mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 11:45:30 +08:00
Broadcasting from ONNX
This commit is contained in:
parent
a694e5074f
commit
9e332dc5fb
@ -46,14 +46,14 @@ public:
|
||||
{
|
||||
std::vector<Mat> inputs;
|
||||
inputs_arr.getMatVector(inputs);
|
||||
hasWeights = blobs.size() == 2 || (blobs.size() == 1 && !hasBias);
|
||||
hasWeights = blobs.size() == 2 || (blobs.size() <= 1 && !hasBias);
|
||||
CV_Assert((inputs.size() == 2 && blobs.empty()) || blobs.size() == (int)hasWeights + (int)hasBias);
|
||||
}
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE ||
|
||||
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && axis == 1) ||
|
||||
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && axis == 1 && !blobs.empty()) ||
|
||||
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && axis > 0);
|
||||
}
|
||||
|
||||
@ -78,10 +78,9 @@ public:
|
||||
Mat &outBlob = outputs[0];
|
||||
// There is a mode when we multiply a first blob by a second one
|
||||
// instead of trainable weights.
|
||||
Mat weights = blobs.empty() ? inputs[1] : (hasWeights ? blobs[0] : Mat());
|
||||
Mat bias = hasBias ? blobs.back().reshape(1, 1) : Mat();
|
||||
if (!weights.empty())
|
||||
weights = weights.reshape(1, 1);
|
||||
Mat weights = hasWeights ? (blobs.empty() ? inputs[1] : blobs[0]).reshape(1, 1) : Mat();;
|
||||
Mat bias = hasBias ? (blobs.empty() ? inputs[1] : blobs.back()).reshape(1, 1) : Mat();
|
||||
|
||||
MatShape inpShape = shape(inpBlob);
|
||||
const int numWeights = !weights.empty() ? weights.total() : bias.total();
|
||||
CV_Assert(numWeights != 0);
|
||||
@ -229,28 +228,40 @@ public:
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(!blobs.empty());
|
||||
const size_t numChannels = blobs[0].total();
|
||||
auto ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
||||
auto ieInpNode0 = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
|
||||
auto ieInpNode1 = nodes.size() > 1 ? nodes[1].dynamicCast<InfEngineNgraphNode>()->node : nullptr;
|
||||
|
||||
std::vector<size_t> shape(ieInpNode->get_shape().size(), 1);
|
||||
size_t numChannels = 1;
|
||||
if (blobs.empty())
|
||||
for (const size_t& dim : ieInpNode1->get_shape())
|
||||
numChannels *= dim;
|
||||
else
|
||||
numChannels = blobs[0].total();
|
||||
|
||||
std::vector<size_t> shape(ieInpNode0->get_shape().size(), 1);
|
||||
int cAxis = clamp(axis, shape.size());
|
||||
shape[cAxis] = numChannels;
|
||||
|
||||
auto node = ieInpNode;
|
||||
auto node = ieInpNode0;
|
||||
if (hasWeights)
|
||||
{
|
||||
auto weight = std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
|
||||
ngraph::Shape(shape), blobs[0].data);
|
||||
auto weight = blobs.empty() ? ieInpNode1 :
|
||||
std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), blobs[0].data);
|
||||
|
||||
node = std::make_shared<ngraph::op::v1::Multiply>(node, weight, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
}
|
||||
if (hasBias || !hasWeights)
|
||||
{
|
||||
auto bias = hasBias ?
|
||||
std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
|
||||
ngraph::Shape(shape), blobs.back().data) :
|
||||
std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
|
||||
ngraph::Shape(shape), std::vector<float>(numChannels, 0).data());
|
||||
std::shared_ptr<ngraph::Node> bias;
|
||||
if (hasBias)
|
||||
{
|
||||
bias = blobs.empty() ? ieInpNode1 :
|
||||
std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
|
||||
ngraph::Shape(shape), blobs.back().data);
|
||||
}
|
||||
else
|
||||
bias = std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
|
||||
ngraph::Shape(shape), std::vector<float>(numChannels, 0).data());
|
||||
node = std::make_shared<ngraph::op::v1::Add>(node, bias, ngraph::op::AutoBroadcastType::NUMPY);
|
||||
}
|
||||
return Ptr<BackendNode>(new InfEngineNgraphNode(node));
|
||||
@ -259,8 +270,8 @@ public:
|
||||
|
||||
void getScaleShift(Mat& scale, Mat& shift) const CV_OVERRIDE
|
||||
{
|
||||
scale = hasWeights ? blobs[0] : Mat();
|
||||
shift = hasBias ? blobs.back() : Mat();
|
||||
scale = (hasWeights && !blobs.empty()) ? blobs[0] : Mat();
|
||||
shift = (hasBias && !blobs.empty()) ? blobs.back() : Mat();
|
||||
}
|
||||
|
||||
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
||||
|
@ -427,24 +427,57 @@ void ONNXImporter::populateNet(Net dstNet)
|
||||
}
|
||||
layerParams.type = "Slice";
|
||||
}
|
||||
else if (layer_type == "Add" || layer_type == "Sum")
|
||||
else if (layer_type == "Add" || layer_type == "Sum" || layer_type == "Sub")
|
||||
{
|
||||
bool isSub = layer_type == "Sub";
|
||||
CV_CheckEQ(node_proto.input_size(), 2, "");
|
||||
if (layer_id.find(node_proto.input(1)) == layer_id.end())
|
||||
{
|
||||
Mat blob = getBlob(node_proto, constBlobs, 1);
|
||||
blob = blob.reshape(1, 1);
|
||||
if (blob.total() == 1) {
|
||||
layerParams.type = "Power";
|
||||
layerParams.set("shift", blob.at<float>(0));
|
||||
layerParams.set("shift", (isSub ? -1 : 1) * blob.at<float>(0));
|
||||
}
|
||||
else {
|
||||
layerParams.type = "Scale";
|
||||
layerParams.set("bias_term", true);
|
||||
layerParams.blobs.push_back(blob);
|
||||
layerParams.blobs.push_back((isSub ? -1 : 1) * blob);
|
||||
}
|
||||
}
|
||||
else {
|
||||
else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(1)])
|
||||
{
|
||||
layerParams.type = "Eltwise";
|
||||
if (isSub)
|
||||
{
|
||||
static float subCoeffs[] = {1.f, -1.f};
|
||||
layerParams.set("coeff", DictValue::arrayReal<float*>(subCoeffs, 2));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (isSub)
|
||||
{
|
||||
LayerParams powerParams;
|
||||
powerParams.name = layerParams.name + "/neg";
|
||||
powerParams.type = "Power";
|
||||
powerParams.set("scale", -1);
|
||||
|
||||
//Create Power layer
|
||||
int id = dstNet.addLayer(powerParams.name, powerParams.type, powerParams);
|
||||
//Connect to input
|
||||
layerId = layer_id.find(node_proto.input(1));
|
||||
CV_Assert(layerId != layer_id.end());
|
||||
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0);
|
||||
//Add shape
|
||||
layer_id.insert(std::make_pair(powerParams.name, LayerInfo(id, 0)));
|
||||
outShapes[powerParams.name] = outShapes[node_proto.input(1)];
|
||||
|
||||
//Replace input to Power
|
||||
node_proto.set_input(1, powerParams.name);
|
||||
}
|
||||
layerParams.type = "Scale";
|
||||
layerParams.set("bias_term", true);
|
||||
}
|
||||
}
|
||||
else if (layer_type == "Max")
|
||||
@ -452,19 +485,6 @@ void ONNXImporter::populateNet(Net dstNet)
|
||||
layerParams.type = "Eltwise";
|
||||
layerParams.set("operation", "max");
|
||||
}
|
||||
else if (layer_type == "Sub")
|
||||
{
|
||||
Mat blob = getBlob(node_proto, constBlobs, 1);
|
||||
if (blob.total() == 1) {
|
||||
layerParams.type = "Power";
|
||||
layerParams.set("shift", -blob.at<float>(0));
|
||||
}
|
||||
else {
|
||||
layerParams.type = "Scale";
|
||||
layerParams.set("has_bias", true);
|
||||
layerParams.blobs.push_back(-1.0f * blob.reshape(1, 1));
|
||||
}
|
||||
}
|
||||
else if (layer_type == "Neg")
|
||||
{
|
||||
layerParams.type = "Power";
|
||||
@ -643,10 +663,35 @@ void ONNXImporter::populateNet(Net dstNet)
|
||||
layerParams.type = "Scale";
|
||||
}
|
||||
}
|
||||
else {
|
||||
else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(1)])
|
||||
{
|
||||
layerParams.type = "Eltwise";
|
||||
layerParams.set("operation", isDiv ? "div" : "prod");
|
||||
}
|
||||
else
|
||||
{
|
||||
if (isDiv)
|
||||
{
|
||||
LayerParams powerParams;
|
||||
powerParams.name = layerParams.name + "/inv";
|
||||
powerParams.type = "Power";
|
||||
powerParams.set("power", -1);
|
||||
|
||||
//Create Power layer
|
||||
int id = dstNet.addLayer(powerParams.name, powerParams.type, powerParams);
|
||||
//Connect to input
|
||||
layerId = layer_id.find(node_proto.input(1));
|
||||
CV_Assert(layerId != layer_id.end());
|
||||
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0);
|
||||
//Add shape
|
||||
layer_id.insert(std::make_pair(powerParams.name, LayerInfo(id, 0)));
|
||||
outShapes[powerParams.name] = outShapes[node_proto.input(1)];
|
||||
|
||||
//Replace input to Power
|
||||
node_proto.set_input(1, powerParams.name);
|
||||
}
|
||||
layerParams.type = "Scale";
|
||||
}
|
||||
|
||||
if (!haveVariables)
|
||||
{
|
||||
|
@ -32,29 +32,33 @@ public:
|
||||
|
||||
void testONNXModels(const String& basename, const Extension ext = npy,
|
||||
const double l1 = 0, const float lInf = 0, const bool useSoftmax = false,
|
||||
bool checkNoFallbacks = true)
|
||||
bool checkNoFallbacks = true, int numInps = 1)
|
||||
{
|
||||
String onnxmodel = _tf("models/" + basename + ".onnx", required);
|
||||
Mat inp, ref;
|
||||
std::vector<Mat> inps(numInps);
|
||||
Mat ref;
|
||||
if (ext == npy) {
|
||||
inp = blobFromNPY(_tf("data/input_" + basename + ".npy"));
|
||||
for (int i = 0; i < numInps; ++i)
|
||||
inps[i] = blobFromNPY(_tf("data/input_" + basename + (numInps > 1 ? format("_%d", i) : "") + ".npy"));
|
||||
ref = blobFromNPY(_tf("data/output_" + basename + ".npy"));
|
||||
}
|
||||
else if (ext == pb) {
|
||||
inp = readTensorFromONNX(_tf("data/input_" + basename + ".pb"));
|
||||
for (int i = 0; i < numInps; ++i)
|
||||
inps[i] = readTensorFromONNX(_tf("data/input_" + basename + (numInps > 1 ? format("_%d", i) : "") + ".pb"));
|
||||
ref = readTensorFromONNX(_tf("data/output_" + basename + ".pb"));
|
||||
}
|
||||
else
|
||||
CV_Error(Error::StsUnsupportedFormat, "Unsupported extension");
|
||||
|
||||
checkBackend(&inp, &ref);
|
||||
checkBackend(&inps[0], &ref);
|
||||
Net net = readNetFromONNX(onnxmodel);
|
||||
ASSERT_FALSE(net.empty());
|
||||
|
||||
net.setPreferableBackend(backend);
|
||||
net.setPreferableTarget(target);
|
||||
|
||||
net.setInput(inp);
|
||||
for (int i = 0; i < numInps; ++i)
|
||||
net.setInput(inps[i], numInps > 1 ? format("%d", i) : "");
|
||||
Mat out = net.forward("");
|
||||
|
||||
if (useSoftmax)
|
||||
@ -328,25 +332,14 @@ TEST_P(Test_ONNX_layers, ResizeUnfused)
|
||||
|
||||
TEST_P(Test_ONNX_layers, MultyInputs)
|
||||
{
|
||||
const String model = _tf("models/multy_inputs.onnx");
|
||||
testONNXModels("multy_inputs", npy, 0, 0, false, true, 2);
|
||||
}
|
||||
|
||||
Net net = readNetFromONNX(model);
|
||||
ASSERT_FALSE(net.empty());
|
||||
|
||||
net.setPreferableBackend(backend);
|
||||
net.setPreferableTarget(target);
|
||||
|
||||
Mat inp1 = blobFromNPY(_tf("data/input_multy_inputs_0.npy"));
|
||||
Mat inp2 = blobFromNPY(_tf("data/input_multy_inputs_1.npy"));
|
||||
Mat ref = blobFromNPY(_tf("data/output_multy_inputs.npy"));
|
||||
checkBackend(&inp1, &ref);
|
||||
|
||||
net.setInput(inp1, "0");
|
||||
net.setInput(inp2, "1");
|
||||
Mat out = net.forward();
|
||||
|
||||
normAssert(ref, out, "", default_l1, default_lInf);
|
||||
expectNoFallbacksFromIE(net);
|
||||
TEST_P(Test_ONNX_layers, Broadcast)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
testONNXModels("channel_broadcast", npy, 0, 0, false, true, 2);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Div)
|
||||
|
Loading…
Reference in New Issue
Block a user