updated gpu optical_flow sample

This commit is contained in:
Vladislav Vinogradov 2012-01-11 13:05:03 +00:00
parent 3aa537642d
commit a25b027ef7
7 changed files with 504 additions and 280 deletions

View File

@ -265,7 +265,7 @@ namespace cv
} }
//! render OpenGL arrays //! render OpenGL arrays
CV_EXPORTS void render(const GlArrays& arr, int mode = RenderMode::POINTS); CV_EXPORTS void render(const GlArrays& arr, int mode = RenderMode::POINTS, Scalar color = Scalar::all(255));
CV_EXPORTS void render(const std::string& str, const Ptr<GlFont>& font, Scalar color, Point2d pos); CV_EXPORTS void render(const std::string& str, const Ptr<GlFont>& font, Scalar color, Point2d pos);

View File

@ -1325,11 +1325,13 @@ void cv::render(const GlTexture& tex, Rect_<double> wndRect, Rect_<double> texRe
#endif #endif
} }
void cv::render(const GlArrays& arr, int mode) void cv::render(const GlArrays& arr, int mode, Scalar color)
{ {
#ifndef HAVE_OPENGL #ifndef HAVE_OPENGL
throw_nogl; throw_nogl;
#else #else
glColor3d(color[0] / 255.0, color[1] / 255.0, color[3] / 255.0);
arr.bind(); arr.bind();
glDrawArrays(mode, 0, arr.size().area()); glDrawArrays(mode, 0, arr.size().area());

View File

@ -1734,6 +1734,8 @@ CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
float pos, GpuMat& newFrame, GpuMat& buf, float pos, GpuMat& newFrame, GpuMat& buf,
Stream& stream = Stream::Null()); Stream& stream = Stream::Null());
CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);
} // namespace gpu } // namespace gpu
//! Speckle filtering - filters small connected components on diparity image. //! Speckle filtering - filters small connected components on diparity image.

View File

@ -81,7 +81,7 @@ namespace cv { namespace gpu { namespace device
calcSobelRowPass<<<grid, block>>>(src, dx_buf, dy_buf, rows, cols); calcSobelRowPass<<<grid, block>>>(src, dx_buf, dy_buf, rows, cols);
cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize()); cudaSafeCall( cudaDeviceSynchronize() );
} }
struct L1 struct L1
@ -171,7 +171,7 @@ namespace cv { namespace gpu { namespace device
cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize()); cudaSafeCall( cudaDeviceSynchronize() );
} }
////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
@ -252,7 +252,7 @@ namespace cv { namespace gpu { namespace device
calcMap<<<grid, block>>>(dx, dy, mag, map, rows, cols, low_thresh, high_thresh); calcMap<<<grid, block>>>(dx, dy, mag, map, rows, cols, low_thresh, high_thresh);
cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize()); cudaSafeCall( cudaDeviceSynchronize() );
} }
////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////
@ -345,7 +345,7 @@ namespace cv { namespace gpu { namespace device
edgesHysteresisLocal<<<grid, block>>>(map, st1, rows, cols); edgesHysteresisLocal<<<grid, block>>>(map, st1, rows, cols);
cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize()); cudaSafeCall( cudaDeviceSynchronize() );
} }
__constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1}; __constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
@ -460,7 +460,7 @@ namespace cv { namespace gpu { namespace device
edgesHysteresisGlobal<<<grid, block>>>(map, st1, st2, rows, cols, count); edgesHysteresisGlobal<<<grid, block>>>(map, st1, st2, rows, cols, count);
cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize()); cudaSafeCall( cudaDeviceSynchronize() );
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) ); cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
@ -485,7 +485,7 @@ namespace cv { namespace gpu { namespace device
getEdges<<<grid, block>>>(map, dst, rows, cols); getEdges<<<grid, block>>>(map, dst, rows, cols);
cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize()); cudaSafeCall( cudaDeviceSynchronize() );
} }
} // namespace canny } // namespace canny
}}} // namespace cv { namespace gpu { namespace device }}} // namespace cv { namespace gpu { namespace device

View File

@ -0,0 +1,217 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/gpu/device/common.hpp"
namespace cv { namespace gpu { namespace device
{
namespace optical_flow
{
#define NEEDLE_MAP_SCALE 16
#define MAX_FLOW 30.0f
#define NUM_VERTS_PER_ARROW 6
__global__ void NeedleMapAverageKernel(const DevMem2Df u, const PtrStepf v, PtrStepf u_avg, PtrStepf v_avg)
{
__shared__ float smem[2 * NEEDLE_MAP_SCALE];
volatile float* u_col_sum = smem;
volatile float* v_col_sum = u_col_sum + NEEDLE_MAP_SCALE;
const int x = blockIdx.x * NEEDLE_MAP_SCALE + threadIdx.x;
const int y = blockIdx.y * NEEDLE_MAP_SCALE;
u_col_sum[threadIdx.x] = 0;
v_col_sum[threadIdx.x] = 0;
#pragma unroll
for(int i = 0; i < NEEDLE_MAP_SCALE; ++i)
{
u_col_sum[threadIdx.x] += u(::min(y + i, u.rows - 1), x);
v_col_sum[threadIdx.x] += v(::min(y + i, u.rows - 1), x);
}
if (threadIdx.x < 8)
{
// now add the column sums
const uint X = threadIdx.x;
if (X | 0xfe == 0xfe) // bit 0 is 0
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 1];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 1];
}
if (X | 0xfe == 0xfc) // bits 0 & 1 == 0
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 2];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 2];
}
if (X | 0xf8 == 0xf8)
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 4];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 4];
}
if (X == 0)
{
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 8];
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 8];
}
}
if (threadIdx.x == 0)
{
const float coeff = 1.0f / (NEEDLE_MAP_SCALE * NEEDLE_MAP_SCALE);
u_col_sum[0] *= coeff;
v_col_sum[0] *= coeff;
u_avg(blockIdx.y, blockIdx.x) = u_col_sum[0];
v_avg(blockIdx.y, blockIdx.x) = v_col_sum[0];
}
}
void NeedleMapAverage_gpu(DevMem2Df u, DevMem2Df v, DevMem2Df u_avg, DevMem2Df v_avg)
{
const dim3 block(NEEDLE_MAP_SCALE);
const dim3 grid(u_avg.cols, u_avg.rows);
NeedleMapAverageKernel<<<grid, block>>>(u, v, u_avg, v_avg);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void NeedleMapVertexKernel(const DevMem2Df u_avg, const PtrStepf v_avg, float* vertex_data, float* color_data, float xscale, float yscale)
{
// test - just draw a triangle at each pixel
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const float arrow_x = x * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
const float arrow_y = y * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
float3 v[NUM_VERTS_PER_ARROW];
if (x < u_avg.cols && y < u_avg.rows)
{
const float u_avg_val = u_avg(y, x);
const float v_avg_val = v_avg(y, x);
const float theta = ::atan2f(v_avg_val, u_avg_val) + CV_PI;
float r = ::sqrtf(v_avg_val * v_avg_val + u_avg_val * u_avg_val);
r = fmin(14.0f * (r / MAX_FLOW), 14.0f);
v[0].z = 1.0f;
v[1].z = 0.7f;
v[2].z = 0.7f;
v[3].z = 0.7f;
v[4].z = 0.7f;
v[5].z = 1.0f;
v[0].x = arrow_x;
v[0].y = arrow_y;
v[5].x = arrow_x;
v[5].y = arrow_y;
v[2].x = arrow_x + r * ::cosf(theta);
v[2].y = arrow_y + r * ::sinf(theta);
v[3].x = v[2].x;
v[3].y = v[2].y;
r = ::fmin(r, 2.5f);
v[1].x = arrow_x + r * ::cosf(theta - CV_PI / 2.0f);
v[1].y = arrow_y + r * ::sinf(theta - CV_PI / 2.0f);
v[4].x = arrow_x + r * ::cosf(theta + CV_PI / 2.0f);
v[4].y = arrow_y + r * ::sinf(theta + CV_PI / 2.0f);
int indx = (y * u_avg.cols + x) * NUM_VERTS_PER_ARROW * 3;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[0].x * xscale;
vertex_data[indx++] = v[0].y * yscale;
vertex_data[indx++] = v[0].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[1].x * xscale;
vertex_data[indx++] = v[1].y * yscale;
vertex_data[indx++] = v[1].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[2].x * xscale;
vertex_data[indx++] = v[2].y * yscale;
vertex_data[indx++] = v[2].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[3].x * xscale;
vertex_data[indx++] = v[3].y * yscale;
vertex_data[indx++] = v[3].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[4].x * xscale;
vertex_data[indx++] = v[4].y * yscale;
vertex_data[indx++] = v[4].z;
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
vertex_data[indx++] = v[5].x * xscale;
vertex_data[indx++] = v[5].y * yscale;
vertex_data[indx++] = v[5].z;
}
}
void CreateOpticalFlowNeedleMap_gpu(DevMem2Df u_avg, DevMem2Df v_avg, float* vertex_buffer, float* color_data, float xscale, float yscale)
{
const dim3 block(16);
const dim3 grid(divUp(u_avg.cols, block.x), divUp(u_avg.rows, block.y));
NeedleMapVertexKernel<<<grid, block>>>(u_avg, v_avg, vertex_buffer, color_data, xscale, yscale);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
}}}

View File

@ -50,6 +50,7 @@ using namespace std;
void cv::gpu::BroxOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::BroxOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::interpolateFrames(const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::interpolateFrames(const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::createOpticalFlowNeedleMap(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
#else #else
@ -188,4 +189,44 @@ void cv::gpu::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, cons
cudaSafeCall( cudaDeviceSynchronize() ); cudaSafeCall( cudaDeviceSynchronize() );
} }
namespace cv { namespace gpu { namespace device
{
namespace optical_flow
{
void NeedleMapAverage_gpu(DevMem2Df u, DevMem2Df v, DevMem2Df u_avg, DevMem2Df v_avg);
void CreateOpticalFlowNeedleMap_gpu(DevMem2Df u_avg, DevMem2Df v_avg, float* vertex_buffer, float* color_data, float xscale, float yscale);
}
}}}
void cv::gpu::createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors)
{
using namespace cv::gpu::device::optical_flow;
CV_Assert(u.type() == CV_32FC1);
CV_Assert(v.type() == u.type() && v.size() == u.size());
const int NEEDLE_MAP_SCALE = 16;
const int x_needles = u.cols / NEEDLE_MAP_SCALE;
const int y_needles = u.rows / NEEDLE_MAP_SCALE;
GpuMat u_avg(y_needles, x_needles, CV_32FC1);
GpuMat v_avg(y_needles, x_needles, CV_32FC1);
NeedleMapAverage_gpu(u, v, u_avg, v_avg);
const int NUM_VERTS_PER_ARROW = 6;
const int num_arrows = x_needles * y_needles * NUM_VERTS_PER_ARROW;
vertex.create(1, num_arrows, CV_32FC3);
colors.create(1, num_arrows, CV_32FC3);
colors.setTo(Scalar::all(1.0));
CreateOpticalFlowNeedleMap_gpu(u_avg, v_avg, vertex.ptr<float>(), colors.ptr<float>(), 1.0f / u.cols, 1.0f / u.rows);
cvtColor(colors, colors, COLOR_HSV2RGB);
}
#endif /* HAVE_CUDA */ #endif /* HAVE_CUDA */

View File

@ -4,132 +4,245 @@
#include "cvconfig.h" #include "cvconfig.h"
#include "opencv2/core/core.hpp" #include "opencv2/core/core.hpp"
#include "opencv2/core/opengl_interop.hpp"
#include "opencv2/highgui/highgui.hpp" #include "opencv2/highgui/highgui.hpp"
#include "opencv2/gpu/gpu.hpp" #include "opencv2/gpu/gpu.hpp"
#ifdef HAVE_CUDA
#include "NPP_staging/NPP_staging.hpp"
#endif
using namespace std; using namespace std;
using namespace cv; using namespace cv;
using namespace cv::gpu; using namespace cv::gpu;
#if !defined(HAVE_CUDA) void getFlowField(const Mat& u, const Mat& v, Mat& flowField);
#ifdef HAVE_OPENGL
void needleMapDraw(void* userdata);
#endif
int main(int argc, const char* argv[]) int main(int argc, const char* argv[])
{ {
cout << "Please compile the library with CUDA support" << endl; try
return -1; {
} const char* keys =
"{ h | help | false | print help message }"
"{ l | left | | specify left image }"
"{ r | right | | specify right image }"
"{ s | scale | 0.8 | set pyramid scale factor }"
"{ a | alpha | 0.197 | set alpha }"
"{ g | gamma | 50.0 | set gamma }"
"{ i | inner | 10 | set number of inner iterations }"
"{ o | outer | 77 | set number of outer iterations }"
"{ si | solver | 10 | set number of basic solver iterations }"
"{ t | time_step | 0.1 | set frame interpolation time step }";
#else CommandLineParser cmd(argc, argv, keys);
#define PARAM_LEFT "--left" if (cmd.get<bool>("help"))
#define PARAM_RIGHT "--right"
#define PARAM_SCALE "--scale"
#define PARAM_ALPHA "--alpha"
#define PARAM_GAMMA "--gamma"
#define PARAM_INNER "--inner"
#define PARAM_OUTER "--outer"
#define PARAM_SOLVER "--solver"
#define PARAM_TIME_STEP "--time_step"
#define PARAM_HELP "--help"
bool help_showed = false;
void printHelp()
{ {
cout << "Usage help:\n"; cout << "Usage: optical_float [options]" << endl;
cout << setiosflags(ios::left); cout << "Avaible options:" << endl;
cout << "\t" << setw(15) << PARAM_ALPHA << " - set alpha\n"; cmd.printParams();
cout << "\t" << setw(15) << PARAM_GAMMA << " - set gamma\n";
cout << "\t" << setw(15) << PARAM_INNER << " - set number of inner iterations\n";
cout << "\t" << setw(15) << PARAM_LEFT << " - specify left image\n";
cout << "\t" << setw(15) << PARAM_RIGHT << " - specify right image\n";
cout << "\t" << setw(15) << PARAM_OUTER << " - set number of outer iterations\n";
cout << "\t" << setw(15) << PARAM_SCALE << " - set pyramid scale factor\n";
cout << "\t" << setw(15) << PARAM_SOLVER << " - set number of basic solver iterations\n";
cout << "\t" << setw(15) << PARAM_TIME_STEP << " - set frame interpolation time step\n";
cout << "\t" << setw(15) << PARAM_HELP << " - display this help message\n";
help_showed = true;
}
int processCommandLine(int argc, const char* argv[], float& timeStep, string& frame0Name, string& frame1Name, BroxOpticalFlow& flow)
{
timeStep = 0.25f;
for (int iarg = 1; iarg < argc; ++iarg)
{
if (strcmp(argv[iarg], PARAM_LEFT) == 0)
{
if (iarg + 1 < argc)
frame0Name = argv[++iarg];
else
return -1;
}
if (strcmp(argv[iarg], PARAM_RIGHT) == 0)
{
if (iarg + 1 < argc)
frame1Name = argv[++iarg];
else
return -1;
}
else if(strcmp(argv[iarg], PARAM_SCALE) == 0)
{
if (iarg + 1 < argc)
flow.scale_factor = static_cast<float>(atof(argv[++iarg]));
else
return -1;
}
else if(strcmp(argv[iarg], PARAM_ALPHA) == 0)
{
if (iarg + 1 < argc)
flow.alpha = static_cast<float>(atof(argv[++iarg]));
else
return -1;
}
else if(strcmp(argv[iarg], PARAM_GAMMA) == 0)
{
if (iarg + 1 < argc)
flow.gamma = static_cast<float>(atof(argv[++iarg]));
else
return -1;
}
else if(strcmp(argv[iarg], PARAM_INNER) == 0)
{
if (iarg + 1 < argc)
flow.inner_iterations = atoi(argv[++iarg]);
else
return -1;
}
else if(strcmp(argv[iarg], PARAM_OUTER) == 0)
{
if (iarg + 1 < argc)
flow.outer_iterations = atoi(argv[++iarg]);
else
return -1;
}
else if(strcmp(argv[iarg], PARAM_SOLVER) == 0)
{
if (iarg + 1 < argc)
flow.solver_iterations = atoi(argv[++iarg]);
else
return -1;
}
else if(strcmp(argv[iarg], PARAM_TIME_STEP) == 0)
{
if (iarg + 1 < argc)
timeStep = static_cast<float>(atof(argv[++iarg]));
else
return -1;
}
else if(strcmp(argv[iarg], PARAM_HELP) == 0)
{
printHelp();
return 0; return 0;
} }
string frame0Name = cmd.get<string>("left");
string frame1Name = cmd.get<string>("right");
float scale = cmd.get<float>("scale");
float alpha = cmd.get<float>("alpha");
float gamma = cmd.get<float>("gamma");
int inner_iterations = cmd.get<int>("inner");
int outer_iterations = cmd.get<int>("outer");
int solver_iterations = cmd.get<int>("solver");
float timeStep = cmd.get<float>("time_step");
if (frame0Name.empty() || frame1Name.empty())
{
cerr << "Missing input file names" << endl;
return -1;
} }
Mat frame0Color = imread(frame0Name);
Mat frame1Color = imread(frame1Name);
if (frame0Color.empty() || frame1Color.empty())
{
cout << "Can't load input images" << endl;
return -1;
}
cout << "OpenCV / NVIDIA Computer Vision" << endl;
cout << "Optical Flow Demo: Frame Interpolation" << endl;
cout << "=========================================" << endl;
namedWindow("Forward flow");
namedWindow("Backward flow");
namedWindow("Needle Map", WINDOW_OPENGL);
namedWindow("Interpolated frame");
setGlDevice();
cout << "Press:" << endl;
cout << "\tESC to quit" << endl;
cout << "\t'a' to move to the previous frame" << endl;
cout << "\t's' to move to the next frame\n" << endl;
frame0Color.convertTo(frame0Color, CV_32F, 1.0 / 255.0);
frame1Color.convertTo(frame1Color, CV_32F, 1.0 / 255.0);
Mat frame0Gray, frame1Gray;
cvtColor(frame0Color, frame0Gray, COLOR_BGR2GRAY);
cvtColor(frame1Color, frame1Gray, COLOR_BGR2GRAY);
GpuMat d_frame0(frame0Gray);
GpuMat d_frame1(frame1Gray);
cout << "Estimating optical flow" << endl;
BroxOpticalFlow d_flow(alpha, gamma, scale, inner_iterations, outer_iterations, solver_iterations);
cout << "\tForward..." << endl;
GpuMat d_fu, d_fv;
d_flow(d_frame0, d_frame1, d_fu, d_fv);
Mat flowFieldForward;
getFlowField(Mat(d_fu), Mat(d_fv), flowFieldForward);
cout << "\tBackward..." << endl;
GpuMat d_bu, d_bv;
d_flow(d_frame1, d_frame0, d_bu, d_bv);
Mat flowFieldBackward;
getFlowField(Mat(d_bu), Mat(d_bv), flowFieldBackward);
#ifdef HAVE_OPENGL
cout << "Create Optical Flow Needle Map..." << endl;
GpuMat d_vertex, d_colors;
createOpticalFlowNeedleMap(d_bu, d_bv, d_vertex, d_colors);
#endif
cout << "Interpolating..." << endl;
// first frame color components
GpuMat d_b, d_g, d_r;
// second frame color components
GpuMat d_bt, d_gt, d_rt;
// prepare color components on host and copy them to device memory
Mat channels[3];
cv::split(frame0Color, channels);
d_b.upload(channels[0]);
d_g.upload(channels[1]);
d_r.upload(channels[2]);
cv::split(frame1Color, channels);
d_bt.upload(channels[0]);
d_gt.upload(channels[1]);
d_rt.upload(channels[2]);
// temporary buffer
GpuMat d_buf;
// intermediate frame color components (GPU memory)
GpuMat d_rNew, d_gNew, d_bNew;
GpuMat d_newFrame;
vector<Mat> frames;
frames.reserve(static_cast<int>(1.0f / timeStep) + 2);
frames.push_back(frame0Color);
// compute interpolated frames
for (float timePos = timeStep; timePos < 1.0f; timePos += timeStep)
{
// interpolate blue channel
interpolateFrames(d_b, d_bt, d_fu, d_fv, d_bu, d_bv, timePos, d_bNew, d_buf);
// interpolate green channel
interpolateFrames(d_g, d_gt, d_fu, d_fv, d_bu, d_bv, timePos, d_gNew, d_buf);
// interpolate red channel
interpolateFrames(d_r, d_rt, d_fu, d_fv, d_bu, d_bv, timePos, d_rNew, d_buf);
GpuMat channels[] = {d_bNew, d_gNew, d_rNew};
merge(channels, 3, d_newFrame);
frames.push_back(Mat(d_newFrame));
cout << setprecision(4) << timePos * 100.0f << "%\r";
}
frames.push_back(frame1Color);
cout << setw(5) << "100%" << endl;
cout << "Done" << endl;
imshow("Forward flow", flowFieldForward);
imshow("Backward flow", flowFieldBackward);
#ifdef HAVE_OPENGL
GlArrays arr;
arr.setVertexArray(d_vertex);
arr.setColorArray(d_colors, false);
setOpenGlDrawCallback("Needle Map", needleMapDraw, &arr);
#endif
int currentFrame = 0;
imshow("Interpolated frame", frames[currentFrame]);
while (true)
{
int key = toupper(waitKey(10));
switch (key)
{
case 27:
return 0;
break;
case 'A':
if (currentFrame > 0)
--currentFrame;
imshow("Interpolated frame", frames[currentFrame]);
break;
case 'S':
if (currentFrame < frames.size() - 1)
++currentFrame;
imshow("Interpolated frame", frames[currentFrame]);
break;
}
}
}
catch (const exception& ex)
{
cerr << ex.what() << endl;
return -1;
}
catch (...)
{
cerr << "Unknow error" << endl;
return -1;
}
return 0; return 0;
} }
@ -181,171 +294,20 @@ void getFlowField(const Mat& u, const Mat& v, Mat& flowField)
} }
} }
int main(int argc, const char* argv[]) #ifdef HAVE_OPENGL
void needleMapDraw(void* userdata)
{ {
string frame0Name, frame1Name; const GlArrays* arr = static_cast<const GlArrays*>(userdata);
float timeStep = 0.01f;
BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, GlCamera camera;
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); camera.setOrthoProjection(0.0, 1.0, 1.0, 0.0, 0.0, 1.0);
camera.lookAt(Point3d(0.0, 0.0, 1.0), Point3d(0.0, 0.0, 0.0), Point3d(0.0, 1.0, 0.0));
int result = processCommandLine(argc, argv, timeStep, frame0Name, frame1Name, d_flow); camera.setupProjectionMatrix();
if (help_showed) camera.setupModelViewMatrix();
return -1;
if (argc == 1 || result)
{
printHelp();
return result;
}
if (frame0Name.empty() || frame1Name.empty()) render(*arr, RenderMode::TRIANGLES);
{
cout << "Missing input file names\n";
return -1;
}
Mat frame0Color = imread(frame0Name);
Mat frame1Color = imread(frame1Name);
if (frame0Color.empty() || frame1Color.empty())
{
cout << "Can't load input images\n";
return -1;
}
cout << "OpenCV / NVIDIA Computer Vision\n";
cout << "Optical Flow Demo: Frame Interpolation\n";
cout << "=========================================\n";
cout << "Press:\n ESC to quit\n 'a' to move to the previous frame\n 's' to move to the next frame\n";
frame0Color.convertTo(frame0Color, CV_32F, 1.0 / 255.0);
frame1Color.convertTo(frame1Color, CV_32F, 1.0 / 255.0);
Mat frame0Gray, frame1Gray;
cvtColor(frame0Color, frame0Gray, COLOR_BGR2GRAY);
cvtColor(frame1Color, frame1Gray, COLOR_BGR2GRAY);
GpuMat d_frame0(frame0Gray);
GpuMat d_frame1(frame1Gray);
Mat fu, fv;
Mat bu, bv;
GpuMat d_fu, d_fv;
GpuMat d_bu, d_bv;
cout << "Estimating optical flow\nForward...\n";
d_flow(d_frame0, d_frame1, d_fu, d_fv);
d_flow(d_frame1, d_frame0, d_bu, d_bv);
d_fu.download(fu);
d_fv.download(fv);
d_bu.download(bu);
d_bv.download(bv);
// first frame color components (GPU memory)
GpuMat d_b, d_g, d_r;
// second frame color components (GPU memory)
GpuMat d_bt, d_gt, d_rt;
// prepare color components on host and copy them to device memory
Mat channels[3];
cv::split(frame0Color, channels);
d_b.upload(channels[0]);
d_g.upload(channels[1]);
d_r.upload(channels[2]);
cv::split(frame1Color, channels);
d_bt.upload(channels[0]);
d_gt.upload(channels[1]);
d_rt.upload(channels[2]);
cout << "Interpolating...\n";
cout.precision (4);
// temporary buffer
GpuMat d_buf;
// intermediate frame color components (GPU memory)
GpuMat d_rNew, d_gNew, d_bNew;
GpuMat d_newFrame;
vector<Mat> frames;
frames.reserve(1.0f / timeStep + 2);
frames.push_back(frame0Color);
// compute interpolated frames
for (float timePos = timeStep; timePos < 1.0f; timePos += timeStep)
{
// interpolate blue channel
interpolateFrames(d_b, d_bt, d_fu, d_fv, d_bu, d_bv, timePos, d_bNew, d_buf);
// interpolate green channel
interpolateFrames(d_g, d_gt, d_fu, d_fv, d_bu, d_bv, timePos, d_gNew, d_buf);
// interpolate red channel
interpolateFrames(d_r, d_rt, d_fu, d_fv, d_bu, d_bv, timePos, d_rNew, d_buf);
GpuMat channels[] = {d_bNew, d_gNew, d_rNew};
merge(channels, 3, d_newFrame);
Mat newFrame;
d_newFrame.download(newFrame);
frames.push_back(newFrame);
cout << timePos * 100.0f << "%\r";
}
cout << setw (5) << "100%\n";
frames.push_back(frame1Color);
int currentFrame;
currentFrame = 0;
Mat flowFieldForward;
Mat flowFieldBackward;
getFlowField(fu, fv, flowFieldForward);
getFlowField(bu, bv, flowFieldBackward);
imshow("Forward flow", flowFieldForward);
imshow("Backward flow", flowFieldBackward);
imshow("Interpolated frame", frames[currentFrame]);
bool qPressed = false;
while (!qPressed)
{
int key = toupper(waitKey(10));
switch (key)
{
case 27:
qPressed = true;
break;
case 'A':
if (currentFrame > 0)
--currentFrame;
imshow("Interpolated frame", frames[currentFrame]);
break;
case 'S':
if (currentFrame < frames.size() - 1)
++currentFrame;
imshow("Interpolated frame", frames[currentFrame]);
break;
}
}
return 0;
} }
#endif #endif