diff --git a/doc/gpu_data_structures.tex b/doc/gpu_data_structures.tex index 59e0e8d6be..ab6c44d309 100644 --- a/doc/gpu_data_structures.tex +++ b/doc/gpu_data_structures.tex @@ -21,7 +21,7 @@ Matrix is called continuous if its elements are stored continuously, i.e. wuthou \cvCppFunc{gpu::ensureSizeIsEnough} -Ensures that size of matrix is big enough and matrix has proper type. The function doesn't reallocate memory if matrix has proper attributes already. +Ensures that size of matrix is big enough and matrix has proper type. The function doesn't reallocate memory if the matrix has proper attributes already. \cvdefCpp{void ensureSizeIsEnough(int rows, int cols, int type, GpuMat\& m);} \begin{description} diff --git a/doc/gpu_object_detection.tex b/doc/gpu_object_detection.tex index 46cca72fee..149047173f 100644 --- a/doc/gpu_object_detection.tex +++ b/doc/gpu_object_detection.tex @@ -60,11 +60,12 @@ Interfaces of all methods are kept similar to CPU HOG descriptor and detector an \cvCppFunc{gpu::HOGDescriptor::HOGDescriptor} Creates HOG descriptor and detector. -\cvdefCpp{HOGDescriptor(Size win\_size=Size(64, 128), Size block\_size=Size(16, 16),\par - Size block\_stride=Size(8, 8), Size cell\_size=Size(8, 8),\par - int nbins=9, double win\_sigma=DEFAULT\_WIN\_SIGMA,\par - double threshold\_L2hys=0.2, bool gamma\_correction=true,\par - int nlevels=DEFAULT\_NLEVELS);} +\cvdefCpp{HOGDescriptor::HOGDescriptor(Size win\_size=Size(64, 128),\par + Size block\_size=Size(16, 16), Size block\_stride=Size(8, 8),\par + Size cell\_size=Size(8, 8), int nbins=9,\par + double win\_sigma=DEFAULT\_WIN\_SIGMA,\par + double threshold\_L2hys=0.2, bool gamma\_correction=true,\par + int nlevels=DEFAULT\_NLEVELS);} \begin{description} \cvarg{win\_size}{Detection window size. Must be aligned to block size and block stride.} @@ -94,7 +95,7 @@ Returns block histogram size. \cvCppFunc{gpu::HOGDescriptor::setSVMDetector} Sets coefficients for the linear SVM classifier. -\cvdefCpp{void setSVMDetector(const vector\& detector);} +\cvdefCpp{void HOGDescriptor::setSVMDetector(const vector\& detector);} \cvCppFunc{gpu::HOGDescriptor::getDefaultPeopleDetector} @@ -118,9 +119,9 @@ Returns coefficients of the classifier trained for people detection (for 64x128 \cvCppFunc{gpu::HOGDescriptor::detect} Perfroms object detection without multiscale window. -\cvdefCpp{void HOGDescriptor::detect(const GpuMat\& img, vector\& found\_locations,\par - double hit\_threshold=0, Size win\_stride=Size(),\par - Size padding=Size());} +\cvdefCpp{void HOGDescriptor::detect(const GpuMat\& img,\par + vector\& found\_locations, double hit\_threshold=0,\par + Size win\_stride=Size(), Size padding=Size());} \begin{description} \cvarg{img}{Source image. \texttt{CV\_8UC1} and \texttt{CV\_8UC4}types are supported for now.}