect(sz.width, 0, sz.width, sz.height)));
|
||||
bl.copyTo(merged(cv::Rect(0, sz.height, sz.width, sz.height)));
|
||||
br.copyTo(merged(cv::Rect(sz.width, sz.height, sz.width, sz.height)));
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
|
@ -198,6 +198,44 @@ CV_EXPORTS float rectify3Collinear( InputArray _cameraMatrix1, InputArray _distC
|
||||
double alpha, Size newImgSize,
|
||||
Rect* roi1, Rect* roi2, int flags );
|
||||
|
||||
namespace fisheye {
|
||||
|
||||
/** @brief Stereo rectification for fisheye camera model
|
||||
|
||||
@param K1 First camera intrinsic matrix.
|
||||
@param D1 First camera distortion parameters.
|
||||
@param K2 Second camera intrinsic matrix.
|
||||
@param D2 Second camera distortion parameters.
|
||||
@param imageSize Size of the image used for stereo calibration.
|
||||
@param R Rotation matrix between the coordinate systems of the first and the second
|
||||
cameras.
|
||||
@param tvec Translation vector between coordinate systems of the cameras.
|
||||
@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
|
||||
@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
|
||||
@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
|
||||
camera.
|
||||
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
|
||||
camera.
|
||||
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
|
||||
@param flags Operation flags that may be zero or @ref CALIB_ZERO_DISPARITY . If the flag is set,
|
||||
the function makes the principal points of each camera have the same pixel coordinates in the
|
||||
rectified views. And if the flag is not set, the function may still shift the images in the
|
||||
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
|
||||
useful image area.
|
||||
@param newImageSize New image resolution after rectification. The same size should be passed to
|
||||
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
|
||||
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
|
||||
preserve details in the original image, especially when there is a big radial distortion.
|
||||
@param balance Sets the new focal length in range between the min focal length and the max focal
|
||||
length. Balance is in range of [0, 1].
|
||||
@param fov_scale Divisor for new focal length.
|
||||
*/
|
||||
CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
|
||||
OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
|
||||
double balance = 0.0, double fov_scale = 1.0);
|
||||
|
||||
} // namespace fisheye
|
||||
|
||||
/** @brief The base class for stereo correspondence algorithms.
|
||||
*/
|
||||
class CV_EXPORTS_W StereoMatcher : public Algorithm
|
||||
|
5
modules/stereo/misc/java/gen_dict.json
Normal file
5
modules/stereo/misc/java/gen_dict.json
Normal file
@ -0,0 +1,5 @@
|
||||
{
|
||||
"namespaces_dict": {
|
||||
"cv.fisheye": "fisheye"
|
||||
}
|
||||
}
|
@ -628,4 +628,85 @@ float rectify3Collinear( InputArray _cameraMatrix1, InputArray _distCoeffs1,
|
||||
(P2.at<double>(idx,3)/P2.at<double>(idx,idx)));
|
||||
}
|
||||
|
||||
void cv::fisheye::stereoRectify( InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size& imageSize,
|
||||
InputArray _R, InputArray _tvec, OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2,
|
||||
OutputArray Q, int flags, const Size& newImageSize, double balance, double fov_scale)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
CV_Assert((_R.size() == Size(3, 3) || _R.total() * _R.channels() == 3) && (_R.depth() == CV_32F || _R.depth() == CV_64F));
|
||||
CV_Assert(_tvec.total() * _tvec.channels() == 3 && (_tvec.depth() == CV_32F || _tvec.depth() == CV_64F));
|
||||
|
||||
|
||||
Mat aaa = _tvec.getMat().reshape(3, 1);
|
||||
|
||||
Vec3d rvec; // Rodrigues vector
|
||||
if (_R.size() == Size(3, 3))
|
||||
{
|
||||
Matx33d rmat;
|
||||
_R.getMat().convertTo(rmat, CV_64F);
|
||||
rvec = Affine3d(rmat).rvec();
|
||||
}
|
||||
else if (_R.total() * _R.channels() == 3)
|
||||
_R.getMat().convertTo(rvec, CV_64F);
|
||||
|
||||
Vec3d tvec;
|
||||
_tvec.getMat().convertTo(tvec, CV_64F);
|
||||
|
||||
// rectification algorithm
|
||||
rvec *= -0.5; // get average rotation
|
||||
|
||||
Matx33d r_r;
|
||||
Rodrigues(rvec, r_r); // rotate cameras to same orientation by averaging
|
||||
|
||||
Vec3d t = r_r * tvec;
|
||||
Vec3d uu(t[0] > 0 ? 1 : -1, 0, 0);
|
||||
|
||||
// calculate global Z rotation
|
||||
Vec3d ww = t.cross(uu);
|
||||
double nw = norm(ww);
|
||||
if (nw > 0.0)
|
||||
ww *= std::acos(fabs(t[0])/cv::norm(t))/nw;
|
||||
|
||||
Matx33d wr;
|
||||
Rodrigues(ww, wr);
|
||||
|
||||
// apply to both views
|
||||
Matx33d ri1 = wr * r_r.t();
|
||||
Mat(ri1, false).convertTo(R1, R1.empty() ? CV_64F : R1.type());
|
||||
Matx33d ri2 = wr * r_r;
|
||||
Mat(ri2, false).convertTo(R2, R2.empty() ? CV_64F : R2.type());
|
||||
Vec3d tnew = ri2 * tvec;
|
||||
|
||||
// calculate projection/camera matrices. these contain the relevant rectified image internal params (fx, fy=fx, cx, cy)
|
||||
Matx33d newK1, newK2;
|
||||
fisheye::estimateNewCameraMatrixForUndistortRectify(K1, D1, imageSize, R1, newK1, balance, newImageSize, fov_scale);
|
||||
fisheye::estimateNewCameraMatrixForUndistortRectify(K2, D2, imageSize, R2, newK2, balance, newImageSize, fov_scale);
|
||||
|
||||
double fc_new = std::min(newK1(1,1), newK2(1,1));
|
||||
Point2d cc_new[2] = { Vec2d(newK1(0, 2), newK1(1, 2)), Vec2d(newK2(0, 2), newK2(1, 2)) };
|
||||
|
||||
// Vertical focal length must be the same for both images to keep the epipolar constraint use fy for fx also.
|
||||
// For simplicity, set the principal points for both cameras to be the average
|
||||
// of the two principal points (either one of or both x- and y- coordinates)
|
||||
if( flags & STEREO_ZERO_DISPARITY )
|
||||
cc_new[0] = cc_new[1] = (cc_new[0] + cc_new[1]) * 0.5;
|
||||
else
|
||||
cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5;
|
||||
|
||||
Mat(Matx34d(fc_new, 0, cc_new[0].x, 0,
|
||||
0, fc_new, cc_new[0].y, 0,
|
||||
0, 0, 1, 0), false).convertTo(P1, P1.empty() ? CV_64F : P1.type());
|
||||
|
||||
Mat(Matx34d(fc_new, 0, cc_new[1].x, tnew[0]*fc_new, // baseline * focal length;,
|
||||
0, fc_new, cc_new[1].y, 0,
|
||||
0, 0, 1, 0), false).convertTo(P2, P2.empty() ? CV_64F : P2.type());
|
||||
|
||||
if (Q.needed())
|
||||
Mat(Matx44d(1, 0, 0, -cc_new[0].x,
|
||||
0, 1, 0, -cc_new[0].y,
|
||||
0, 0, 0, fc_new,
|
||||
0, 0, -1./tnew[0], (cc_new[0].x - cc_new[1].x)/tnew[0]), false).convertTo(Q, Q.empty() ? CV_64F : Q.depth());
|
||||
}
|
||||
|
||||
}
|
||||
|
347
modules/stereo/test/test_geometry.cpp
Normal file
347
modules/stereo/test/test_geometry.cpp
Normal file
@ -0,0 +1,347 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <opencv2/ts/cuda_test.hpp> // EXPECT_MAT_NEAR
|
||||
#include "opencv2/3d.hpp"
|
||||
#include <opencv2/core/utils/logger.hpp>
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
static bool checkPandROI(const Matx33d& M, const Matx<double, 5, 1>& D,
|
||||
const Mat& R, const Mat& P, Size imgsize, Rect roi)
|
||||
{
|
||||
const double eps = 0.05;
|
||||
const int N = 21;
|
||||
int x, y, k;
|
||||
vector<Point2f> pts, upts;
|
||||
|
||||
// step 1. check that all the original points belong to the destination image
|
||||
for( y = 0; y < N; y++ )
|
||||
for( x = 0; x < N; x++ )
|
||||
pts.push_back(Point2f((float)x*imgsize.width/(N-1), (float)y*imgsize.height/(N-1)));
|
||||
|
||||
undistortPoints(pts, upts, M, D, R, P );
|
||||
for( k = 0; k < N*N; k++ )
|
||||
if( upts[k].x < -imgsize.width*eps || upts[k].x > imgsize.width*(1+eps) ||
|
||||
upts[k].y < -imgsize.height*eps || upts[k].y > imgsize.height*(1+eps) )
|
||||
{
|
||||
CV_LOG_ERROR(NULL, cv::format("The point (%g, %g) was mapped to (%g, %g) which is out of image\n",
|
||||
pts[k].x, pts[k].y, upts[k].x, upts[k].y));
|
||||
return false;
|
||||
}
|
||||
|
||||
// step 2. check that all the points inside ROI belong to the original source image
|
||||
Mat temp(imgsize, CV_8U), utemp, map1, map2;
|
||||
temp = Scalar::all(1);
|
||||
initUndistortRectifyMap(M, D, R, P, imgsize, CV_16SC2, map1, map2);
|
||||
remap(temp, utemp, map1, map2, INTER_LINEAR);
|
||||
|
||||
if(roi.x < 0 || roi.y < 0 || roi.x + roi.width > imgsize.width || roi.y + roi.height > imgsize.height)
|
||||
{
|
||||
CV_LOG_ERROR(NULL, cv::format("The ROI=(%d, %d, %d, %d) is outside of the imge rectangle\n",
|
||||
roi.x, roi.y, roi.width, roi.height));
|
||||
return false;
|
||||
}
|
||||
double s = sum(utemp(roi))[0];
|
||||
if( s > roi.area() || roi.area() - s > roi.area()*(1-eps) )
|
||||
{
|
||||
CV_LOG_ERROR(NULL, cv::format("The ratio of black pixels inside the valid ROI (~%g%%) is too large\n",
|
||||
s*100./roi.area()));
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
TEST(StereoGeometry, stereoRectify)
|
||||
{
|
||||
// camera parameters are extracted from the original calib3d test CV_StereoCalibrationTest::run
|
||||
const Matx33d M1(
|
||||
530.4643719672913, 0, 319.5,
|
||||
0, 529.7477570329314, 239.5,
|
||||
0, 0, 1);
|
||||
const Matx<double, 5, 1> D1(-0.2982901576925627, 0.1134645765152131, 0, 0, 0);
|
||||
|
||||
const Matx33d M2(
|
||||
530.4643719672913, 0, 319.5,
|
||||
0, 529.7477570329314, 239.5,
|
||||
0, 0, 1);
|
||||
const Matx<double, 5, 1> D2(-0.2833068597502156, 0.0944810713984697, 0, 0, 0);
|
||||
|
||||
const Matx33d R(0.9996903750450727, 0.005330951201286465, -0.02430504066096785,
|
||||
-0.004837810799471072, 0.9997821583334892, 0.02030348405319902,
|
||||
0.02440798289310936, -0.02017961439967296, 0.9994983909610711);
|
||||
const Matx31d T(-3.328706469151101, 0.05621025406095936, -0.02956576727262086);
|
||||
|
||||
const Size imageSize(640, 480);
|
||||
|
||||
Mat R1, R2, P1, P2, Q;
|
||||
Rect roi1, roi2;
|
||||
|
||||
stereoRectify( M1, D1, M2, D2, imageSize, R, T, R1, R2, P1, P2, Q, 0, 1, imageSize, &roi1, &roi2 );
|
||||
|
||||
Mat eye33 = Mat::eye(3,3,CV_64F);
|
||||
Mat R1t = R1.t(), R2t = R2.t();
|
||||
|
||||
EXPECT_LE(cvtest::norm(R1t*R1 - eye33, NORM_L2), 0.01) << "R1 is not orthogonal!";
|
||||
EXPECT_LE(cvtest::norm(R2t*R2 - eye33, NORM_L2), 0.01) << "R2 is not orthogonal!";
|
||||
|
||||
//check that Tx after rectification is equal to distance between cameras
|
||||
double tx = fabs(P2.at<double>(0, 3) / P2.at<double>(0, 0));
|
||||
EXPECT_LE(fabs(tx - cvtest::norm(T, NORM_L2)), 1e-5);
|
||||
EXPECT_TRUE(checkPandROI(M1, D1, R1, P1, imageSize, roi1));
|
||||
EXPECT_TRUE(checkPandROI(M2, D2, R2, P2, imageSize, roi2));
|
||||
|
||||
//check that Q reprojects points before the camera
|
||||
double testPoint[4] = {0.0, 0.0, 100.0, 1.0};
|
||||
Mat reprojectedTestPoint = Q * Mat_<double>(4, 1, testPoint);
|
||||
CV_Assert(reprojectedTestPoint.type() == CV_64FC1);
|
||||
EXPECT_GT( reprojectedTestPoint.at<double>(2) / reprojectedTestPoint.at<double>(3), 0 ) << \
|
||||
"A point after rectification is reprojected behind the camera";
|
||||
}
|
||||
|
||||
TEST(StereoGeometry, regression_10791)
|
||||
{
|
||||
const Matx33d M1(
|
||||
853.1387981631528, 0, 704.154907802121,
|
||||
0, 853.6445089162528, 520.3600712930319,
|
||||
0, 0, 1
|
||||
);
|
||||
const Matx33d M2(
|
||||
848.6090216909176, 0, 701.6162856852185,
|
||||
0, 849.7040162357157, 509.1864036137,
|
||||
0, 0, 1
|
||||
);
|
||||
const Matx<double, 14, 1> D1(-6.463598629567206, 79.00104930508179, -0.0001006144444464403, -0.0005437499822299972,
|
||||
12.56900616588467, -6.056719942752855, 76.3842481414836, 45.57460250612659,
|
||||
0, 0, 0, 0, 0, 0);
|
||||
const Matx<double, 14, 1> D2(0.6123436439798265, -0.4671756923224087, -0.0001261947899033442, -0.000597334584036978,
|
||||
-0.05660119809538371, 1.037075740629769, -0.3076042835831711, -0.2502169324283623,
|
||||
0, 0, 0, 0, 0, 0);
|
||||
|
||||
const Matx33d R(
|
||||
0.9999926627018476, -0.0001095586963765905, 0.003829169539302921,
|
||||
0.0001021735876758584, 0.9999981346680941, 0.0019287874145156,
|
||||
-0.003829373712065528, -0.001928382022437616, 0.9999908085776333
|
||||
);
|
||||
const Matx31d T(-58.9161771697128, -0.01581306249996402, -0.8492960216760961);
|
||||
|
||||
const Size imageSize(1280, 960);
|
||||
|
||||
Mat R1, R2, P1, P2, Q;
|
||||
Rect roi1, roi2;
|
||||
stereoRectify(M1, D1, M2, D2, imageSize, R, T,
|
||||
R1, R2, P1, P2, Q,
|
||||
STEREO_ZERO_DISPARITY, 1, imageSize, &roi1, &roi2);
|
||||
|
||||
EXPECT_GE(roi1.area(), 400*300) << roi1;
|
||||
EXPECT_GE(roi2.area(), 400*300) << roi2;
|
||||
}
|
||||
|
||||
TEST(StereoGeometry, regression_11131)
|
||||
{
|
||||
const Matx33d M1(
|
||||
1457.572438721727, 0, 1212.945694211622,
|
||||
0, 1457.522226502963, 1007.32058848921,
|
||||
0, 0, 1
|
||||
);
|
||||
const Matx33d M2(
|
||||
1460.868570835972, 0, 1215.024068023046,
|
||||
0, 1460.791367088, 1011.107202932225,
|
||||
0, 0, 1
|
||||
);
|
||||
const Matx<double, 5, 1> D1(0, 0, 0, 0, 0);
|
||||
const Matx<double, 5, 1> D2(0, 0, 0, 0, 0);
|
||||
|
||||
const Matx33d R(
|
||||
0.9985404059825475, 0.02963547172078553, -0.04515303352041626,
|
||||
-0.03103795276460111, 0.9990471552537432, -0.03068268351343364,
|
||||
0.04420071389006859, 0.03203935697372317, 0.9985087763742083
|
||||
);
|
||||
const Matx31d T(0.9995500167379527, 0.0116311595111068, 0.02764923448462666);
|
||||
|
||||
const Size imageSize(2456, 2058);
|
||||
|
||||
Mat R1, R2, P1, P2, Q;
|
||||
Rect roi1, roi2;
|
||||
stereoRectify(M1, D1, M2, D2, imageSize, R, T,
|
||||
R1, R2, P1, P2, Q,
|
||||
STEREO_ZERO_DISPARITY, 1, imageSize, &roi1, &roi2);
|
||||
|
||||
EXPECT_GT(P1.at<double>(0, 0), 0);
|
||||
EXPECT_GT(P2.at<double>(0, 0), 0);
|
||||
EXPECT_GT(R1.at<double>(0, 0), 0);
|
||||
EXPECT_GT(R2.at<double>(0, 0), 0);
|
||||
EXPECT_GE(roi1.area(), 400*300) << roi1;
|
||||
EXPECT_GE(roi2.area(), 400*300) << roi2;
|
||||
}
|
||||
|
||||
class fisheyeTest : public ::testing::Test {
|
||||
|
||||
protected:
|
||||
const static cv::Size imageSize;
|
||||
const static cv::Matx33d K;
|
||||
const static cv::Vec4d D;
|
||||
const static cv::Matx33d R;
|
||||
const static cv::Vec3d T;
|
||||
std::string datasets_repository_path;
|
||||
|
||||
virtual void SetUp() {
|
||||
datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cv/cameracalibration/fisheye");
|
||||
}
|
||||
|
||||
protected:
|
||||
std::string combine(const std::string& _item1, const std::string& _item2);
|
||||
static void merge4(const cv::Mat& tl, const cv::Mat& tr, const cv::Mat& bl, const cv::Mat& br, cv::Mat& merged);
|
||||
};
|
||||
|
||||
const cv::Size fisheyeTest::imageSize(1280, 800);
|
||||
|
||||
const cv::Matx33d fisheyeTest::K(558.478087865323, 0, 620.458515360843,
|
||||
0, 560.506767351568, 381.939424848348,
|
||||
0, 0, 1);
|
||||
|
||||
const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371);
|
||||
|
||||
|
||||
const cv::Matx33d fisheyeTest::R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03,
|
||||
-6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02,
|
||||
-5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01);
|
||||
|
||||
const cv::Vec3d fisheyeTest::T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04);
|
||||
|
||||
std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2)
|
||||
{
|
||||
std::string item1 = _item1, item2 = _item2;
|
||||
std::replace(item1.begin(), item1.end(), '\\', '/');
|
||||
std::replace(item2.begin(), item2.end(), '\\', '/');
|
||||
|
||||
if (item1.empty())
|
||||
return item2;
|
||||
|
||||
if (item2.empty())
|
||||
return item1;
|
||||
|
||||
char last = item1[item1.size()-1];
|
||||
return item1 + (last != '/' ? "/" : "") + item2;
|
||||
}
|
||||
|
||||
void fisheyeTest::merge4(const cv::Mat& tl, const cv::Mat& tr, const cv::Mat& bl, const cv::Mat& br, cv::Mat& merged)
|
||||
{
|
||||
int type = tl.type();
|
||||
cv::Size sz = tl.size();
|
||||
ASSERT_EQ(type, tr.type()); ASSERT_EQ(type, bl.type()); ASSERT_EQ(type, br.type());
|
||||
ASSERT_EQ(sz.width, tr.cols); ASSERT_EQ(sz.width, bl.cols); ASSERT_EQ(sz.width, br.cols);
|
||||
ASSERT_EQ(sz.height, tr.rows); ASSERT_EQ(sz.height, bl.rows); ASSERT_EQ(sz.height, br.rows);
|
||||
|
||||
merged.create(cv::Size(sz.width * 2, sz.height * 2), type);
|
||||
tl.copyTo(merged(cv::Rect(0, 0, sz.width, sz.height)));
|
||||
tr.copyTo(merged(cv::Rect(sz.width, 0, sz.width, sz.height)));
|
||||
bl.copyTo(merged(cv::Rect(0, sz.height, sz.width, sz.height)));
|
||||
br.copyTo(merged(cv::Rect(sz.width, sz.height, sz.width, sz.height)));
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, stereoRectify)
|
||||
{
|
||||
const std::string folder = combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
||||
|
||||
cv::Size calibration_size = this->imageSize, requested_size = calibration_size;
|
||||
cv::Matx33d K1 = this->K, K2 = K1;
|
||||
cv::Mat D1 = cv::Mat(this->D), D2 = D1;
|
||||
|
||||
cv::Vec3d theT = this->T;
|
||||
cv::Matx33d theR = this->R;
|
||||
|
||||
double balance = 0.0, fov_scale = 1.1;
|
||||
cv::Mat R1, R2, P1, P2, Q;
|
||||
cv::fisheye::stereoRectify(K1, D1, K2, D2, calibration_size, theR, theT, R1, R2, P1, P2, Q,
|
||||
cv::STEREO_ZERO_DISPARITY, requested_size, balance, fov_scale);
|
||||
|
||||
// Collected with these CMake flags: -DWITH_IPP=OFF -DCV_ENABLE_INTRINSICS=OFF -DCV_DISABLE_OPTIMIZATION=ON -DCMAKE_BUILD_TYPE=Debug
|
||||
cv::Matx33d R1_ref(
|
||||
0.9992853269091279, 0.03779164101000276, -0.0007920188690205426,
|
||||
-0.03778569762983931, 0.9992646472015868, 0.006511981857667881,
|
||||
0.001037534936357442, -0.006477400933964018, 0.9999784831677112
|
||||
);
|
||||
cv::Matx33d R2_ref(
|
||||
0.9994868963898833, -0.03197579751378937, -0.001868774538573449,
|
||||
0.03196298186616116, 0.9994677442608699, -0.0065265589947392,
|
||||
0.002076471801477729, 0.006463478587068991, 0.9999769555891836
|
||||
);
|
||||
cv::Matx34d P1_ref(
|
||||
420.9684016542647, 0, 586.3059567784627, 0,
|
||||
0, 420.9684016542647, 374.8571836462291, 0,
|
||||
0, 0, 1, 0
|
||||
);
|
||||
cv::Matx34d P2_ref(
|
||||
420.9684016542647, 0, 586.3059567784627, -41.78881938824554,
|
||||
0, 420.9684016542647, 374.8571836462291, 0,
|
||||
0, 0, 1, 0
|
||||
);
|
||||
cv::Matx44d Q_ref(
|
||||
1, 0, 0, -586.3059567784627,
|
||||
0, 1, 0, -374.8571836462291,
|
||||
0, 0, 0, 420.9684016542647,
|
||||
0, 0, 10.07370889670733, -0
|
||||
);
|
||||
|
||||
const double eps = 1e-10;
|
||||
EXPECT_MAT_NEAR(R1_ref, R1, eps);
|
||||
EXPECT_MAT_NEAR(R2_ref, R2, eps);
|
||||
EXPECT_MAT_NEAR(P1_ref, P1, eps);
|
||||
EXPECT_MAT_NEAR(P2_ref, P2, eps);
|
||||
EXPECT_MAT_NEAR(Q_ref, Q, eps);
|
||||
|
||||
if (::testing::Test::HasFailure())
|
||||
{
|
||||
std::cout << "Actual values are:" << std::endl
|
||||
<< "R1 =" << std::endl << R1 << std::endl
|
||||
<< "R2 =" << std::endl << R2 << std::endl
|
||||
<< "P1 =" << std::endl << P1 << std::endl
|
||||
<< "P2 =" << std::endl << P2 << std::endl
|
||||
<< "Q =" << std::endl << Q << std::endl;
|
||||
}
|
||||
|
||||
if (cvtest::debugLevel == 0)
|
||||
return;
|
||||
// DEBUG code is below
|
||||
|
||||
cv::Mat lmapx, lmapy, rmapx, rmapy;
|
||||
//rewrite for fisheye
|
||||
cv::fisheye::initUndistortRectifyMap(K1, D1, R1, P1, requested_size, CV_32F, lmapx, lmapy);
|
||||
cv::fisheye::initUndistortRectifyMap(K2, D2, R2, P2, requested_size, CV_32F, rmapx, rmapy);
|
||||
|
||||
cv::Mat l, r, lundist, rundist;
|
||||
for (int i = 0; i < 34; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("image %d", i));
|
||||
l = imread(combine(folder, cv::format("left/stereo_pair_%03d.jpg", i)), cv::IMREAD_COLOR);
|
||||
r = imread(combine(folder, cv::format("right/stereo_pair_%03d.jpg", i)), cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(l.empty());
|
||||
ASSERT_FALSE(r.empty());
|
||||
|
||||
int ndisp = 128;
|
||||
cv::rectangle(l, cv::Rect(255, 0, 829, l.rows-1), cv::Scalar(0, 0, 255));
|
||||
cv::rectangle(r, cv::Rect(255, 0, 829, l.rows-1), cv::Scalar(0, 0, 255));
|
||||
cv::rectangle(r, cv::Rect(255-ndisp, 0, 829+ndisp ,l.rows-1), cv::Scalar(0, 0, 255));
|
||||
cv::remap(l, lundist, lmapx, lmapy, cv::INTER_LINEAR);
|
||||
cv::remap(r, rundist, rmapx, rmapy, cv::INTER_LINEAR);
|
||||
|
||||
for (int ii = 0; ii < lundist.rows; ii += 20)
|
||||
{
|
||||
cv::line(lundist, cv::Point(0, ii), cv::Point(lundist.cols, ii), cv::Scalar(0, 255, 0));
|
||||
cv::line(rundist, cv::Point(0, ii), cv::Point(lundist.cols, ii), cv::Scalar(0, 255, 0));
|
||||
}
|
||||
|
||||
cv::Mat rectification;
|
||||
merge4(l, r, lundist, rundist, rectification);
|
||||
|
||||
// Add the "--test_debug" to arguments for file output
|
||||
if (cvtest::debugLevel > 0)
|
||||
cv::imwrite(cv::format("fisheye_rectification_AB_%03d.png", i), rectification);
|
||||
}
|
||||
}
|
||||
|
||||
}}
|
Loading…
Reference in New Issue
Block a user