mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 05:29:54 +08:00
Merge pull request #2658 from akarsakov:ipp_hough
This commit is contained in:
commit
9e47672b2b
@ -37,5 +37,9 @@ PERF_TEST_P(Image_RhoStep_ThetaStep_Threshold, HoughLines,
|
||||
TEST_CYCLE() HoughLines(image, lines, rhoStep, thetaStep, threshold);
|
||||
|
||||
transpose(lines, lines);
|
||||
#if (0 && defined(HAVE_IPP) && !defined(HAVE_IPP_ICV_ONLY) && IPP_VERSION_X100 >= 801)
|
||||
SANITY_CHECK_NOTHING();
|
||||
#else
|
||||
SANITY_CHECK(lines);
|
||||
#endif
|
||||
}
|
||||
|
@ -12,6 +12,7 @@
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
@ -97,6 +98,28 @@ HoughLinesStandard( const Mat& img, float rho, float theta,
|
||||
int numangle = cvRound((max_theta - min_theta) / theta);
|
||||
int numrho = cvRound(((width + height) * 2 + 1) / rho);
|
||||
|
||||
#if (0 && defined(HAVE_IPP) && !defined(HAVE_IPP_ICV_ONLY) && IPP_VERSION_X100 >= 801)
|
||||
IppiSize srcSize = { width, height };
|
||||
IppPointPolar delta = { rho, theta };
|
||||
IppPointPolar dstRoi[2] = {{(Ipp32f) -(width + height), (Ipp32f) min_theta},{(Ipp32f) (width + height), (Ipp32f) max_theta}};
|
||||
int bufferSize;
|
||||
int nz = countNonZero(img);
|
||||
int ipp_linesMax = std::min(linesMax, nz*numangle/threshold);
|
||||
int linesCount = 0;
|
||||
lines.resize(ipp_linesMax);
|
||||
IppStatus ok = ippiHoughLineGetSize_8u_C1R(srcSize, delta, ipp_linesMax, &bufferSize);
|
||||
Ipp8u* buffer = ippsMalloc_8u(bufferSize);
|
||||
if (ok >= 0) ok = ippiHoughLine_Region_8u32f_C1R(image, step, srcSize, (IppPointPolar*) &lines[0], dstRoi, ipp_linesMax, &linesCount, delta, threshold, buffer);
|
||||
ippsFree(buffer);
|
||||
if (ok >= 0)
|
||||
{
|
||||
lines.resize(linesCount);
|
||||
return;
|
||||
}
|
||||
lines.clear();
|
||||
setIppErrorStatus();
|
||||
#endif
|
||||
|
||||
AutoBuffer<int> _accum((numangle+2) * (numrho+2));
|
||||
std::vector<int> _sort_buf;
|
||||
AutoBuffer<float> _tabSin(numangle);
|
||||
@ -404,6 +427,31 @@ HoughLinesProbabilistic( Mat& image,
|
||||
int numangle = cvRound(CV_PI / theta);
|
||||
int numrho = cvRound(((width + height) * 2 + 1) / rho);
|
||||
|
||||
#if (0 && defined(HAVE_IPP) && !defined(HAVE_IPP_ICV_ONLY) && IPP_VERSION_X100 >= 801)
|
||||
IppiSize srcSize = { width, height };
|
||||
IppPointPolar delta = { rho, theta };
|
||||
IppiHoughProbSpec* pSpec;
|
||||
int bufferSize, specSize;
|
||||
int ipp_linesMax = std::min(linesMax, numangle*numrho);
|
||||
int linesCount = 0;
|
||||
lines.resize(ipp_linesMax);
|
||||
IppStatus ok = ippiHoughProbLineGetSize_8u_C1R(srcSize, delta, &specSize, &bufferSize);
|
||||
Ipp8u* buffer = ippsMalloc_8u(bufferSize);
|
||||
pSpec = (IppiHoughProbSpec*) malloc(specSize);
|
||||
if (ok >= 0) ok = ippiHoughProbLineInit_8u32f_C1R(srcSize, delta, ippAlgHintNone, pSpec);
|
||||
if (ok >= 0) ok = ippiHoughProbLine_8u32f_C1R(image.data, image.step, srcSize, threshold, lineLength, lineGap, (IppiPoint*) &lines[0], ipp_linesMax, &linesCount, buffer, pSpec);
|
||||
|
||||
free(pSpec);
|
||||
ippsFree(buffer);
|
||||
if (ok >= 0)
|
||||
{
|
||||
lines.resize(linesCount);
|
||||
return;
|
||||
}
|
||||
lines.clear();
|
||||
setIppErrorStatus();
|
||||
#endif
|
||||
|
||||
Mat accum = Mat::zeros( numangle, numrho, CV_32SC1 );
|
||||
Mat mask( height, width, CV_8UC1 );
|
||||
std::vector<float> trigtab(numangle*2);
|
||||
|
@ -12,6 +12,7 @@
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
@ -45,107 +46,176 @@
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
class CV_HoughLinesTest : public cvtest::BaseTest
|
||||
template<typename T>
|
||||
struct SimilarWith
|
||||
{
|
||||
T value;
|
||||
float theta_eps;
|
||||
float rho_eps;
|
||||
SimilarWith<T>(T val, float e, float r_e): value(val), theta_eps(e), rho_eps(r_e) { };
|
||||
bool operator()(T other);
|
||||
};
|
||||
|
||||
template<>
|
||||
bool SimilarWith<Vec2f>::operator()(Vec2f other)
|
||||
{
|
||||
return abs(other[0] - value[0]) < rho_eps && abs(other[1] - value[1]) < theta_eps;
|
||||
}
|
||||
|
||||
template<>
|
||||
bool SimilarWith<Vec4i>::operator()(Vec4i other)
|
||||
{
|
||||
return norm(value, other) < theta_eps;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
int countMatIntersection(Mat expect, Mat actual, float eps, float rho_eps)
|
||||
{
|
||||
int count = 0;
|
||||
if (!expect.empty() && !actual.empty())
|
||||
{
|
||||
for (MatIterator_<T> it=expect.begin<T>(); it!=expect.end<T>(); it++)
|
||||
{
|
||||
MatIterator_<T> f = std::find_if(actual.begin<T>(), actual.end<T>(), SimilarWith<T>(*it, eps, rho_eps));
|
||||
if (f != actual.end<T>())
|
||||
count++;
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
String getTestCaseName(String filename)
|
||||
{
|
||||
string temp(filename);
|
||||
size_t pos = temp.find_first_of("\\/.");
|
||||
while ( pos != string::npos ) {
|
||||
temp.replace( pos, 1, "_" );
|
||||
pos = temp.find_first_of("\\/.");
|
||||
}
|
||||
return String(temp);
|
||||
}
|
||||
|
||||
class BaseHoughLineTest
|
||||
{
|
||||
public:
|
||||
enum {STANDART = 0, PROBABILISTIC};
|
||||
CV_HoughLinesTest() {}
|
||||
~CV_HoughLinesTest() {}
|
||||
protected:
|
||||
void run_test(int type);
|
||||
|
||||
string picture_name;
|
||||
double rhoStep;
|
||||
double thetaStep;
|
||||
int threshold;
|
||||
int minLineLength;
|
||||
int maxGap;
|
||||
};
|
||||
|
||||
class CV_StandartHoughLinesTest : public CV_HoughLinesTest
|
||||
typedef std::tr1::tuple<string, double, double, int> Image_RhoStep_ThetaStep_Threshold_t;
|
||||
class StandartHoughLinesTest : public BaseHoughLineTest, public testing::TestWithParam<Image_RhoStep_ThetaStep_Threshold_t>
|
||||
{
|
||||
public:
|
||||
CV_StandartHoughLinesTest() {}
|
||||
~CV_StandartHoughLinesTest() {}
|
||||
virtual void run(int);
|
||||
StandartHoughLinesTest()
|
||||
{
|
||||
picture_name = std::tr1::get<0>(GetParam());
|
||||
rhoStep = std::tr1::get<1>(GetParam());
|
||||
thetaStep = std::tr1::get<2>(GetParam());
|
||||
threshold = std::tr1::get<3>(GetParam());
|
||||
minLineLength = 0;
|
||||
maxGap = 0;
|
||||
}
|
||||
};
|
||||
|
||||
class CV_ProbabilisticHoughLinesTest : public CV_HoughLinesTest
|
||||
typedef std::tr1::tuple<string, double, double, int, int, int> Image_RhoStep_ThetaStep_Threshold_MinLine_MaxGap_t;
|
||||
class ProbabilisticHoughLinesTest : public BaseHoughLineTest, public testing::TestWithParam<Image_RhoStep_ThetaStep_Threshold_MinLine_MaxGap_t>
|
||||
{
|
||||
public:
|
||||
CV_ProbabilisticHoughLinesTest() {}
|
||||
~CV_ProbabilisticHoughLinesTest() {}
|
||||
virtual void run(int);
|
||||
ProbabilisticHoughLinesTest()
|
||||
{
|
||||
picture_name = std::tr1::get<0>(GetParam());
|
||||
rhoStep = std::tr1::get<1>(GetParam());
|
||||
thetaStep = std::tr1::get<2>(GetParam());
|
||||
threshold = std::tr1::get<3>(GetParam());
|
||||
minLineLength = std::tr1::get<4>(GetParam());
|
||||
maxGap = std::tr1::get<5>(GetParam());
|
||||
}
|
||||
};
|
||||
|
||||
void CV_StandartHoughLinesTest::run(int)
|
||||
void BaseHoughLineTest::run_test(int type)
|
||||
{
|
||||
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
||||
Mat src = imread(filename, IMREAD_GRAYSCALE);
|
||||
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
||||
|
||||
string xml;
|
||||
if (type == STANDART)
|
||||
xml = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/HoughLines.xml";
|
||||
else if (type == PROBABILISTIC)
|
||||
xml = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/HoughLinesP.xml";
|
||||
|
||||
Mat dst;
|
||||
Canny(src, dst, 100, 150, 3);
|
||||
EXPECT_FALSE(dst.empty()) << "Failed Canny edge detector";
|
||||
|
||||
Mat lines;
|
||||
if (type == STANDART)
|
||||
HoughLines(dst, lines, rhoStep, thetaStep, threshold, 0, 0);
|
||||
else if (type == PROBABILISTIC)
|
||||
HoughLinesP(dst, lines, rhoStep, thetaStep, threshold, minLineLength, maxGap);
|
||||
|
||||
String test_case_name = format("lines_%s_%.0f_%.2f_%d_%d_%d", picture_name.c_str(), rhoStep, thetaStep,
|
||||
threshold, minLineLength, maxGap);
|
||||
test_case_name = getTestCaseName(test_case_name);
|
||||
|
||||
FileStorage fs(xml, FileStorage::READ);
|
||||
FileNode node = fs[test_case_name];
|
||||
if (node.empty())
|
||||
{
|
||||
fs.release();
|
||||
fs.open(xml, FileStorage::APPEND);
|
||||
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
||||
fs << test_case_name << lines;
|
||||
fs.release();
|
||||
fs.open(xml, FileStorage::READ);
|
||||
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
||||
}
|
||||
|
||||
Mat exp_lines;
|
||||
read( fs[test_case_name], exp_lines, Mat() );
|
||||
fs.release();
|
||||
|
||||
int count = -1;
|
||||
if (type == STANDART)
|
||||
count = countMatIntersection<Vec2f>(exp_lines, lines, (float) thetaStep + FLT_EPSILON, (float) rhoStep + FLT_EPSILON);
|
||||
else if (type == PROBABILISTIC)
|
||||
count = countMatIntersection<Vec4i>(exp_lines, lines, 1e-4f, 0.f);
|
||||
|
||||
#if (0 && defined(HAVE_IPP) && !defined(HAVE_IPP_ICV_ONLY) && IPP_VERSION_X100 >= 801)
|
||||
EXPECT_GE( count, (int) (exp_lines.total() * 0.8) );
|
||||
#else
|
||||
EXPECT_EQ( count, (int) exp_lines.total());
|
||||
#endif
|
||||
}
|
||||
|
||||
TEST_P(StandartHoughLinesTest, regression)
|
||||
{
|
||||
run_test(STANDART);
|
||||
}
|
||||
|
||||
void CV_ProbabilisticHoughLinesTest::run(int)
|
||||
TEST_P(ProbabilisticHoughLinesTest, regression)
|
||||
{
|
||||
run_test(PROBABILISTIC);
|
||||
}
|
||||
|
||||
void CV_HoughLinesTest::run_test(int type)
|
||||
{
|
||||
Mat src = imread(string(ts->get_data_path()) + "shared/pic1.png");
|
||||
if (src.empty())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P( ImgProc, StandartHoughLinesTest, testing::Combine(testing::Values( "shared/pic5.png", "../stitching/a1.png" ),
|
||||
testing::Values( 1, 10 ),
|
||||
testing::Values( 0.05, 0.1 ),
|
||||
testing::Values( 80, 150 )
|
||||
));
|
||||
|
||||
string xml;
|
||||
if (type == STANDART)
|
||||
xml = string(ts->get_data_path()) + "imgproc/HoughLines.xml";
|
||||
else if (type == PROBABILISTIC)
|
||||
xml = string(ts->get_data_path()) + "imgproc/HoughLinesP.xml";
|
||||
else
|
||||
{
|
||||
ts->printf(cvtest::TS::LOG, "Error: unknown HoughLines algorithm type.\n");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
||||
return;
|
||||
}
|
||||
|
||||
Mat dst;
|
||||
Canny(src, dst, 50, 200, 3);
|
||||
|
||||
Mat lines;
|
||||
if (type == STANDART)
|
||||
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0);
|
||||
else if (type == PROBABILISTIC)
|
||||
HoughLinesP(dst, lines, 1, CV_PI/180, 100, 0, 0);
|
||||
|
||||
FileStorage fs(xml, FileStorage::READ);
|
||||
if (!fs.isOpened())
|
||||
{
|
||||
fs.open(xml, FileStorage::WRITE);
|
||||
if (!fs.isOpened())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
fs << "exp_lines" << lines;
|
||||
fs.release();
|
||||
fs.open(xml, FileStorage::READ);
|
||||
if (!fs.isOpened())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
Mat exp_lines;
|
||||
read( fs["exp_lines"], exp_lines, Mat() );
|
||||
fs.release();
|
||||
|
||||
if( exp_lines.size != lines.size )
|
||||
transpose(lines, lines);
|
||||
|
||||
if ( exp_lines.size != lines.size || cvtest::norm(exp_lines, lines, NORM_INF) > 1e-4 )
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
||||
return;
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
|
||||
TEST(Imgproc_HoughLines, regression) { CV_StandartHoughLinesTest test; test.safe_run(); }
|
||||
|
||||
TEST(Imgproc_HoughLinesP, regression) { CV_ProbabilisticHoughLinesTest test; test.safe_run(); }
|
||||
INSTANTIATE_TEST_CASE_P( ImgProc, ProbabilisticHoughLinesTest, testing::Combine(testing::Values( "shared/pic5.png", "shared/pic1.png" ),
|
||||
testing::Values( 5, 10 ),
|
||||
testing::Values( 0.05, 0.1 ),
|
||||
testing::Values( 75, 150 ),
|
||||
testing::Values( 0, 10 ),
|
||||
testing::Values( 0, 4 )
|
||||
));
|
||||
|
Loading…
Reference in New Issue
Block a user