mirror of
https://github.com/opencv/opencv.git
synced 2025-07-25 14:47:07 +08:00
Modify SSD from TensorFlow graph generation script to enable MyriadX
This commit is contained in:
parent
2693ed9b22
commit
a0c3bb70a9
@ -142,8 +142,6 @@ PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
throw SkipTestException("");
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
||||
throw SkipTestException("");
|
||||
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "ssd_mobilenet_v1_coco_2017_11_17.pbtxt", "",
|
||||
Mat(cv::Size(300, 300), CV_32FC3));
|
||||
}
|
||||
@ -152,8 +150,6 @@ PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
throw SkipTestException("");
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
||||
throw SkipTestException("");
|
||||
processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "ssd_mobilenet_v2_coco_2018_03_29.pbtxt", "",
|
||||
Mat(cv::Size(300, 300), CV_32FC3));
|
||||
}
|
||||
|
@ -205,10 +205,6 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
|
||||
applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB);
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R2);
|
||||
#endif
|
||||
|
||||
Mat sample = imread(findDataFile("dnn/street.png"));
|
||||
Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
|
||||
@ -248,10 +244,6 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
|
||||
applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
|
||||
if (backend == DNN_BACKEND_HALIDE)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE);
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R2);
|
||||
#endif
|
||||
|
||||
Mat sample = imread(findDataFile("dnn/street.png"));
|
||||
Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false);
|
||||
|
@ -436,11 +436,6 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
|
||||
|
||||
TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R2);
|
||||
#endif
|
||||
|
||||
checkBackend();
|
||||
std::string proto = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt");
|
||||
std::string model = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", false);
|
||||
@ -456,7 +451,7 @@ TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD)
|
||||
Mat out = net.forward();
|
||||
|
||||
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco_2017_11_17.detection_out.npy"));
|
||||
float scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7e-3 : 1.5e-5;
|
||||
float scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.011 : 1.5e-5;
|
||||
float iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.012 : 1e-3;
|
||||
float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.35 : 0.3;
|
||||
|
||||
@ -515,11 +510,6 @@ TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD_PPN)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
|
||||
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
||||
#endif
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R2);
|
||||
#endif
|
||||
|
||||
checkBackend();
|
||||
std::string proto = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pbtxt");
|
||||
std::string model = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pb", false);
|
||||
|
@ -312,12 +312,16 @@ def createSSDGraph(modelPath, configPath, outputPath):
|
||||
addConcatNode('PriorBox/concat', priorBoxes, 'concat/axis_flatten')
|
||||
|
||||
# Sigmoid for classes predictions and DetectionOutput layer
|
||||
addReshape('ClassPredictor/concat', 'ClassPredictor/concat3d', [0, -1, num_classes + 1], graph_def)
|
||||
|
||||
sigmoid = NodeDef()
|
||||
sigmoid.name = 'ClassPredictor/concat/sigmoid'
|
||||
sigmoid.op = 'Sigmoid'
|
||||
sigmoid.input.append('ClassPredictor/concat')
|
||||
sigmoid.input.append('ClassPredictor/concat3d')
|
||||
graph_def.node.extend([sigmoid])
|
||||
|
||||
addFlatten(sigmoid.name, sigmoid.name + '/Flatten', graph_def)
|
||||
|
||||
detectionOut = NodeDef()
|
||||
detectionOut.name = 'detection_out'
|
||||
detectionOut.op = 'DetectionOutput'
|
||||
@ -326,7 +330,7 @@ def createSSDGraph(modelPath, configPath, outputPath):
|
||||
detectionOut.input.append('BoxEncodingPredictor/concat')
|
||||
else:
|
||||
detectionOut.input.append('BoxPredictor/concat')
|
||||
detectionOut.input.append(sigmoid.name)
|
||||
detectionOut.input.append(sigmoid.name + '/Flatten')
|
||||
detectionOut.input.append('PriorBox/concat')
|
||||
|
||||
detectionOut.addAttr('num_classes', num_classes + 1)
|
||||
|
Loading…
Reference in New Issue
Block a user