mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Add Java and Python code for the following imgproc tutorials: Canny, Remap, threshold and threshold inRange. Use HSV colorspace instead of RGB for inRange threshold tutorial.
This commit is contained in:
parent
ba6b9fd261
commit
9f6108ae7a
@ -11,7 +11,7 @@ In this tutorial you will learn how to:
|
||||
Theory
|
||||
------
|
||||
|
||||
The *Canny Edge detector* was developed by John F. Canny in 1986. Also known to many as the
|
||||
The *Canny Edge detector* @cite Canny86 was developed by John F. Canny in 1986. Also known to many as the
|
||||
*optimal detector*, the Canny algorithm aims to satisfy three main criteria:
|
||||
- **Low error rate:** Meaning a good detection of only existent edges.
|
||||
- **Good localization:** The distance between edge pixels detected and real edge pixels have
|
||||
@ -66,19 +66,33 @@ The *Canny Edge detector* was developed by John F. Canny in 1986. Also known to
|
||||
Code
|
||||
----
|
||||
|
||||
-# **What does this program do?**
|
||||
@add_toggle_cpp
|
||||
- The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/CannyDetector_Demo.cpp)
|
||||
@include samples/cpp/tutorial_code/ImgTrans/CannyDetector_Demo.cpp
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
- The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/java/tutorial_code/ImgTrans/canny_detector/CannyDetectorDemo.java)
|
||||
@include samples/java/tutorial_code/ImgTrans/canny_detector/CannyDetectorDemo.java
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
- The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/ImgTrans/canny_detector/CannyDetector_Demo.py)
|
||||
@include samples/python/tutorial_code/ImgTrans/canny_detector/CannyDetector_Demo.py
|
||||
@end_toggle
|
||||
|
||||
- **What does this program do?**
|
||||
- Asks the user to enter a numerical value to set the lower threshold for our *Canny Edge
|
||||
Detector* (by means of a Trackbar).
|
||||
- Applies the *Canny Detector* and generates a **mask** (bright lines representing the edges
|
||||
on a black background).
|
||||
- Applies the mask obtained on the original image and display it in a window.
|
||||
|
||||
-# The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/CannyDetector_Demo.cpp)
|
||||
@include samples/cpp/tutorial_code/ImgTrans/CannyDetector_Demo.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
Explanation (C++ code)
|
||||
----------------------
|
||||
|
||||
-# Create some needed variables:
|
||||
@snippet cpp/tutorial_code/ImgTrans/CannyDetector_Demo.cpp variables
|
||||
|
@ -45,61 +45,91 @@ Theory
|
||||
Code
|
||||
----
|
||||
|
||||
-# **What does this program do?**
|
||||
- **What does this program do?**
|
||||
- Loads an image
|
||||
- Each second, apply 1 of 4 different remapping processes to the image and display them
|
||||
indefinitely in a window.
|
||||
- Wait for the user to exit the program
|
||||
|
||||
-# The tutorial code's is shown lines below. You can also download it from
|
||||
@add_toggle_cpp
|
||||
- The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp)
|
||||
@include samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
- The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/java/tutorial_code/ImgTrans/remap/RemapDemo.java)
|
||||
@include samples/java/tutorial_code/ImgTrans/remap/RemapDemo.java
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
- The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/ImgTrans/remap/Remap_Demo.py)
|
||||
@include samples/python/tutorial_code/ImgTrans/remap/Remap_Demo.py
|
||||
@end_toggle
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
-# Create some variables we will use:
|
||||
@code{.cpp}
|
||||
Mat src, dst;
|
||||
Mat map_x, map_y;
|
||||
char* remap_window = "Remap demo";
|
||||
int ind = 0;
|
||||
@endcode
|
||||
-# Load an image:
|
||||
@code{.cpp}
|
||||
src = imread( argv[1], 1 );
|
||||
@endcode
|
||||
-# Create the destination image and the two mapping matrices (for x and y )
|
||||
@code{.cpp}
|
||||
dst.create( src.size(), src.type() );
|
||||
map_x.create( src.size(), CV_32FC1 );
|
||||
map_y.create( src.size(), CV_32FC1 );
|
||||
@endcode
|
||||
-# Create a window to display results
|
||||
@code{.cpp}
|
||||
namedWindow( remap_window, WINDOW_AUTOSIZE );
|
||||
@endcode
|
||||
-# Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply
|
||||
- Load an image:
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp Load
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgTrans/remap/RemapDemo.java Load
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/ImgTrans/remap/Remap_Demo.py Load
|
||||
@end_toggle
|
||||
|
||||
- Create the destination image and the two mapping matrices (for x and y )
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp Create
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgTrans/remap/RemapDemo.java Create
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/ImgTrans/remap/Remap_Demo.py Create
|
||||
@end_toggle
|
||||
|
||||
- Create a window to display results
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp Window
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgTrans/remap/RemapDemo.java Window
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/ImgTrans/remap/Remap_Demo.py Window
|
||||
@end_toggle
|
||||
|
||||
- Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply
|
||||
them to our source image:
|
||||
@code{.cpp}
|
||||
while( true )
|
||||
{
|
||||
/// Each 1 sec. Press ESC to exit the program
|
||||
char c = (char)waitKey( 1000 );
|
||||
|
||||
if( c == 27 )
|
||||
{ break; }
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp Loop
|
||||
@end_toggle
|
||||
|
||||
/// Update map_x & map_y. Then apply remap
|
||||
update_map();
|
||||
remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgTrans/remap/RemapDemo.java Loop
|
||||
@end_toggle
|
||||
|
||||
/// Display results
|
||||
imshow( remap_window, dst );
|
||||
}
|
||||
@endcode
|
||||
The function that applies the remapping is @ref cv::remap . We give the following arguments:
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/ImgTrans/remap/Remap_Demo.py Loop
|
||||
@end_toggle
|
||||
|
||||
- The function that applies the remapping is @ref cv::remap . We give the following arguments:
|
||||
- **src**: Source image
|
||||
- **dst**: Destination image of same size as *src*
|
||||
- **map_x**: The mapping function in the x direction. It is equivalent to the first component
|
||||
@ -112,9 +142,9 @@ Explanation
|
||||
|
||||
How do we update our mapping matrices *mat_x* and *mat_y*? Go on reading:
|
||||
|
||||
-# **Updating the mapping matrices:** We are going to perform 4 different mappings:
|
||||
- **Updating the mapping matrices:** We are going to perform 4 different mappings:
|
||||
-# Reduce the picture to half its size and will display it in the middle:
|
||||
\f[h(i,j) = ( 2*i - src.cols/2 + 0.5, 2*j - src.rows/2 + 0.5)\f]
|
||||
\f[h(i,j) = ( 2 \times i - src.cols/2 + 0.5, 2 \times j - src.rows/2 + 0.5)\f]
|
||||
for all pairs \f$(i,j)\f$ such that: \f$\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}\f$ and
|
||||
\f$\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}\f$
|
||||
-# Turn the image upside down: \f$h( i, j ) = (i, src.rows - j)\f$
|
||||
@ -123,41 +153,18 @@ Explanation
|
||||
|
||||
This is expressed in the following snippet. Here, *map_x* represents the first coordinate of
|
||||
*h(i,j)* and *map_y* the second coordinate.
|
||||
@code{.cpp}
|
||||
for( int j = 0; j < src.rows; j++ )
|
||||
{ for( int i = 0; i < src.cols; i++ )
|
||||
{
|
||||
switch( ind )
|
||||
{
|
||||
case 0:
|
||||
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
|
||||
{
|
||||
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
|
||||
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
|
||||
}
|
||||
else
|
||||
{ map_x.at<float>(j,i) = 0 ;
|
||||
map_y.at<float>(j,i) = 0 ;
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
map_x.at<float>(j,i) = i ;
|
||||
map_y.at<float>(j,i) = src.rows - j ;
|
||||
break;
|
||||
case 2:
|
||||
map_x.at<float>(j,i) = src.cols - i ;
|
||||
map_y.at<float>(j,i) = j ;
|
||||
break;
|
||||
case 3:
|
||||
map_x.at<float>(j,i) = src.cols - i ;
|
||||
map_y.at<float>(j,i) = src.rows - j ;
|
||||
break;
|
||||
} // end of switch
|
||||
}
|
||||
}
|
||||
ind++;
|
||||
}
|
||||
@endcode
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp Update
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgTrans/remap/RemapDemo.java Update
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/ImgTrans/remap/Remap_Demo.py Update
|
||||
@end_toggle
|
||||
|
||||
Result
|
||||
------
|
||||
|
@ -15,6 +15,8 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
|
||||
- @subpage tutorial_erosion_dilatation
|
||||
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
Author: Ana Huamán
|
||||
@ -23,6 +25,8 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
|
||||
- @subpage tutorial_opening_closing_hats
|
||||
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Ana Huamán
|
||||
@ -61,6 +65,8 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
|
||||
- @subpage tutorial_threshold
|
||||
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Ana Huamán
|
||||
@ -69,6 +75,8 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
|
||||
- @subpage tutorial_threshold_inRange
|
||||
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Rishiraj Surti
|
||||
@ -117,6 +125,8 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
|
||||
- @subpage tutorial_canny_detector
|
||||
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Ana Huamán
|
||||
@ -145,6 +155,8 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
|
||||
- @subpage tutorial_remap
|
||||
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Ana Huamán
|
||||
|
@ -96,43 +96,101 @@ Thresholding?
|
||||
Code
|
||||
----
|
||||
|
||||
@add_toggle_cpp
|
||||
The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/ImgProc/Threshold.cpp)
|
||||
@include samples/cpp/tutorial_code/ImgProc/Threshold.cpp
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/java/tutorial_code/ImgProc/threshold/Threshold.java)
|
||||
@include samples/java/tutorial_code/ImgProc/threshold/Threshold.java
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/imgProc/threshold/threshold.py)
|
||||
@include samples/python/tutorial_code/imgProc/threshold/threshold.py
|
||||
@end_toggle
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
-# Let's check the general structure of the program:
|
||||
- Load an image. If it is BGR we convert it to Grayscale. For this, remember that we can use
|
||||
Let's check the general structure of the program:
|
||||
- Load an image. If it is BGR we convert it to Grayscale. For this, remember that we can use
|
||||
the function @ref cv::cvtColor :
|
||||
@snippet cpp/tutorial_code/ImgProc/Threshold.cpp load
|
||||
|
||||
- Create a window to display the result
|
||||
@snippet cpp/tutorial_code/ImgProc/Threshold.cpp window
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold.cpp load
|
||||
@end_toggle
|
||||
|
||||
- Create \f$2\f$ trackbars for the user to enter user input:
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/threshold/Threshold.java load
|
||||
@end_toggle
|
||||
|
||||
- **Type of thresholding**: Binary, To Zero, etc...
|
||||
- **Threshold value**
|
||||
@snippet cpp/tutorial_code/ImgProc/Threshold.cpp trackbar
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/threshold/threshold.py load
|
||||
@end_toggle
|
||||
|
||||
- Wait until the user enters the threshold value, the type of thresholding (or until the
|
||||
program exits)
|
||||
- Whenever the user changes the value of any of the Trackbars, the function *Threshold_Demo*
|
||||
is called:
|
||||
@snippet cpp/tutorial_code/ImgProc/Threshold.cpp Threshold_Demo
|
||||
- Create a window to display the result
|
||||
|
||||
As you can see, the function @ref cv::threshold is invoked. We give \f$5\f$ parameters:
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold.cpp window
|
||||
@end_toggle
|
||||
|
||||
- *src_gray*: Our input image
|
||||
- *dst*: Destination (output) image
|
||||
- *threshold_value*: The \f$thresh\f$ value with respect to which the thresholding operation
|
||||
is made
|
||||
- *max_BINARY_value*: The value used with the Binary thresholding operations (to set the
|
||||
chosen pixels)
|
||||
- *threshold_type*: One of the \f$5\f$ thresholding operations. They are listed in the
|
||||
comment section of the function above.
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/threshold/Threshold.java window
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/threshold/threshold.py window
|
||||
@end_toggle
|
||||
|
||||
- Create \f$2\f$ trackbars for the user to enter user input:
|
||||
|
||||
- **Type of thresholding**: Binary, To Zero, etc...
|
||||
- **Threshold value**
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold.cpp trackbar
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/threshold/Threshold.java trackbar
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/threshold/threshold.py trackbar
|
||||
@end_toggle
|
||||
|
||||
- Wait until the user enters the threshold value, the type of thresholding (or until the
|
||||
program exits)
|
||||
- Whenever the user changes the value of any of the Trackbars, the function *Threshold_Demo*
|
||||
(*update* in Java) is called:
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold.cpp Threshold_Demo
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/threshold/Threshold.java Threshold_Demo
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/threshold/threshold.py Threshold_Demo
|
||||
@end_toggle
|
||||
|
||||
As you can see, the function @ref cv::threshold is invoked. We give \f$5\f$ parameters in C++ code:
|
||||
|
||||
- *src_gray*: Our input image
|
||||
- *dst*: Destination (output) image
|
||||
- *threshold_value*: The \f$thresh\f$ value with respect to which the thresholding operation
|
||||
is made
|
||||
- *max_BINARY_value*: The value used with the Binary thresholding operations (to set the
|
||||
chosen pixels)
|
||||
- *threshold_type*: One of the \f$5\f$ thresholding operations. They are listed in the
|
||||
comment section of the function above.
|
||||
|
||||
Results
|
||||
-------
|
||||
|
Binary file not shown.
After Width: | Height: | Size: 20 KiB |
Binary file not shown.
After Width: | Height: | Size: 15 KiB |
@ -1,56 +1,173 @@
|
||||
Thresholding Operations using inRange {#tutorial_threshold_inRange}
|
||||
=============================
|
||||
=====================================
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
- Perform basic thresholding operations using OpenCV function @ref cv::inRange
|
||||
- Detect an object based on the range of pixel values it has
|
||||
- Perform basic thresholding operations using OpenCV @ref cv::inRange function.
|
||||
- Detect an object based on the range of pixel values in the HSV colorspace.
|
||||
|
||||
Theory
|
||||
-----------
|
||||
- In the previous tutorial, we learnt how perform thresholding using @ref cv::threshold function.
|
||||
------
|
||||
- In the previous tutorial, we learnt how to perform thresholding using @ref cv::threshold function.
|
||||
- In this tutorial, we will learn how to do it using @ref cv::inRange function.
|
||||
- The concept remains same, but now we add a range of pixel values we need.
|
||||
- The concept remains the same, but now we add a range of pixel values we need.
|
||||
|
||||
HSV colorspace
|
||||
--------------
|
||||
|
||||
<a href="https://en.wikipedia.org/wiki/HSL_and_HSV">HSV</a> (hue, saturation, value) colorspace
|
||||
is a model to represent the colorspace similar to the RGB color model. Since the hue channel
|
||||
models the color type, it is very useful in image processing tasks that need to segment objects
|
||||
based on its color. Variation of the saturation goes from unsaturated to represent shades of gray and
|
||||
fully saturated (no white component). Value channel describes the brightness or the intensity of the
|
||||
color. Next image shows the HSV cylinder.
|
||||
|
||||
![By SharkDderivative work: SharkD [CC BY-SA 3.0 or GFDL], via Wikimedia Commons](images/Threshold_inRange_HSV_colorspace.jpg)
|
||||
|
||||
Since colors in the RGB colorspace are coded using the three channels, it is more difficult to segment
|
||||
an object in the image based on its color.
|
||||
|
||||
![By SharkD [GFDL or CC BY-SA 4.0], from Wikimedia Commons](images/Threshold_inRange_RGB_colorspace.jpg)
|
||||
|
||||
Formulas used to convert from one colorspace to another colorspace using @ref cv::cvtColor function
|
||||
are described in @ref imgproc_color_conversions
|
||||
|
||||
Code
|
||||
----
|
||||
|
||||
@add_toggle_cpp
|
||||
The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp)
|
||||
@include samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/java/tutorial_code/ImgProc/threshold_inRange/ThresholdInRange.java)
|
||||
@include samples/java/tutorial_code/ImgProc/threshold_inRange/ThresholdInRange.java
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
The tutorial code's is shown lines below. You can also download it from
|
||||
[here](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/imgProc/threshold_inRange/threshold_inRange.py)
|
||||
@include samples/python/tutorial_code/imgProc/threshold_inRange/threshold_inRange.py
|
||||
@end_toggle
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
-# Let's check the general structure of the program:
|
||||
- Create two Matrix elements to store the frames
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp mat
|
||||
- Capture the video stream from default capturing device.
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp cap
|
||||
- Create a window to display the default frame and the threshold frame.
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp window
|
||||
- Create trackbars to set the range of RGB values
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp trackbar
|
||||
- Until the user want the program to exit do the following
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp while
|
||||
- Show the images
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp show
|
||||
- For a trackbar which controls the lower range, say for example Red value:
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp low
|
||||
- For a trackbar which controls the upper range, say for example Red value:
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp high
|
||||
- It is necessary to find the maximum and minimum value to avoid discrepancies such as
|
||||
the high value of threshold becoming less the low value.
|
||||
Let's check the general structure of the program:
|
||||
- Capture the video stream from default or supplied capturing device.
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp cap
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/threshold_inRange/ThresholdInRange.java cap
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/threshold_inRange/threshold_inRange.py cap
|
||||
@end_toggle
|
||||
|
||||
- Create a window to display the default frame and the threshold frame.
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp window
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/threshold_inRange/ThresholdInRange.java window
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/threshold_inRange/threshold_inRange.py window
|
||||
@end_toggle
|
||||
|
||||
- Create the trackbars to set the range of HSV values
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp trackbar
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/threshold_inRange/ThresholdInRange.java trackbar
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/threshold_inRange/threshold_inRange.py trackbar
|
||||
@end_toggle
|
||||
|
||||
- Until the user want the program to exit do the following
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp while
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/threshold_inRange/ThresholdInRange.java while
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/threshold_inRange/threshold_inRange.py while
|
||||
@end_toggle
|
||||
|
||||
- Show the images
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp show
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/threshold_inRange/ThresholdInRange.java show
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/threshold_inRange/threshold_inRange.py show
|
||||
@end_toggle
|
||||
|
||||
- For a trackbar which controls the lower range, say for example hue value:
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp low
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/threshold_inRange/ThresholdInRange.java low
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/threshold_inRange/threshold_inRange.py low
|
||||
@end_toggle
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp low
|
||||
|
||||
- For a trackbar which controls the upper range, say for example hue value:
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/Threshold_inRange.cpp high
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/ImgProc/threshold_inRange/ThresholdInRange.java high
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/imgProc/threshold_inRange/threshold_inRange.py high
|
||||
@end_toggle
|
||||
|
||||
- It is necessary to find the maximum and minimum value to avoid discrepancies such as
|
||||
the high value of threshold becoming less than the low value.
|
||||
|
||||
Results
|
||||
-------
|
||||
|
||||
-# After compiling this program, run it. The program will open two windows
|
||||
- After compiling this program, run it. The program will open two windows
|
||||
|
||||
-# As you set the RGB range values from the trackbar, the resulting frame will be visible in the other window.
|
||||
- As you set the range values from the trackbar, the resulting frame will be visible in the other window.
|
||||
|
||||
![](images/Threshold_inRange_Tutorial_Result_input.jpeg)
|
||||
![](images/Threshold_inRange_Tutorial_Result_output.jpeg)
|
||||
|
@ -7,8 +7,10 @@
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include <iostream>
|
||||
|
||||
using namespace cv;
|
||||
using std::cout;
|
||||
|
||||
/// Global variables
|
||||
|
||||
@ -16,7 +18,7 @@ int threshold_value = 0;
|
||||
int threshold_type = 3;
|
||||
int const max_value = 255;
|
||||
int const max_type = 4;
|
||||
int const max_BINARY_value = 255;
|
||||
int const max_binary_value = 255;
|
||||
|
||||
Mat src, src_gray, dst;
|
||||
const char* window_name = "Threshold Demo";
|
||||
@ -24,69 +26,62 @@ const char* window_name = "Threshold Demo";
|
||||
const char* trackbar_type = "Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted";
|
||||
const char* trackbar_value = "Value";
|
||||
|
||||
/// Function headers
|
||||
void Threshold_Demo( int, void* );
|
||||
//![Threshold_Demo]
|
||||
/**
|
||||
* @function Threshold_Demo
|
||||
*/
|
||||
static void Threshold_Demo( int, void* )
|
||||
{
|
||||
/* 0: Binary
|
||||
1: Binary Inverted
|
||||
2: Threshold Truncated
|
||||
3: Threshold to Zero
|
||||
4: Threshold to Zero Inverted
|
||||
*/
|
||||
threshold( src_gray, dst, threshold_value, max_binary_value, threshold_type );
|
||||
imshow( window_name, dst );
|
||||
}
|
||||
//![Threshold_Demo]
|
||||
|
||||
/**
|
||||
* @function main
|
||||
*/
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
//! [load]
|
||||
String imageName("../data/stuff.jpg"); // by default
|
||||
if (argc > 1)
|
||||
{
|
||||
imageName = argv[1];
|
||||
}
|
||||
src = imread( imageName, IMREAD_COLOR ); // Load an image
|
||||
|
||||
if( src.empty() )
|
||||
{ return -1; }
|
||||
|
||||
cvtColor( src, src_gray, COLOR_BGR2GRAY ); // Convert the image to Gray
|
||||
//! [load]
|
||||
|
||||
//! [window]
|
||||
namedWindow( window_name, WINDOW_AUTOSIZE ); // Create a window to display results
|
||||
//! [window]
|
||||
|
||||
//! [trackbar]
|
||||
createTrackbar( trackbar_type,
|
||||
window_name, &threshold_type,
|
||||
max_type, Threshold_Demo ); // Create Trackbar to choose type of Threshold
|
||||
|
||||
createTrackbar( trackbar_value,
|
||||
window_name, &threshold_value,
|
||||
max_value, Threshold_Demo ); // Create Trackbar to choose Threshold value
|
||||
//! [trackbar]
|
||||
|
||||
Threshold_Demo( 0, 0 ); // Call the function to initialize
|
||||
|
||||
/// Wait until user finishes program
|
||||
for(;;)
|
||||
//! [load]
|
||||
String imageName("../data/stuff.jpg"); // by default
|
||||
if (argc > 1)
|
||||
{
|
||||
char c = (char)waitKey( 20 );
|
||||
if( c == 27 )
|
||||
{ break; }
|
||||
imageName = argv[1];
|
||||
}
|
||||
src = imread( imageName, IMREAD_COLOR ); // Load an image
|
||||
|
||||
if (src.empty())
|
||||
{
|
||||
cout << "Cannot read image: " << imageName << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
cvtColor( src, src_gray, COLOR_BGR2GRAY ); // Convert the image to Gray
|
||||
//! [load]
|
||||
|
||||
//! [window]
|
||||
namedWindow( window_name, WINDOW_AUTOSIZE ); // Create a window to display results
|
||||
//! [window]
|
||||
|
||||
//! [trackbar]
|
||||
createTrackbar( trackbar_type,
|
||||
window_name, &threshold_type,
|
||||
max_type, Threshold_Demo ); // Create Trackbar to choose type of Threshold
|
||||
|
||||
createTrackbar( trackbar_value,
|
||||
window_name, &threshold_value,
|
||||
max_value, Threshold_Demo ); // Create Trackbar to choose Threshold value
|
||||
//! [trackbar]
|
||||
|
||||
Threshold_Demo( 0, 0 ); // Call the function to initialize
|
||||
|
||||
/// Wait until user finishes program
|
||||
waitKey();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//![Threshold_Demo]
|
||||
/**
|
||||
* @function Threshold_Demo
|
||||
*/
|
||||
void Threshold_Demo( int, void* )
|
||||
{
|
||||
/* 0: Binary
|
||||
1: Binary Inverted
|
||||
2: Threshold Truncated
|
||||
3: Threshold to Zero
|
||||
4: Threshold to Zero Inverted
|
||||
*/
|
||||
|
||||
threshold( src_gray, dst, threshold_value, max_BINARY_value,threshold_type );
|
||||
|
||||
imshow( window_name, dst );
|
||||
}
|
||||
//![Threshold_Demo]
|
||||
|
@ -1,102 +1,104 @@
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include <iostream>
|
||||
#include <stdlib.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
/** Function Headers */
|
||||
void on_low_r_thresh_trackbar(int, void *);
|
||||
void on_high_r_thresh_trackbar(int, void *);
|
||||
void on_low_g_thresh_trackbar(int, void *);
|
||||
void on_high_g_thresh_trackbar(int, void *);
|
||||
void on_low_b_thresh_trackbar(int, void *);
|
||||
void on_high_b_thresh_trackbar(int, void *);
|
||||
|
||||
/** Global Variables */
|
||||
int low_r=30, low_g=30, low_b=30;
|
||||
int high_r=100, high_g=100, high_b=100;
|
||||
const int max_value_H = 360/2;
|
||||
const int max_value = 255;
|
||||
const String window_capture_name = "Video Capture";
|
||||
const String window_detection_name = "Object Detection";
|
||||
int low_H = 0, low_S = 0, low_V = 0;
|
||||
int high_H = max_value_H, high_S = max_value, high_V = max_value;
|
||||
|
||||
/** @function main */
|
||||
int main()
|
||||
//! [low]
|
||||
static void on_low_H_thresh_trackbar(int, void *)
|
||||
{
|
||||
low_H = min(high_H-1, low_H);
|
||||
setTrackbarPos("Low H", window_detection_name, low_H);
|
||||
}
|
||||
//! [low]
|
||||
|
||||
//! [high]
|
||||
static void on_high_H_thresh_trackbar(int, void *)
|
||||
{
|
||||
high_H = max(high_H, low_H+1);
|
||||
setTrackbarPos("High H", window_detection_name, high_H);
|
||||
}
|
||||
|
||||
//! [high]
|
||||
static void on_low_S_thresh_trackbar(int, void *)
|
||||
{
|
||||
low_S = min(high_S-1, low_S);
|
||||
setTrackbarPos("Low S", window_detection_name, low_S);
|
||||
}
|
||||
|
||||
static void on_high_S_thresh_trackbar(int, void *)
|
||||
{
|
||||
high_S = max(high_S, low_S+1);
|
||||
setTrackbarPos("High S", window_detection_name, high_S);
|
||||
}
|
||||
|
||||
static void on_low_V_thresh_trackbar(int, void *)
|
||||
{
|
||||
low_V = min(high_V-1, low_V);
|
||||
setTrackbarPos("Low V", window_detection_name, low_V);
|
||||
}
|
||||
|
||||
static void on_high_V_thresh_trackbar(int, void *)
|
||||
{
|
||||
high_V = max(high_V, low_V+1);
|
||||
setTrackbarPos("High V", window_detection_name, high_V);
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
//! [mat]
|
||||
Mat frame, frame_threshold;
|
||||
//! [mat]
|
||||
//! [cap]
|
||||
VideoCapture cap(0);
|
||||
VideoCapture cap(argc > 1 ? atoi(argv[1]) : 0);
|
||||
//! [cap]
|
||||
|
||||
//! [window]
|
||||
namedWindow("Video Capture", WINDOW_NORMAL);
|
||||
namedWindow("Object Detection", WINDOW_NORMAL);
|
||||
namedWindow(window_capture_name);
|
||||
namedWindow(window_detection_name);
|
||||
//! [window]
|
||||
|
||||
//! [trackbar]
|
||||
//-- Trackbars to set thresholds for RGB values
|
||||
createTrackbar("Low R","Object Detection", &low_r, 255, on_low_r_thresh_trackbar);
|
||||
createTrackbar("High R","Object Detection", &high_r, 255, on_high_r_thresh_trackbar);
|
||||
createTrackbar("Low G","Object Detection", &low_g, 255, on_low_g_thresh_trackbar);
|
||||
createTrackbar("High G","Object Detection", &high_g, 255, on_high_g_thresh_trackbar);
|
||||
createTrackbar("Low B","Object Detection", &low_b, 255, on_low_b_thresh_trackbar);
|
||||
createTrackbar("High B","Object Detection", &high_b, 255, on_high_b_thresh_trackbar);
|
||||
// Trackbars to set thresholds for HSV values
|
||||
createTrackbar("Low H", window_detection_name, &low_H, max_value_H, on_low_H_thresh_trackbar);
|
||||
createTrackbar("High H", window_detection_name, &high_H, max_value_H, on_high_H_thresh_trackbar);
|
||||
createTrackbar("Low S", window_detection_name, &low_S, max_value, on_low_S_thresh_trackbar);
|
||||
createTrackbar("High S", window_detection_name, &high_S, max_value, on_high_S_thresh_trackbar);
|
||||
createTrackbar("Low V", window_detection_name, &low_V, max_value, on_low_V_thresh_trackbar);
|
||||
createTrackbar("High V", window_detection_name, &high_V, max_value, on_high_V_thresh_trackbar);
|
||||
//! [trackbar]
|
||||
while((char)waitKey(1)!='q'){
|
||||
|
||||
Mat frame, frame_HSV, frame_threshold;
|
||||
while (true) {
|
||||
//! [while]
|
||||
cap>>frame;
|
||||
cap >> frame;
|
||||
if(frame.empty())
|
||||
{
|
||||
break;
|
||||
//-- Detect the object based on RGB Range Values
|
||||
inRange(frame,Scalar(low_b,low_g,low_r), Scalar(high_b,high_g,high_r),frame_threshold);
|
||||
}
|
||||
|
||||
// Convert from BGR to HSV colorspace
|
||||
cvtColor(frame, frame_HSV, COLOR_BGR2HSV);
|
||||
// Detect the object based on HSV Range Values
|
||||
inRange(frame_HSV, Scalar(low_H, low_S, low_V), Scalar(high_H, high_S, high_V), frame_threshold);
|
||||
//! [while]
|
||||
|
||||
//! [show]
|
||||
//-- Show the frames
|
||||
imshow("Video Capture",frame);
|
||||
imshow("Object Detection",frame_threshold);
|
||||
// Show the frames
|
||||
imshow(window_capture_name, frame);
|
||||
imshow(window_detection_name, frame_threshold);
|
||||
//! [show]
|
||||
|
||||
char key = (char) waitKey(30);
|
||||
if (key == 'q' || key == 27)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
//! [low]
|
||||
/** @function on_low_r_thresh_trackbar */
|
||||
void on_low_r_thresh_trackbar(int, void *)
|
||||
{
|
||||
low_r = min(high_r-1, low_r);
|
||||
setTrackbarPos("Low R","Object Detection", low_r);
|
||||
}
|
||||
//! [low]
|
||||
//! [high]
|
||||
/** @function on_high_r_thresh_trackbar */
|
||||
void on_high_r_thresh_trackbar(int, void *)
|
||||
{
|
||||
high_r = max(high_r, low_r+1);
|
||||
setTrackbarPos("High R", "Object Detection", high_r);
|
||||
}
|
||||
//![high]
|
||||
/** @function on_low_g_thresh_trackbar */
|
||||
void on_low_g_thresh_trackbar(int, void *)
|
||||
{
|
||||
low_g = min(high_g-1, low_g);
|
||||
setTrackbarPos("Low G","Object Detection", low_g);
|
||||
}
|
||||
|
||||
/** @function on_high_g_thresh_trackbar */
|
||||
void on_high_g_thresh_trackbar(int, void *)
|
||||
{
|
||||
high_g = max(high_g, low_g+1);
|
||||
setTrackbarPos("High G", "Object Detection", high_g);
|
||||
}
|
||||
|
||||
/** @function on_low_b_thresh_trackbar */
|
||||
void on_low_b_thresh_trackbar(int, void *)
|
||||
{
|
||||
low_b= min(high_b-1, low_b);
|
||||
setTrackbarPos("Low B","Object Detection", low_b);
|
||||
}
|
||||
|
||||
/** @function on_high_b_thresh_trackbar */
|
||||
void on_high_b_thresh_trackbar(int, void *)
|
||||
{
|
||||
high_b = max(high_b, low_b+1);
|
||||
setTrackbarPos("High B", "Object Detection", high_b);
|
||||
}
|
||||
|
@ -14,11 +14,10 @@ using namespace cv;
|
||||
Mat src, src_gray;
|
||||
Mat dst, detected_edges;
|
||||
|
||||
int edgeThresh = 1;
|
||||
int lowThreshold;
|
||||
int const max_lowThreshold = 100;
|
||||
int ratio = 3;
|
||||
int kernel_size = 3;
|
||||
int lowThreshold = 0;
|
||||
const int max_lowThreshold = 100;
|
||||
const int ratio = 3;
|
||||
const int kernel_size = 3;
|
||||
const char* window_name = "Edge Map";
|
||||
//![variables]
|
||||
|
||||
|
@ -11,90 +11,104 @@
|
||||
|
||||
using namespace cv;
|
||||
|
||||
/// Global variables
|
||||
Mat src, dst;
|
||||
Mat map_x, map_y;
|
||||
const char* remap_window = "Remap demo";
|
||||
int ind = 0;
|
||||
|
||||
/// Function Headers
|
||||
void update_map( void );
|
||||
void update_map( int &ind, Mat &map_x, Mat &map_y );
|
||||
|
||||
/**
|
||||
* @function main
|
||||
*/
|
||||
int main(int argc, const char** argv)
|
||||
{
|
||||
/// Load the image
|
||||
CommandLineParser parser(argc, argv, "{@image |../data/chicky_512.png|input image name}");
|
||||
std::string filename = parser.get<std::string>(0);
|
||||
src = imread( filename, IMREAD_COLOR );
|
||||
CommandLineParser parser(argc, argv, "{@image |../data/chicky_512.png|input image name}");
|
||||
std::string filename = parser.get<std::string>(0);
|
||||
//! [Load]
|
||||
/// Load the image
|
||||
Mat src = imread( filename, IMREAD_COLOR );
|
||||
if (src.empty())
|
||||
{
|
||||
std::cout << "Cannot read image: " << filename << std::endl;
|
||||
return -1;
|
||||
}
|
||||
//! [Load]
|
||||
|
||||
/// Create dst, map_x and map_y with the same size as src:
|
||||
dst.create( src.size(), src.type() );
|
||||
map_x.create( src.size(), CV_32FC1 );
|
||||
map_y.create( src.size(), CV_32FC1 );
|
||||
//! [Create]
|
||||
/// Create dst, map_x and map_y with the same size as src:
|
||||
Mat dst(src.size(), src.type());
|
||||
Mat map_x(src.size(), CV_32FC1);
|
||||
Mat map_y(src.size(), CV_32FC1);
|
||||
//! [Create]
|
||||
|
||||
/// Create window
|
||||
namedWindow( remap_window, WINDOW_AUTOSIZE );
|
||||
//! [Window]
|
||||
/// Create window
|
||||
const char* remap_window = "Remap demo";
|
||||
namedWindow( remap_window, WINDOW_AUTOSIZE );
|
||||
//! [Window]
|
||||
|
||||
/// Loop
|
||||
for(;;)
|
||||
{
|
||||
/// Each 1 sec. Press ESC to exit the program
|
||||
char c = (char)waitKey( 1000 );
|
||||
//! [Loop]
|
||||
/// Index to switch between the remap modes
|
||||
int ind = 0;
|
||||
for(;;)
|
||||
{
|
||||
/// Update map_x & map_y. Then apply remap
|
||||
update_map(ind, map_x, map_y);
|
||||
remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0, 0, 0) );
|
||||
|
||||
if( c == 27 )
|
||||
{ break; }
|
||||
/// Display results
|
||||
imshow( remap_window, dst );
|
||||
|
||||
/// Update map_x & map_y. Then apply remap
|
||||
update_map();
|
||||
remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0, 0, 0) );
|
||||
|
||||
// Display results
|
||||
imshow( remap_window, dst );
|
||||
}
|
||||
return 0;
|
||||
/// Each 1 sec. Press ESC to exit the program
|
||||
char c = (char)waitKey( 1000 );
|
||||
if( c == 27 )
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
//! [Loop]
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @function update_map
|
||||
* @brief Fill the map_x and map_y matrices with 4 types of mappings
|
||||
*/
|
||||
void update_map( void )
|
||||
//! [Update]
|
||||
void update_map( int &ind, Mat &map_x, Mat &map_y )
|
||||
{
|
||||
ind = ind%4;
|
||||
|
||||
for( int j = 0; j < src.rows; j++ )
|
||||
{ for( int i = 0; i < src.cols; i++ )
|
||||
{
|
||||
switch( ind )
|
||||
{
|
||||
case 0:
|
||||
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
|
||||
{
|
||||
map_x.at<float>(j,i) = 2*( i - src.cols*0.25f ) + 0.5f ;
|
||||
map_y.at<float>(j,i) = 2*( j - src.rows*0.25f ) + 0.5f ;
|
||||
}
|
||||
else
|
||||
{ map_x.at<float>(j,i) = 0 ;
|
||||
map_y.at<float>(j,i) = 0 ;
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
map_x.at<float>(j,i) = (float)i ;
|
||||
map_y.at<float>(j,i) = (float)(src.rows - j) ;
|
||||
break;
|
||||
case 2:
|
||||
map_x.at<float>(j,i) = (float)(src.cols - i) ;
|
||||
map_y.at<float>(j,i) = (float)j ;
|
||||
break;
|
||||
case 3:
|
||||
map_x.at<float>(j,i) = (float)(src.cols - i) ;
|
||||
map_y.at<float>(j,i) = (float)(src.rows - j) ;
|
||||
break;
|
||||
} // end of switch
|
||||
}
|
||||
for( int i = 0; i < map_x.rows; i++ )
|
||||
{
|
||||
for( int j = 0; j < map_x.cols; j++ )
|
||||
{
|
||||
switch( ind )
|
||||
{
|
||||
case 0:
|
||||
if( j > map_x.cols*0.25 && j < map_x.cols*0.75 && i > map_x.rows*0.25 && i < map_x.rows*0.75 )
|
||||
{
|
||||
map_x.at<float>(i, j) = 2*( j - map_x.cols*0.25f ) + 0.5f;
|
||||
map_y.at<float>(i, j) = 2*( i - map_x.rows*0.25f ) + 0.5f;
|
||||
}
|
||||
else
|
||||
{
|
||||
map_x.at<float>(i, j) = 0;
|
||||
map_y.at<float>(i, j) = 0;
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
map_x.at<float>(i, j) = (float)j;
|
||||
map_y.at<float>(i, j) = (float)(map_x.rows - i);
|
||||
break;
|
||||
case 2:
|
||||
map_x.at<float>(i, j) = (float)(map_x.cols - j);
|
||||
map_y.at<float>(i, j) = (float)i;
|
||||
break;
|
||||
case 3:
|
||||
map_x.at<float>(i, j) = (float)(map_x.cols - j);
|
||||
map_y.at<float>(i, j) = (float)(map_x.rows - i);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
} // end of switch
|
||||
}
|
||||
}
|
||||
ind++;
|
||||
ind = (ind+1) % 4;
|
||||
}
|
||||
//! [Update]
|
||||
|
144
samples/java/tutorial_code/ImgProc/threshold/Threshold.java
Normal file
144
samples/java/tutorial_code/ImgProc/threshold/Threshold.java
Normal file
@ -0,0 +1,144 @@
|
||||
import java.awt.BorderLayout;
|
||||
import java.awt.Container;
|
||||
import java.awt.Image;
|
||||
|
||||
import javax.swing.BoxLayout;
|
||||
import javax.swing.ImageIcon;
|
||||
import javax.swing.JFrame;
|
||||
import javax.swing.JLabel;
|
||||
import javax.swing.JPanel;
|
||||
import javax.swing.JSlider;
|
||||
import javax.swing.event.ChangeEvent;
|
||||
import javax.swing.event.ChangeListener;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class Threshold {
|
||||
private static int MAX_VALUE = 255;
|
||||
private static int MAX_TYPE = 4;
|
||||
private static int MAX_BINARY_VALUE = 255;
|
||||
private static final String WINDOW_NAME = "Threshold Demo";
|
||||
private static final String TRACKBAR_TYPE = "<html><body>Type: <br> 0: Binary <br> "
|
||||
+ "1: Binary Inverted <br> 2: Truncate <br> "
|
||||
+ "3: To Zero <br> 4: To Zero Inverted</body></html>";
|
||||
private static final String TRACKBAR_VALUE = "Value";
|
||||
private int thresholdValue = 0;
|
||||
private int thresholdType = 3;
|
||||
private Mat src;
|
||||
private Mat srcGray = new Mat();
|
||||
private Mat dst = new Mat();
|
||||
private JFrame frame;
|
||||
private JLabel imgLabel;
|
||||
|
||||
public Threshold(String[] args) {
|
||||
//! [load]
|
||||
String imagePath = "../data/stuff.jpg";
|
||||
if (args.length > 0) {
|
||||
imagePath = args[0];
|
||||
}
|
||||
// Load an image
|
||||
src = Imgcodecs.imread(imagePath);
|
||||
if (src.empty()) {
|
||||
System.out.println("Empty image: " + imagePath);
|
||||
System.exit(0);
|
||||
}
|
||||
// Convert the image to Gray
|
||||
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
|
||||
//! [load]
|
||||
|
||||
//! [window]
|
||||
// Create and set up the window.
|
||||
frame = new JFrame(WINDOW_NAME);
|
||||
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
|
||||
// Set up the content pane.
|
||||
Image img = HighGui.toBufferedImage(srcGray);
|
||||
addComponentsToPane(frame.getContentPane(), img);
|
||||
// Use the content pane's default BorderLayout. No need for
|
||||
// setLayout(new BorderLayout());
|
||||
// Display the window.
|
||||
frame.pack();
|
||||
frame.setVisible(true);
|
||||
//! [window]
|
||||
}
|
||||
|
||||
private void addComponentsToPane(Container pane, Image img) {
|
||||
if (!(pane.getLayout() instanceof BorderLayout)) {
|
||||
pane.add(new JLabel("Container doesn't use BorderLayout!"));
|
||||
return;
|
||||
}
|
||||
|
||||
JPanel sliderPanel = new JPanel();
|
||||
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
|
||||
|
||||
//! [trackbar]
|
||||
sliderPanel.add(new JLabel(TRACKBAR_TYPE));
|
||||
// Create Trackbar to choose type of Threshold
|
||||
JSlider sliderThreshType = new JSlider(0, MAX_TYPE, thresholdType);
|
||||
sliderThreshType.setMajorTickSpacing(1);
|
||||
sliderThreshType.setMinorTickSpacing(1);
|
||||
sliderThreshType.setPaintTicks(true);
|
||||
sliderThreshType.setPaintLabels(true);
|
||||
sliderPanel.add(sliderThreshType);
|
||||
|
||||
sliderPanel.add(new JLabel(TRACKBAR_VALUE));
|
||||
// Create Trackbar to choose Threshold value
|
||||
JSlider sliderThreshValue = new JSlider(0, MAX_VALUE, 0);
|
||||
sliderThreshValue.setMajorTickSpacing(50);
|
||||
sliderThreshValue.setMinorTickSpacing(10);
|
||||
sliderThreshValue.setPaintTicks(true);
|
||||
sliderThreshValue.setPaintLabels(true);
|
||||
sliderPanel.add(sliderThreshValue);
|
||||
//! [trackbar]
|
||||
|
||||
//! [on_trackbar]
|
||||
sliderThreshType.addChangeListener(new ChangeListener() {
|
||||
@Override
|
||||
public void stateChanged(ChangeEvent e) {
|
||||
JSlider source = (JSlider) e.getSource();
|
||||
thresholdType = source.getValue();
|
||||
update();
|
||||
}
|
||||
});
|
||||
|
||||
sliderThreshValue.addChangeListener(new ChangeListener() {
|
||||
@Override
|
||||
public void stateChanged(ChangeEvent e) {
|
||||
JSlider source = (JSlider) e.getSource();
|
||||
thresholdValue = source.getValue();
|
||||
update();
|
||||
}
|
||||
});
|
||||
//! [on_trackbar]
|
||||
|
||||
pane.add(sliderPanel, BorderLayout.PAGE_START);
|
||||
imgLabel = new JLabel(new ImageIcon(img));
|
||||
pane.add(imgLabel, BorderLayout.CENTER);
|
||||
}
|
||||
|
||||
//! [Threshold_Demo]
|
||||
private void update() {
|
||||
Imgproc.threshold(srcGray, dst, thresholdValue, MAX_BINARY_VALUE, thresholdType);
|
||||
Image img = HighGui.toBufferedImage(dst);
|
||||
imgLabel.setIcon(new ImageIcon(img));
|
||||
frame.repaint();
|
||||
}
|
||||
//! [Threshold_Demo]
|
||||
|
||||
public static void main(String[] args) {
|
||||
// Load the native OpenCV library
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
|
||||
// Schedule a job for the event dispatch thread:
|
||||
// creating and showing this application's GUI.
|
||||
javax.swing.SwingUtilities.invokeLater(new Runnable() {
|
||||
@Override
|
||||
public void run() {
|
||||
new Threshold(args);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
@ -0,0 +1,259 @@
|
||||
import java.awt.BorderLayout;
|
||||
import java.awt.Container;
|
||||
import java.awt.Image;
|
||||
import java.awt.event.WindowAdapter;
|
||||
import java.awt.event.WindowEvent;
|
||||
import java.util.List;
|
||||
|
||||
import javax.swing.BoxLayout;
|
||||
import javax.swing.ImageIcon;
|
||||
import javax.swing.JFrame;
|
||||
import javax.swing.JLabel;
|
||||
import javax.swing.JPanel;
|
||||
import javax.swing.JSlider;
|
||||
import javax.swing.SwingWorker;
|
||||
import javax.swing.event.ChangeEvent;
|
||||
import javax.swing.event.ChangeListener;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
import org.opencv.videoio.VideoCapture;
|
||||
|
||||
public class ThresholdInRange {
|
||||
private static int MAX_VALUE = 255;
|
||||
private static int MAX_VALUE_H = 360/2;
|
||||
private static final String WINDOW_NAME = "Thresholding Operations using inRange demo";
|
||||
private static final String LOW_H_NAME = "Low H";
|
||||
private static final String LOW_S_NAME = "Low S";
|
||||
private static final String LOW_V_NAME = "Low V";
|
||||
private static final String HIGH_H_NAME = "High H";
|
||||
private static final String HIGH_S_NAME = "High S";
|
||||
private static final String HIGH_V_NAME = "High V";
|
||||
private JSlider sliderLowH;
|
||||
private JSlider sliderHighH;
|
||||
private JSlider sliderLowS;
|
||||
private JSlider sliderHighS;
|
||||
private JSlider sliderLowV;
|
||||
private JSlider sliderHighV;
|
||||
private VideoCapture cap;
|
||||
private Mat matFrame = new Mat();
|
||||
private JFrame frame;
|
||||
private JLabel imgCaptureLabel;
|
||||
private JLabel imgDetectionLabel;
|
||||
private CaptureTask captureTask;
|
||||
|
||||
public ThresholdInRange(String[] args) {
|
||||
int cameraDevice = 0;
|
||||
if (args.length > 0) {
|
||||
cameraDevice = Integer.parseInt(args[0]);
|
||||
}
|
||||
//! [cap]
|
||||
cap = new VideoCapture(cameraDevice);
|
||||
//! [cap]
|
||||
if (!cap.isOpened()) {
|
||||
System.err.println("Cannot open camera: " + cameraDevice);
|
||||
System.exit(0);
|
||||
}
|
||||
if (!cap.read(matFrame)) {
|
||||
System.err.println("Cannot read camera stream.");
|
||||
System.exit(0);
|
||||
}
|
||||
|
||||
//! [window]
|
||||
// Create and set up the window.
|
||||
frame = new JFrame(WINDOW_NAME);
|
||||
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
|
||||
frame.addWindowListener(new WindowAdapter() {
|
||||
@Override
|
||||
public void windowClosing(WindowEvent windowEvent) {
|
||||
captureTask.cancel(true);
|
||||
}
|
||||
});
|
||||
// Set up the content pane.
|
||||
Image img = HighGui.toBufferedImage(matFrame);
|
||||
addComponentsToPane(frame.getContentPane(), img);
|
||||
// Use the content pane's default BorderLayout. No need for
|
||||
// setLayout(new BorderLayout());
|
||||
// Display the window.
|
||||
frame.pack();
|
||||
frame.setVisible(true);
|
||||
//! [window]
|
||||
|
||||
captureTask = new CaptureTask();
|
||||
captureTask.execute();
|
||||
}
|
||||
|
||||
//! [while]
|
||||
private class CaptureTask extends SwingWorker<Void, Mat> {
|
||||
@Override
|
||||
protected Void doInBackground() {
|
||||
Mat matFrame = new Mat();
|
||||
|
||||
while (!isCancelled()) {
|
||||
if (!cap.read(matFrame)) {
|
||||
break;
|
||||
}
|
||||
publish(matFrame.clone());
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void process(List<Mat> frames) {
|
||||
Mat frame = frames.get(frames.size() - 1);
|
||||
Mat frameHSV = new Mat();
|
||||
Imgproc.cvtColor(frame, frameHSV, Imgproc.COLOR_BGR2HSV);
|
||||
Mat thresh = new Mat();
|
||||
Core.inRange(frameHSV, new Scalar(sliderLowH.getValue(), sliderLowS.getValue(), sliderLowV.getValue()),
|
||||
new Scalar(sliderHighH.getValue(), sliderHighS.getValue(), sliderHighV.getValue()), thresh);
|
||||
update(frame, thresh);
|
||||
}
|
||||
}
|
||||
//! [while]
|
||||
|
||||
private void addComponentsToPane(Container pane, Image img) {
|
||||
if (!(pane.getLayout() instanceof BorderLayout)) {
|
||||
pane.add(new JLabel("Container doesn't use BorderLayout!"));
|
||||
return;
|
||||
}
|
||||
|
||||
JPanel sliderPanel = new JPanel();
|
||||
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
|
||||
|
||||
//! [trackbar]
|
||||
sliderPanel.add(new JLabel(LOW_H_NAME));
|
||||
sliderLowH = new JSlider(0, MAX_VALUE_H, 0);
|
||||
sliderLowH.setMajorTickSpacing(50);
|
||||
sliderLowH.setMinorTickSpacing(10);
|
||||
sliderLowH.setPaintTicks(true);
|
||||
sliderLowH.setPaintLabels(true);
|
||||
sliderPanel.add(sliderLowH);
|
||||
|
||||
sliderPanel.add(new JLabel(HIGH_H_NAME));
|
||||
sliderHighH = new JSlider(0, MAX_VALUE_H, MAX_VALUE_H);
|
||||
sliderHighH.setMajorTickSpacing(50);
|
||||
sliderHighH.setMinorTickSpacing(10);
|
||||
sliderHighH.setPaintTicks(true);
|
||||
sliderHighH.setPaintLabels(true);
|
||||
sliderPanel.add(sliderHighH);
|
||||
|
||||
sliderPanel.add(new JLabel(LOW_S_NAME));
|
||||
sliderLowS = new JSlider(0, MAX_VALUE, 0);
|
||||
sliderLowS.setMajorTickSpacing(50);
|
||||
sliderLowS.setMinorTickSpacing(10);
|
||||
sliderLowS.setPaintTicks(true);
|
||||
sliderLowS.setPaintLabels(true);
|
||||
sliderPanel.add(sliderLowS);
|
||||
|
||||
sliderPanel.add(new JLabel(HIGH_S_NAME));
|
||||
sliderHighS = new JSlider(0, MAX_VALUE, MAX_VALUE);
|
||||
sliderHighS.setMajorTickSpacing(50);
|
||||
sliderHighS.setMinorTickSpacing(10);
|
||||
sliderHighS.setPaintTicks(true);
|
||||
sliderHighS.setPaintLabels(true);
|
||||
sliderPanel.add(sliderHighS);
|
||||
|
||||
sliderPanel.add(new JLabel(LOW_V_NAME));
|
||||
sliderLowV = new JSlider(0, MAX_VALUE, 0);
|
||||
sliderLowV.setMajorTickSpacing(50);
|
||||
sliderLowV.setMinorTickSpacing(10);
|
||||
sliderLowV.setPaintTicks(true);
|
||||
sliderLowV.setPaintLabels(true);
|
||||
sliderPanel.add(sliderLowV);
|
||||
|
||||
sliderPanel.add(new JLabel(HIGH_V_NAME));
|
||||
sliderHighV = new JSlider(0, MAX_VALUE, MAX_VALUE);
|
||||
sliderHighV.setMajorTickSpacing(50);
|
||||
sliderHighV.setMinorTickSpacing(10);
|
||||
sliderHighV.setPaintTicks(true);
|
||||
sliderHighV.setPaintLabels(true);
|
||||
sliderPanel.add(sliderHighV);
|
||||
//! [trackbar]
|
||||
|
||||
//! [low]
|
||||
sliderLowH.addChangeListener(new ChangeListener() {
|
||||
@Override
|
||||
public void stateChanged(ChangeEvent e) {
|
||||
JSlider source = (JSlider) e.getSource();
|
||||
int valH = Math.min(sliderHighH.getValue()-1, source.getValue());
|
||||
sliderLowH.setValue(valH);
|
||||
}
|
||||
});
|
||||
//! [low]
|
||||
//! [high]
|
||||
sliderHighH.addChangeListener(new ChangeListener() {
|
||||
@Override
|
||||
public void stateChanged(ChangeEvent e) {
|
||||
JSlider source = (JSlider) e.getSource();
|
||||
int valH = Math.max(source.getValue(), sliderLowH.getValue()+1);
|
||||
sliderHighH.setValue(valH);
|
||||
}
|
||||
});
|
||||
//! [high]
|
||||
sliderLowS.addChangeListener(new ChangeListener() {
|
||||
@Override
|
||||
public void stateChanged(ChangeEvent e) {
|
||||
JSlider source = (JSlider) e.getSource();
|
||||
int valS = Math.min(sliderHighS.getValue()-1, source.getValue());
|
||||
sliderLowS.setValue(valS);
|
||||
}
|
||||
});
|
||||
sliderHighS.addChangeListener(new ChangeListener() {
|
||||
@Override
|
||||
public void stateChanged(ChangeEvent e) {
|
||||
JSlider source = (JSlider) e.getSource();
|
||||
int valS = Math.max(source.getValue(), sliderLowS.getValue()+1);
|
||||
sliderHighS.setValue(valS);
|
||||
}
|
||||
});
|
||||
sliderLowV.addChangeListener(new ChangeListener() {
|
||||
@Override
|
||||
public void stateChanged(ChangeEvent e) {
|
||||
JSlider source = (JSlider) e.getSource();
|
||||
int valV = Math.min(sliderHighV.getValue()-1, source.getValue());
|
||||
sliderLowV.setValue(valV);
|
||||
}
|
||||
});
|
||||
sliderHighV.addChangeListener(new ChangeListener() {
|
||||
@Override
|
||||
public void stateChanged(ChangeEvent e) {
|
||||
JSlider source = (JSlider) e.getSource();
|
||||
int valV = Math.max(source.getValue(), sliderLowV.getValue()+1);
|
||||
sliderHighV.setValue(valV);
|
||||
}
|
||||
});
|
||||
|
||||
pane.add(sliderPanel, BorderLayout.PAGE_START);
|
||||
JPanel framePanel = new JPanel();
|
||||
imgCaptureLabel = new JLabel(new ImageIcon(img));
|
||||
framePanel.add(imgCaptureLabel);
|
||||
imgDetectionLabel = new JLabel(new ImageIcon(img));
|
||||
framePanel.add(imgDetectionLabel);
|
||||
pane.add(framePanel, BorderLayout.CENTER);
|
||||
}
|
||||
|
||||
private void update(Mat imgCapture, Mat imgThresh) {
|
||||
//! [show]
|
||||
imgCaptureLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(imgCapture)));
|
||||
imgDetectionLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(imgThresh)));
|
||||
frame.repaint();
|
||||
//! [show]
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// Load the native OpenCV library
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
|
||||
// Schedule a job for the event dispatch thread:
|
||||
// creating and showing this application's GUI.
|
||||
javax.swing.SwingUtilities.invokeLater(new Runnable() {
|
||||
@Override
|
||||
public void run() {
|
||||
new ThresholdInRange(args);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
@ -0,0 +1,110 @@
|
||||
import java.awt.BorderLayout;
|
||||
import java.awt.Container;
|
||||
import java.awt.Image;
|
||||
|
||||
import javax.swing.BoxLayout;
|
||||
import javax.swing.ImageIcon;
|
||||
import javax.swing.JFrame;
|
||||
import javax.swing.JLabel;
|
||||
import javax.swing.JPanel;
|
||||
import javax.swing.JSlider;
|
||||
import javax.swing.event.ChangeEvent;
|
||||
import javax.swing.event.ChangeListener;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.core.Size;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
public class CannyDetectorDemo {
|
||||
private static final int MAX_LOW_THRESHOLD = 100;
|
||||
private static final int RATIO = 3;
|
||||
private static final int KERNEL_SIZE = 3;
|
||||
private static final Size BLUR_SIZE = new Size(3,3);
|
||||
private int lowThresh = 0;
|
||||
private Mat src;
|
||||
private Mat srcBlur = new Mat();
|
||||
private Mat detectedEdges = new Mat();
|
||||
private Mat dst = new Mat();
|
||||
private JFrame frame;
|
||||
private JLabel imgLabel;
|
||||
|
||||
public CannyDetectorDemo(String[] args) {
|
||||
String imagePath = args.length > 0 ? args[0] : "../data/fruits.jpg";
|
||||
src = Imgcodecs.imread(imagePath);
|
||||
if (src.empty()) {
|
||||
System.out.println("Empty image: " + imagePath);
|
||||
System.exit(0);
|
||||
}
|
||||
|
||||
// Create and set up the window.
|
||||
frame = new JFrame("Edge Map (Canny detector demo)");
|
||||
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
|
||||
// Set up the content pane.
|
||||
Image img = HighGui.toBufferedImage(src);
|
||||
addComponentsToPane(frame.getContentPane(), img);
|
||||
// Use the content pane's default BorderLayout. No need for
|
||||
// setLayout(new BorderLayout());
|
||||
// Display the window.
|
||||
frame.pack();
|
||||
frame.setVisible(true);
|
||||
}
|
||||
|
||||
private void addComponentsToPane(Container pane, Image img) {
|
||||
if (!(pane.getLayout() instanceof BorderLayout)) {
|
||||
pane.add(new JLabel("Container doesn't use BorderLayout!"));
|
||||
return;
|
||||
}
|
||||
|
||||
JPanel sliderPanel = new JPanel();
|
||||
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
|
||||
|
||||
sliderPanel.add(new JLabel("Min Threshold:"));
|
||||
JSlider slider = new JSlider(0, MAX_LOW_THRESHOLD, 0);
|
||||
slider.setMajorTickSpacing(10);
|
||||
slider.setMinorTickSpacing(5);
|
||||
slider.setPaintTicks(true);
|
||||
slider.setPaintLabels(true);
|
||||
slider.addChangeListener(new ChangeListener() {
|
||||
@Override
|
||||
public void stateChanged(ChangeEvent e) {
|
||||
JSlider source = (JSlider) e.getSource();
|
||||
lowThresh = source.getValue();
|
||||
update();
|
||||
}
|
||||
});
|
||||
sliderPanel.add(slider);
|
||||
|
||||
pane.add(sliderPanel, BorderLayout.PAGE_START);
|
||||
imgLabel = new JLabel(new ImageIcon(img));
|
||||
pane.add(imgLabel, BorderLayout.CENTER);
|
||||
}
|
||||
|
||||
private void update() {
|
||||
Imgproc.blur(src, srcBlur, BLUR_SIZE);
|
||||
Imgproc.Canny(srcBlur, detectedEdges, lowThresh, lowThresh * RATIO, KERNEL_SIZE, false);
|
||||
dst = new Mat(src.size(), CvType.CV_8UC3, Scalar.all(0));
|
||||
src.copyTo(dst, detectedEdges);
|
||||
Image img = HighGui.toBufferedImage(dst);
|
||||
imgLabel.setIcon(new ImageIcon(img));
|
||||
frame.repaint();
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// Load the native OpenCV library
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
|
||||
// Schedule a job for the event dispatch thread:
|
||||
// creating and showing this application's GUI.
|
||||
javax.swing.SwingUtilities.invokeLater(new Runnable() {
|
||||
@Override
|
||||
public void run() {
|
||||
new CannyDetectorDemo(args);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
98
samples/java/tutorial_code/ImgTrans/remap/RemapDemo.java
Normal file
98
samples/java/tutorial_code/ImgTrans/remap/RemapDemo.java
Normal file
@ -0,0 +1,98 @@
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
class Remap {
|
||||
private Mat mapX = new Mat();
|
||||
private Mat mapY = new Mat();
|
||||
private Mat dst = new Mat();
|
||||
private int ind = 0;
|
||||
|
||||
//! [Update]
|
||||
private void updateMap() {
|
||||
float buffX[] = new float[(int) (mapX.total() * mapX.channels())];
|
||||
mapX.get(0, 0, buffX);
|
||||
|
||||
float buffY[] = new float[(int) (mapY.total() * mapY.channels())];
|
||||
mapY.get(0, 0, buffY);
|
||||
|
||||
for (int i = 0; i < mapX.rows(); i++) {
|
||||
for (int j = 0; j < mapX.cols(); j++) {
|
||||
switch (ind) {
|
||||
case 0:
|
||||
if( j > mapX.cols()*0.25 && j < mapX.cols()*0.75 && i > mapX.rows()*0.25 && i < mapX.rows()*0.75 ) {
|
||||
buffX[i*mapX.cols() + j] = 2*( j - mapX.cols()*0.25f ) + 0.5f;
|
||||
buffY[i*mapY.cols() + j] = 2*( i - mapX.rows()*0.25f ) + 0.5f;
|
||||
} else {
|
||||
buffX[i*mapX.cols() + j] = 0;
|
||||
buffY[i*mapY.cols() + j] = 0;
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
buffX[i*mapX.cols() + j] = j;
|
||||
buffY[i*mapY.cols() + j] = mapY.rows() - i;
|
||||
break;
|
||||
case 2:
|
||||
buffX[i*mapX.cols() + j] = mapY.cols() - j;
|
||||
buffY[i*mapY.cols() + j] = i;
|
||||
break;
|
||||
case 3:
|
||||
buffX[i*mapX.cols() + j] = mapY.cols() - j;
|
||||
buffY[i*mapY.cols() + j] = mapY.rows() - i;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
mapX.put(0, 0, buffX);
|
||||
mapY.put(0, 0, buffY);
|
||||
ind = (ind+1) % 4;
|
||||
}
|
||||
//! [Update]
|
||||
|
||||
public void run(String[] args) {
|
||||
String filename = args.length > 0 ? args[0] : "../data/chicky_512.png";
|
||||
//! [Load]
|
||||
Mat src = Imgcodecs.imread(filename, Imgcodecs.IMREAD_COLOR);
|
||||
if (src.empty()) {
|
||||
System.err.println("Cannot read image: " + filename);
|
||||
System.exit(0);
|
||||
}
|
||||
//! [Load]
|
||||
|
||||
//! [Create]
|
||||
mapX = new Mat(src.size(), CvType.CV_32F);
|
||||
mapY = new Mat(src.size(), CvType.CV_32F);
|
||||
//! [Create]
|
||||
|
||||
//! [Window]
|
||||
final String winname = "Remap demo";
|
||||
HighGui.namedWindow(winname, HighGui.WINDOW_AUTOSIZE);
|
||||
//! [Window]
|
||||
|
||||
//! [Loop]
|
||||
for (;;) {
|
||||
updateMap();
|
||||
Imgproc.remap(src, dst, mapX, mapY, Imgproc.INTER_LINEAR);
|
||||
HighGui.imshow(winname, dst);
|
||||
if (HighGui.waitKey(1000) == 27) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
//! [Loop]
|
||||
System.exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
public class RemapDemo {
|
||||
public static void main(String[] args) {
|
||||
// Load the native OpenCV library
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
|
||||
new Remap().run(args);
|
||||
}
|
||||
}
|
@ -0,0 +1,34 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import argparse
|
||||
|
||||
max_lowThreshold = 100
|
||||
window_name = 'Edge Map'
|
||||
title_trackbar = 'Min Threshold:'
|
||||
ratio = 3
|
||||
kernel_size = 3
|
||||
|
||||
def CannyThreshold(val):
|
||||
low_threshold = val
|
||||
img_blur = cv.blur(src_gray, (3,3))
|
||||
detected_edges = cv.Canny(img_blur, low_threshold, low_threshold*ratio, kernel_size)
|
||||
mask = detected_edges != 0
|
||||
dst = src * (mask[:,:,None].astype(src.dtype))
|
||||
cv.imshow(window_name, dst)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Code for Canny Edge Detector tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='../data/fruits.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
src = cv.imread(args.input)
|
||||
if src is None:
|
||||
print('Could not open or find the image: ', args.input)
|
||||
exit(0)
|
||||
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
|
||||
cv.namedWindow(window_name)
|
||||
cv.createTrackbar(title_trackbar, window_name , 0, max_lowThreshold, CannyThreshold)
|
||||
|
||||
CannyThreshold(0)
|
||||
cv.waitKey()
|
65
samples/python/tutorial_code/ImgTrans/remap/Remap_Demo.py
Normal file
65
samples/python/tutorial_code/ImgTrans/remap/Remap_Demo.py
Normal file
@ -0,0 +1,65 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
|
||||
## [Update]
|
||||
def update_map(ind, map_x, map_y):
|
||||
if ind == 0:
|
||||
for i in range(map_x.shape[0]):
|
||||
for j in range(map_x.shape[1]):
|
||||
if j > map_x.shape[1]*0.25 and j < map_x.shape[1]*0.75 and i > map_x.shape[0]*0.25 and i < map_x.shape[0]*0.75:
|
||||
map_x[i,j] = 2 * (j-map_x.shape[1]*0.25) + 0.5
|
||||
map_y[i,j] = 2 * (i-map_y.shape[0]*0.25) + 0.5
|
||||
else:
|
||||
map_x[i,j] = 0
|
||||
map_y[i,j] = 0
|
||||
elif ind == 1:
|
||||
for i in range(map_x.shape[0]):
|
||||
map_x[i,:] = [x for x in range(map_x.shape[1])]
|
||||
for j in range(map_y.shape[1]):
|
||||
map_y[:,j] = [map_y.shape[0]-y for y in range(map_y.shape[0])]
|
||||
elif ind == 2:
|
||||
for i in range(map_x.shape[0]):
|
||||
map_x[i,:] = [map_x.shape[1]-x for x in range(map_x.shape[1])]
|
||||
for j in range(map_y.shape[1]):
|
||||
map_y[:,j] = [y for y in range(map_y.shape[0])]
|
||||
elif ind == 3:
|
||||
for i in range(map_x.shape[0]):
|
||||
map_x[i,:] = [map_x.shape[1]-x for x in range(map_x.shape[1])]
|
||||
for j in range(map_y.shape[1]):
|
||||
map_y[:,j] = [map_y.shape[0]-y for y in range(map_y.shape[0])]
|
||||
## [Update]
|
||||
|
||||
parser = argparse.ArgumentParser(description='Code for Remapping tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='../data/chicky_512.png')
|
||||
args = parser.parse_args()
|
||||
|
||||
## [Load]
|
||||
src = cv.imread(args.input, cv.IMREAD_COLOR)
|
||||
if src is None:
|
||||
print('Could not open or find the image: ', args.input)
|
||||
exit(0)
|
||||
## [Load]
|
||||
|
||||
## [Create]
|
||||
map_x = np.zeros((src.shape[0], src.shape[1]), dtype=np.float32)
|
||||
map_y = np.zeros((src.shape[0], src.shape[1]), dtype=np.float32)
|
||||
## [Create]
|
||||
|
||||
## [Window]
|
||||
window_name = 'Remap demo'
|
||||
cv.namedWindow(window_name)
|
||||
## [Window]
|
||||
|
||||
## [Loop]
|
||||
ind = 0
|
||||
while True:
|
||||
update_map(ind, map_x, map_y)
|
||||
ind = (ind + 1) % 4
|
||||
dst = cv.remap(src, map_x, map_y, cv.INTER_LINEAR)
|
||||
cv.imshow(window_name, dst)
|
||||
c = cv.waitKey(1000)
|
||||
if c == 27:
|
||||
break
|
||||
## [Loop]
|
54
samples/python/tutorial_code/imgProc/threshold/threshold.py
Normal file
54
samples/python/tutorial_code/imgProc/threshold/threshold.py
Normal file
@ -0,0 +1,54 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import argparse
|
||||
|
||||
max_value = 255
|
||||
max_type = 4
|
||||
max_binary_value = 255
|
||||
trackbar_type = 'Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted'
|
||||
trackbar_value = 'Value'
|
||||
window_name = 'Threshold Demo'
|
||||
|
||||
## [Threshold_Demo]
|
||||
def Threshold_Demo(val):
|
||||
#0: Binary
|
||||
#1: Binary Inverted
|
||||
#2: Threshold Truncated
|
||||
#3: Threshold to Zero
|
||||
#4: Threshold to Zero Inverted
|
||||
threshold_type = cv.getTrackbarPos(trackbar_type, window_name)
|
||||
threshold_value = cv.getTrackbarPos(trackbar_value, window_name)
|
||||
_, dst = cv.threshold(src_gray, threshold_value, max_binary_value, threshold_type )
|
||||
cv.imshow(window_name, dst)
|
||||
## [Threshold_Demo]
|
||||
|
||||
parser = argparse.ArgumentParser(description='Code for Basic Thresholding Operations tutorial.')
|
||||
parser.add_argument('--input', help='Path to input image.', default='../data/stuff.jpg')
|
||||
args = parser.parse_args()
|
||||
|
||||
## [load]
|
||||
# Load an image
|
||||
src = cv.imread(args.input)
|
||||
if src is None:
|
||||
print('Could not open or find the image: ', args.input)
|
||||
exit(0)
|
||||
# Convert the image to Gray
|
||||
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY);
|
||||
## [load]
|
||||
|
||||
## [window]
|
||||
# Create a window to display results
|
||||
cv.namedWindow(window_name)
|
||||
## [window]
|
||||
|
||||
## [trackbar]
|
||||
# Create Trackbar to choose type of Threshold
|
||||
cv.createTrackbar(trackbar_type, window_name , 3, max_type, Threshold_Demo)
|
||||
# Create Trackbar to choose Threshold value
|
||||
cv.createTrackbar(trackbar_value, window_name , 0, max_value, Threshold_Demo)
|
||||
## [trackbar]
|
||||
|
||||
# Call the function to initialize
|
||||
Threshold_Demo(0)
|
||||
# Wait until user finishes program
|
||||
cv.waitKey()
|
@ -0,0 +1,107 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import argparse
|
||||
|
||||
max_value = 255
|
||||
max_value_H = 360//2
|
||||
low_H = 0
|
||||
low_S = 0
|
||||
low_V = 0
|
||||
high_H = max_value_H
|
||||
high_S = max_value
|
||||
high_V = max_value
|
||||
window_capture_name = 'Video Capture'
|
||||
window_detection_name = 'Object Detection'
|
||||
low_H_name = 'Low H'
|
||||
low_S_name = 'Low S'
|
||||
low_V_name = 'Low V'
|
||||
high_H_name = 'High H'
|
||||
high_S_name = 'High S'
|
||||
high_V_name = 'High V'
|
||||
|
||||
## [low]
|
||||
def on_low_H_thresh_trackbar(val):
|
||||
global low_H
|
||||
global high_H
|
||||
low_H = val
|
||||
low_H = min(high_H-1, low_H)
|
||||
cv.setTrackbarPos(low_H_name, window_detection_name, low_H)
|
||||
## [low]
|
||||
|
||||
## [high]
|
||||
def on_high_H_thresh_trackbar(val):
|
||||
global low_H
|
||||
global high_H
|
||||
high_H = val
|
||||
high_H = max(high_H, low_H+1)
|
||||
cv.setTrackbarPos(high_H_name, window_detection_name, high_H)
|
||||
## [high]
|
||||
|
||||
def on_low_S_thresh_trackbar(val):
|
||||
global low_S
|
||||
global high_S
|
||||
low_S = val
|
||||
low_S = min(high_S-1, low_S)
|
||||
cv.setTrackbarPos(low_S_name, window_detection_name, low_S)
|
||||
|
||||
def on_high_S_thresh_trackbar(val):
|
||||
global low_S
|
||||
global high_S
|
||||
high_S = val
|
||||
high_S = max(high_S, low_S+1)
|
||||
cv.setTrackbarPos(high_S_name, window_detection_name, high_S)
|
||||
|
||||
def on_low_V_thresh_trackbar(val):
|
||||
global low_V
|
||||
global high_V
|
||||
low_V = val
|
||||
low_V = min(high_V-1, low_V)
|
||||
cv.setTrackbarPos(low_V_name, window_detection_name, low_V)
|
||||
|
||||
def on_high_V_thresh_trackbar(val):
|
||||
global low_V
|
||||
global high_V
|
||||
high_V = val
|
||||
high_V = max(high_V, low_V+1)
|
||||
cv.setTrackbarPos(high_V_name, window_detection_name, high_V)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Code for Thresholding Operations using inRange tutorial.')
|
||||
parser.add_argument('--camera', help='Camera devide number.', default=0, type=int)
|
||||
args = parser.parse_args()
|
||||
|
||||
## [cap]
|
||||
cap = cv.VideoCapture(args.camera)
|
||||
## [cap]
|
||||
|
||||
## [window]
|
||||
cv.namedWindow(window_capture_name)
|
||||
cv.namedWindow(window_detection_name)
|
||||
## [window]
|
||||
|
||||
## [trackbar]
|
||||
cv.createTrackbar(low_H_name, window_detection_name , low_H, max_value_H, on_low_H_thresh_trackbar)
|
||||
cv.createTrackbar(high_H_name, window_detection_name , high_H, max_value_H, on_high_H_thresh_trackbar)
|
||||
cv.createTrackbar(low_S_name, window_detection_name , low_S, max_value, on_low_S_thresh_trackbar)
|
||||
cv.createTrackbar(high_S_name, window_detection_name , high_S, max_value, on_high_S_thresh_trackbar)
|
||||
cv.createTrackbar(low_V_name, window_detection_name , low_V, max_value, on_low_V_thresh_trackbar)
|
||||
cv.createTrackbar(high_V_name, window_detection_name , high_V, max_value, on_high_V_thresh_trackbar)
|
||||
## [trackbar]
|
||||
|
||||
while True:
|
||||
## [while]
|
||||
ret, frame = cap.read()
|
||||
if frame is None:
|
||||
break
|
||||
|
||||
frame_HSV = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
|
||||
frame_threshold = cv.inRange(frame_HSV, (low_H, low_S, low_V), (high_H, high_S, high_V));
|
||||
## [while]
|
||||
|
||||
## [show]
|
||||
cv.imshow(window_capture_name, frame)
|
||||
cv.imshow(window_detection_name, frame_threshold)
|
||||
## [show]
|
||||
|
||||
key = cv.waitKey(30)
|
||||
if key == ord('q') or key == 27:
|
||||
break
|
Loading…
Reference in New Issue
Block a user