mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 13:10:12 +08:00
updated gpu optical_flow sample
This commit is contained in:
parent
3aa537642d
commit
a25b027ef7
@ -265,7 +265,7 @@ namespace cv
|
||||
}
|
||||
|
||||
//! render OpenGL arrays
|
||||
CV_EXPORTS void render(const GlArrays& arr, int mode = RenderMode::POINTS);
|
||||
CV_EXPORTS void render(const GlArrays& arr, int mode = RenderMode::POINTS, Scalar color = Scalar::all(255));
|
||||
|
||||
CV_EXPORTS void render(const std::string& str, const Ptr<GlFont>& font, Scalar color, Point2d pos);
|
||||
|
||||
|
@ -1325,11 +1325,13 @@ void cv::render(const GlTexture& tex, Rect_<double> wndRect, Rect_<double> texRe
|
||||
#endif
|
||||
}
|
||||
|
||||
void cv::render(const GlArrays& arr, int mode)
|
||||
void cv::render(const GlArrays& arr, int mode, Scalar color)
|
||||
{
|
||||
#ifndef HAVE_OPENGL
|
||||
throw_nogl;
|
||||
#else
|
||||
glColor3d(color[0] / 255.0, color[1] / 255.0, color[3] / 255.0);
|
||||
|
||||
arr.bind();
|
||||
|
||||
glDrawArrays(mode, 0, arr.size().area());
|
||||
|
@ -1734,6 +1734,8 @@ CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
|
||||
float pos, GpuMat& newFrame, GpuMat& buf,
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);
|
||||
|
||||
} // namespace gpu
|
||||
|
||||
//! Speckle filtering - filters small connected components on diparity image.
|
||||
|
@ -81,7 +81,7 @@ namespace cv { namespace gpu { namespace device
|
||||
calcSobelRowPass<<<grid, block>>>(src, dx_buf, dy_buf, rows, cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
struct L1
|
||||
@ -171,7 +171,7 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -252,7 +252,7 @@ namespace cv { namespace gpu { namespace device
|
||||
calcMap<<<grid, block>>>(dx, dy, mag, map, rows, cols, low_thresh, high_thresh);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -345,7 +345,7 @@ namespace cv { namespace gpu { namespace device
|
||||
edgesHysteresisLocal<<<grid, block>>>(map, st1, rows, cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
__constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
|
||||
@ -460,7 +460,7 @@ namespace cv { namespace gpu { namespace device
|
||||
edgesHysteresisGlobal<<<grid, block>>>(map, st1, st2, rows, cols, count);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
@ -485,7 +485,7 @@ namespace cv { namespace gpu { namespace device
|
||||
getEdges<<<grid, block>>>(map, dst, rows, cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
} // namespace canny
|
||||
}}} // namespace cv { namespace gpu { namespace device
|
||||
|
217
modules/gpu/src/cuda/optical_flow.cu
Normal file
217
modules/gpu/src/cuda/optical_flow.cu
Normal file
@ -0,0 +1,217 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "opencv2/gpu/device/common.hpp"
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace optical_flow
|
||||
{
|
||||
#define NEEDLE_MAP_SCALE 16
|
||||
#define MAX_FLOW 30.0f
|
||||
#define NUM_VERTS_PER_ARROW 6
|
||||
|
||||
__global__ void NeedleMapAverageKernel(const DevMem2Df u, const PtrStepf v, PtrStepf u_avg, PtrStepf v_avg)
|
||||
{
|
||||
__shared__ float smem[2 * NEEDLE_MAP_SCALE];
|
||||
|
||||
volatile float* u_col_sum = smem;
|
||||
volatile float* v_col_sum = u_col_sum + NEEDLE_MAP_SCALE;
|
||||
|
||||
const int x = blockIdx.x * NEEDLE_MAP_SCALE + threadIdx.x;
|
||||
const int y = blockIdx.y * NEEDLE_MAP_SCALE;
|
||||
|
||||
u_col_sum[threadIdx.x] = 0;
|
||||
v_col_sum[threadIdx.x] = 0;
|
||||
|
||||
#pragma unroll
|
||||
for(int i = 0; i < NEEDLE_MAP_SCALE; ++i)
|
||||
{
|
||||
u_col_sum[threadIdx.x] += u(::min(y + i, u.rows - 1), x);
|
||||
v_col_sum[threadIdx.x] += v(::min(y + i, u.rows - 1), x);
|
||||
}
|
||||
|
||||
if (threadIdx.x < 8)
|
||||
{
|
||||
// now add the column sums
|
||||
const uint X = threadIdx.x;
|
||||
|
||||
if (X | 0xfe == 0xfe) // bit 0 is 0
|
||||
{
|
||||
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 1];
|
||||
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 1];
|
||||
}
|
||||
|
||||
if (X | 0xfe == 0xfc) // bits 0 & 1 == 0
|
||||
{
|
||||
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 2];
|
||||
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 2];
|
||||
}
|
||||
|
||||
if (X | 0xf8 == 0xf8)
|
||||
{
|
||||
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 4];
|
||||
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 4];
|
||||
}
|
||||
|
||||
if (X == 0)
|
||||
{
|
||||
u_col_sum[threadIdx.x] += u_col_sum[threadIdx.x + 8];
|
||||
v_col_sum[threadIdx.x] += v_col_sum[threadIdx.x + 8];
|
||||
}
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
const float coeff = 1.0f / (NEEDLE_MAP_SCALE * NEEDLE_MAP_SCALE);
|
||||
|
||||
u_col_sum[0] *= coeff;
|
||||
v_col_sum[0] *= coeff;
|
||||
|
||||
u_avg(blockIdx.y, blockIdx.x) = u_col_sum[0];
|
||||
v_avg(blockIdx.y, blockIdx.x) = v_col_sum[0];
|
||||
}
|
||||
}
|
||||
|
||||
void NeedleMapAverage_gpu(DevMem2Df u, DevMem2Df v, DevMem2Df u_avg, DevMem2Df v_avg)
|
||||
{
|
||||
const dim3 block(NEEDLE_MAP_SCALE);
|
||||
const dim3 grid(u_avg.cols, u_avg.rows);
|
||||
|
||||
NeedleMapAverageKernel<<<grid, block>>>(u, v, u_avg, v_avg);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
__global__ void NeedleMapVertexKernel(const DevMem2Df u_avg, const PtrStepf v_avg, float* vertex_data, float* color_data, float xscale, float yscale)
|
||||
{
|
||||
// test - just draw a triangle at each pixel
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const float arrow_x = x * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
|
||||
const float arrow_y = y * NEEDLE_MAP_SCALE + NEEDLE_MAP_SCALE / 2.0f;
|
||||
|
||||
float3 v[NUM_VERTS_PER_ARROW];
|
||||
|
||||
if (x < u_avg.cols && y < u_avg.rows)
|
||||
{
|
||||
const float u_avg_val = u_avg(y, x);
|
||||
const float v_avg_val = v_avg(y, x);
|
||||
|
||||
const float theta = ::atan2f(v_avg_val, u_avg_val) + CV_PI;
|
||||
|
||||
float r = ::sqrtf(v_avg_val * v_avg_val + u_avg_val * u_avg_val);
|
||||
r = fmin(14.0f * (r / MAX_FLOW), 14.0f);
|
||||
|
||||
v[0].z = 1.0f;
|
||||
v[1].z = 0.7f;
|
||||
v[2].z = 0.7f;
|
||||
v[3].z = 0.7f;
|
||||
v[4].z = 0.7f;
|
||||
v[5].z = 1.0f;
|
||||
|
||||
v[0].x = arrow_x;
|
||||
v[0].y = arrow_y;
|
||||
v[5].x = arrow_x;
|
||||
v[5].y = arrow_y;
|
||||
|
||||
v[2].x = arrow_x + r * ::cosf(theta);
|
||||
v[2].y = arrow_y + r * ::sinf(theta);
|
||||
v[3].x = v[2].x;
|
||||
v[3].y = v[2].y;
|
||||
|
||||
r = ::fmin(r, 2.5f);
|
||||
|
||||
v[1].x = arrow_x + r * ::cosf(theta - CV_PI / 2.0f);
|
||||
v[1].y = arrow_y + r * ::sinf(theta - CV_PI / 2.0f);
|
||||
|
||||
v[4].x = arrow_x + r * ::cosf(theta + CV_PI / 2.0f);
|
||||
v[4].y = arrow_y + r * ::sinf(theta + CV_PI / 2.0f);
|
||||
|
||||
int indx = (y * u_avg.cols + x) * NUM_VERTS_PER_ARROW * 3;
|
||||
|
||||
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||||
vertex_data[indx++] = v[0].x * xscale;
|
||||
vertex_data[indx++] = v[0].y * yscale;
|
||||
vertex_data[indx++] = v[0].z;
|
||||
|
||||
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||||
vertex_data[indx++] = v[1].x * xscale;
|
||||
vertex_data[indx++] = v[1].y * yscale;
|
||||
vertex_data[indx++] = v[1].z;
|
||||
|
||||
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||||
vertex_data[indx++] = v[2].x * xscale;
|
||||
vertex_data[indx++] = v[2].y * yscale;
|
||||
vertex_data[indx++] = v[2].z;
|
||||
|
||||
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||||
vertex_data[indx++] = v[3].x * xscale;
|
||||
vertex_data[indx++] = v[3].y * yscale;
|
||||
vertex_data[indx++] = v[3].z;
|
||||
|
||||
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||||
vertex_data[indx++] = v[4].x * xscale;
|
||||
vertex_data[indx++] = v[4].y * yscale;
|
||||
vertex_data[indx++] = v[4].z;
|
||||
|
||||
color_data[indx] = (theta - CV_PI) / CV_PI * 180.0f;
|
||||
vertex_data[indx++] = v[5].x * xscale;
|
||||
vertex_data[indx++] = v[5].y * yscale;
|
||||
vertex_data[indx++] = v[5].z;
|
||||
}
|
||||
}
|
||||
|
||||
void CreateOpticalFlowNeedleMap_gpu(DevMem2Df u_avg, DevMem2Df v_avg, float* vertex_buffer, float* color_data, float xscale, float yscale)
|
||||
{
|
||||
const dim3 block(16);
|
||||
const dim3 grid(divUp(u_avg.cols, block.x), divUp(u_avg.rows, block.y));
|
||||
|
||||
NeedleMapVertexKernel<<<grid, block>>>(u_avg, v_avg, vertex_buffer, color_data, xscale, yscale);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
}}}
|
@ -50,6 +50,7 @@ using namespace std;
|
||||
|
||||
void cv::gpu::BroxOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
||||
void cv::gpu::interpolateFrames(const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
||||
void cv::gpu::createOpticalFlowNeedleMap(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
|
||||
#else
|
||||
|
||||
@ -188,4 +189,44 @@ void cv::gpu::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, cons
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
namespace optical_flow
|
||||
{
|
||||
void NeedleMapAverage_gpu(DevMem2Df u, DevMem2Df v, DevMem2Df u_avg, DevMem2Df v_avg);
|
||||
void CreateOpticalFlowNeedleMap_gpu(DevMem2Df u_avg, DevMem2Df v_avg, float* vertex_buffer, float* color_data, float xscale, float yscale);
|
||||
}
|
||||
}}}
|
||||
|
||||
void cv::gpu::createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors)
|
||||
{
|
||||
using namespace cv::gpu::device::optical_flow;
|
||||
|
||||
CV_Assert(u.type() == CV_32FC1);
|
||||
CV_Assert(v.type() == u.type() && v.size() == u.size());
|
||||
|
||||
const int NEEDLE_MAP_SCALE = 16;
|
||||
|
||||
const int x_needles = u.cols / NEEDLE_MAP_SCALE;
|
||||
const int y_needles = u.rows / NEEDLE_MAP_SCALE;
|
||||
|
||||
GpuMat u_avg(y_needles, x_needles, CV_32FC1);
|
||||
GpuMat v_avg(y_needles, x_needles, CV_32FC1);
|
||||
|
||||
NeedleMapAverage_gpu(u, v, u_avg, v_avg);
|
||||
|
||||
const int NUM_VERTS_PER_ARROW = 6;
|
||||
|
||||
const int num_arrows = x_needles * y_needles * NUM_VERTS_PER_ARROW;
|
||||
|
||||
vertex.create(1, num_arrows, CV_32FC3);
|
||||
colors.create(1, num_arrows, CV_32FC3);
|
||||
|
||||
colors.setTo(Scalar::all(1.0));
|
||||
|
||||
CreateOpticalFlowNeedleMap_gpu(u_avg, v_avg, vertex.ptr<float>(), colors.ptr<float>(), 1.0f / u.cols, 1.0f / u.rows);
|
||||
|
||||
cvtColor(colors, colors, COLOR_HSV2RGB);
|
||||
}
|
||||
|
||||
#endif /* HAVE_CUDA */
|
||||
|
@ -4,132 +4,245 @@
|
||||
|
||||
#include "cvconfig.h"
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/core/opengl_interop.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/gpu/gpu.hpp"
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
#include "NPP_staging/NPP_staging.hpp"
|
||||
#endif
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
#if !defined(HAVE_CUDA)
|
||||
void getFlowField(const Mat& u, const Mat& v, Mat& flowField);
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
|
||||
void needleMapDraw(void* userdata);
|
||||
|
||||
#endif
|
||||
|
||||
int main(int argc, const char* argv[])
|
||||
{
|
||||
cout << "Please compile the library with CUDA support" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define PARAM_LEFT "--left"
|
||||
#define PARAM_RIGHT "--right"
|
||||
#define PARAM_SCALE "--scale"
|
||||
#define PARAM_ALPHA "--alpha"
|
||||
#define PARAM_GAMMA "--gamma"
|
||||
#define PARAM_INNER "--inner"
|
||||
#define PARAM_OUTER "--outer"
|
||||
#define PARAM_SOLVER "--solver"
|
||||
#define PARAM_TIME_STEP "--time_step"
|
||||
#define PARAM_HELP "--help"
|
||||
|
||||
bool help_showed = false;
|
||||
|
||||
void printHelp()
|
||||
{
|
||||
cout << "Usage help:\n";
|
||||
cout << setiosflags(ios::left);
|
||||
cout << "\t" << setw(15) << PARAM_ALPHA << " - set alpha\n";
|
||||
cout << "\t" << setw(15) << PARAM_GAMMA << " - set gamma\n";
|
||||
cout << "\t" << setw(15) << PARAM_INNER << " - set number of inner iterations\n";
|
||||
cout << "\t" << setw(15) << PARAM_LEFT << " - specify left image\n";
|
||||
cout << "\t" << setw(15) << PARAM_RIGHT << " - specify right image\n";
|
||||
cout << "\t" << setw(15) << PARAM_OUTER << " - set number of outer iterations\n";
|
||||
cout << "\t" << setw(15) << PARAM_SCALE << " - set pyramid scale factor\n";
|
||||
cout << "\t" << setw(15) << PARAM_SOLVER << " - set number of basic solver iterations\n";
|
||||
cout << "\t" << setw(15) << PARAM_TIME_STEP << " - set frame interpolation time step\n";
|
||||
cout << "\t" << setw(15) << PARAM_HELP << " - display this help message\n";
|
||||
help_showed = true;
|
||||
}
|
||||
|
||||
int processCommandLine(int argc, const char* argv[], float& timeStep, string& frame0Name, string& frame1Name, BroxOpticalFlow& flow)
|
||||
{
|
||||
timeStep = 0.25f;
|
||||
|
||||
for (int iarg = 1; iarg < argc; ++iarg)
|
||||
try
|
||||
{
|
||||
if (strcmp(argv[iarg], PARAM_LEFT) == 0)
|
||||
const char* keys =
|
||||
"{ h | help | false | print help message }"
|
||||
"{ l | left | | specify left image }"
|
||||
"{ r | right | | specify right image }"
|
||||
"{ s | scale | 0.8 | set pyramid scale factor }"
|
||||
"{ a | alpha | 0.197 | set alpha }"
|
||||
"{ g | gamma | 50.0 | set gamma }"
|
||||
"{ i | inner | 10 | set number of inner iterations }"
|
||||
"{ o | outer | 77 | set number of outer iterations }"
|
||||
"{ si | solver | 10 | set number of basic solver iterations }"
|
||||
"{ t | time_step | 0.1 | set frame interpolation time step }";
|
||||
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
|
||||
if (cmd.get<bool>("help"))
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
frame0Name = argv[++iarg];
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
if (strcmp(argv[iarg], PARAM_RIGHT) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
frame1Name = argv[++iarg];
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_SCALE) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.scale_factor = static_cast<float>(atof(argv[++iarg]));
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_ALPHA) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.alpha = static_cast<float>(atof(argv[++iarg]));
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_GAMMA) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.gamma = static_cast<float>(atof(argv[++iarg]));
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_INNER) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.inner_iterations = atoi(argv[++iarg]);
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_OUTER) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.outer_iterations = atoi(argv[++iarg]);
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_SOLVER) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
flow.solver_iterations = atoi(argv[++iarg]);
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_TIME_STEP) == 0)
|
||||
{
|
||||
if (iarg + 1 < argc)
|
||||
timeStep = static_cast<float>(atof(argv[++iarg]));
|
||||
else
|
||||
return -1;
|
||||
}
|
||||
else if(strcmp(argv[iarg], PARAM_HELP) == 0)
|
||||
{
|
||||
printHelp();
|
||||
cout << "Usage: optical_float [options]" << endl;
|
||||
cout << "Avaible options:" << endl;
|
||||
cmd.printParams();
|
||||
return 0;
|
||||
}
|
||||
|
||||
string frame0Name = cmd.get<string>("left");
|
||||
string frame1Name = cmd.get<string>("right");
|
||||
float scale = cmd.get<float>("scale");
|
||||
float alpha = cmd.get<float>("alpha");
|
||||
float gamma = cmd.get<float>("gamma");
|
||||
int inner_iterations = cmd.get<int>("inner");
|
||||
int outer_iterations = cmd.get<int>("outer");
|
||||
int solver_iterations = cmd.get<int>("solver");
|
||||
float timeStep = cmd.get<float>("time_step");
|
||||
|
||||
if (frame0Name.empty() || frame1Name.empty())
|
||||
{
|
||||
cerr << "Missing input file names" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat frame0Color = imread(frame0Name);
|
||||
Mat frame1Color = imread(frame1Name);
|
||||
|
||||
if (frame0Color.empty() || frame1Color.empty())
|
||||
{
|
||||
cout << "Can't load input images" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
cout << "OpenCV / NVIDIA Computer Vision" << endl;
|
||||
cout << "Optical Flow Demo: Frame Interpolation" << endl;
|
||||
cout << "=========================================" << endl;
|
||||
|
||||
namedWindow("Forward flow");
|
||||
namedWindow("Backward flow");
|
||||
|
||||
namedWindow("Needle Map", WINDOW_OPENGL);
|
||||
|
||||
namedWindow("Interpolated frame");
|
||||
|
||||
setGlDevice();
|
||||
|
||||
cout << "Press:" << endl;
|
||||
cout << "\tESC to quit" << endl;
|
||||
cout << "\t'a' to move to the previous frame" << endl;
|
||||
cout << "\t's' to move to the next frame\n" << endl;
|
||||
|
||||
frame0Color.convertTo(frame0Color, CV_32F, 1.0 / 255.0);
|
||||
frame1Color.convertTo(frame1Color, CV_32F, 1.0 / 255.0);
|
||||
|
||||
Mat frame0Gray, frame1Gray;
|
||||
|
||||
cvtColor(frame0Color, frame0Gray, COLOR_BGR2GRAY);
|
||||
cvtColor(frame1Color, frame1Gray, COLOR_BGR2GRAY);
|
||||
|
||||
GpuMat d_frame0(frame0Gray);
|
||||
GpuMat d_frame1(frame1Gray);
|
||||
|
||||
cout << "Estimating optical flow" << endl;
|
||||
|
||||
BroxOpticalFlow d_flow(alpha, gamma, scale, inner_iterations, outer_iterations, solver_iterations);
|
||||
|
||||
cout << "\tForward..." << endl;
|
||||
|
||||
GpuMat d_fu, d_fv;
|
||||
|
||||
d_flow(d_frame0, d_frame1, d_fu, d_fv);
|
||||
|
||||
Mat flowFieldForward;
|
||||
getFlowField(Mat(d_fu), Mat(d_fv), flowFieldForward);
|
||||
|
||||
cout << "\tBackward..." << endl;
|
||||
|
||||
GpuMat d_bu, d_bv;
|
||||
|
||||
d_flow(d_frame1, d_frame0, d_bu, d_bv);
|
||||
|
||||
Mat flowFieldBackward;
|
||||
getFlowField(Mat(d_bu), Mat(d_bv), flowFieldBackward);
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
cout << "Create Optical Flow Needle Map..." << endl;
|
||||
|
||||
GpuMat d_vertex, d_colors;
|
||||
|
||||
createOpticalFlowNeedleMap(d_bu, d_bv, d_vertex, d_colors);
|
||||
#endif
|
||||
|
||||
cout << "Interpolating..." << endl;
|
||||
|
||||
// first frame color components
|
||||
GpuMat d_b, d_g, d_r;
|
||||
|
||||
// second frame color components
|
||||
GpuMat d_bt, d_gt, d_rt;
|
||||
|
||||
// prepare color components on host and copy them to device memory
|
||||
Mat channels[3];
|
||||
cv::split(frame0Color, channels);
|
||||
|
||||
d_b.upload(channels[0]);
|
||||
d_g.upload(channels[1]);
|
||||
d_r.upload(channels[2]);
|
||||
|
||||
cv::split(frame1Color, channels);
|
||||
|
||||
d_bt.upload(channels[0]);
|
||||
d_gt.upload(channels[1]);
|
||||
d_rt.upload(channels[2]);
|
||||
|
||||
// temporary buffer
|
||||
GpuMat d_buf;
|
||||
|
||||
// intermediate frame color components (GPU memory)
|
||||
GpuMat d_rNew, d_gNew, d_bNew;
|
||||
|
||||
GpuMat d_newFrame;
|
||||
|
||||
vector<Mat> frames;
|
||||
frames.reserve(static_cast<int>(1.0f / timeStep) + 2);
|
||||
|
||||
frames.push_back(frame0Color);
|
||||
|
||||
// compute interpolated frames
|
||||
for (float timePos = timeStep; timePos < 1.0f; timePos += timeStep)
|
||||
{
|
||||
// interpolate blue channel
|
||||
interpolateFrames(d_b, d_bt, d_fu, d_fv, d_bu, d_bv, timePos, d_bNew, d_buf);
|
||||
|
||||
// interpolate green channel
|
||||
interpolateFrames(d_g, d_gt, d_fu, d_fv, d_bu, d_bv, timePos, d_gNew, d_buf);
|
||||
|
||||
// interpolate red channel
|
||||
interpolateFrames(d_r, d_rt, d_fu, d_fv, d_bu, d_bv, timePos, d_rNew, d_buf);
|
||||
|
||||
GpuMat channels[] = {d_bNew, d_gNew, d_rNew};
|
||||
merge(channels, 3, d_newFrame);
|
||||
|
||||
frames.push_back(Mat(d_newFrame));
|
||||
|
||||
cout << setprecision(4) << timePos * 100.0f << "%\r";
|
||||
}
|
||||
|
||||
frames.push_back(frame1Color);
|
||||
|
||||
cout << setw(5) << "100%" << endl;
|
||||
|
||||
cout << "Done" << endl;
|
||||
|
||||
imshow("Forward flow", flowFieldForward);
|
||||
imshow("Backward flow", flowFieldBackward);
|
||||
|
||||
#ifdef HAVE_OPENGL
|
||||
GlArrays arr;
|
||||
arr.setVertexArray(d_vertex);
|
||||
arr.setColorArray(d_colors, false);
|
||||
|
||||
setOpenGlDrawCallback("Needle Map", needleMapDraw, &arr);
|
||||
#endif
|
||||
|
||||
int currentFrame = 0;
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
|
||||
while (true)
|
||||
{
|
||||
int key = toupper(waitKey(10));
|
||||
|
||||
switch (key)
|
||||
{
|
||||
case 27:
|
||||
return 0;
|
||||
break;
|
||||
|
||||
case 'A':
|
||||
if (currentFrame > 0)
|
||||
--currentFrame;
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
break;
|
||||
|
||||
case 'S':
|
||||
if (currentFrame < frames.size() - 1)
|
||||
++currentFrame;
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
catch (const exception& ex)
|
||||
{
|
||||
cerr << ex.what() << endl;
|
||||
return -1;
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
cerr << "Unknow error" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -181,171 +294,20 @@ void getFlowField(const Mat& u, const Mat& v, Mat& flowField)
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, const char* argv[])
|
||||
#ifdef HAVE_OPENGL
|
||||
|
||||
void needleMapDraw(void* userdata)
|
||||
{
|
||||
string frame0Name, frame1Name;
|
||||
float timeStep = 0.01f;
|
||||
const GlArrays* arr = static_cast<const GlArrays*>(userdata);
|
||||
|
||||
BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
|
||||
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
|
||||
GlCamera camera;
|
||||
camera.setOrthoProjection(0.0, 1.0, 1.0, 0.0, 0.0, 1.0);
|
||||
camera.lookAt(Point3d(0.0, 0.0, 1.0), Point3d(0.0, 0.0, 0.0), Point3d(0.0, 1.0, 0.0));
|
||||
|
||||
int result = processCommandLine(argc, argv, timeStep, frame0Name, frame1Name, d_flow);
|
||||
if (help_showed)
|
||||
return -1;
|
||||
if (argc == 1 || result)
|
||||
{
|
||||
printHelp();
|
||||
return result;
|
||||
}
|
||||
camera.setupProjectionMatrix();
|
||||
camera.setupModelViewMatrix();
|
||||
|
||||
if (frame0Name.empty() || frame1Name.empty())
|
||||
{
|
||||
cout << "Missing input file names\n";
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat frame0Color = imread(frame0Name);
|
||||
Mat frame1Color = imread(frame1Name);
|
||||
|
||||
if (frame0Color.empty() || frame1Color.empty())
|
||||
{
|
||||
cout << "Can't load input images\n";
|
||||
return -1;
|
||||
}
|
||||
|
||||
cout << "OpenCV / NVIDIA Computer Vision\n";
|
||||
cout << "Optical Flow Demo: Frame Interpolation\n";
|
||||
cout << "=========================================\n";
|
||||
cout << "Press:\n ESC to quit\n 'a' to move to the previous frame\n 's' to move to the next frame\n";
|
||||
|
||||
frame0Color.convertTo(frame0Color, CV_32F, 1.0 / 255.0);
|
||||
frame1Color.convertTo(frame1Color, CV_32F, 1.0 / 255.0);
|
||||
|
||||
Mat frame0Gray, frame1Gray;
|
||||
|
||||
cvtColor(frame0Color, frame0Gray, COLOR_BGR2GRAY);
|
||||
cvtColor(frame1Color, frame1Gray, COLOR_BGR2GRAY);
|
||||
|
||||
GpuMat d_frame0(frame0Gray);
|
||||
GpuMat d_frame1(frame1Gray);
|
||||
|
||||
Mat fu, fv;
|
||||
Mat bu, bv;
|
||||
|
||||
GpuMat d_fu, d_fv;
|
||||
GpuMat d_bu, d_bv;
|
||||
|
||||
cout << "Estimating optical flow\nForward...\n";
|
||||
|
||||
d_flow(d_frame0, d_frame1, d_fu, d_fv);
|
||||
d_flow(d_frame1, d_frame0, d_bu, d_bv);
|
||||
|
||||
d_fu.download(fu);
|
||||
d_fv.download(fv);
|
||||
|
||||
d_bu.download(bu);
|
||||
d_bv.download(bv);
|
||||
|
||||
// first frame color components (GPU memory)
|
||||
GpuMat d_b, d_g, d_r;
|
||||
|
||||
// second frame color components (GPU memory)
|
||||
GpuMat d_bt, d_gt, d_rt;
|
||||
|
||||
// prepare color components on host and copy them to device memory
|
||||
Mat channels[3];
|
||||
|
||||
cv::split(frame0Color, channels);
|
||||
|
||||
d_b.upload(channels[0]);
|
||||
d_g.upload(channels[1]);
|
||||
d_r.upload(channels[2]);
|
||||
|
||||
cv::split(frame1Color, channels);
|
||||
|
||||
d_bt.upload(channels[0]);
|
||||
d_gt.upload(channels[1]);
|
||||
d_rt.upload(channels[2]);
|
||||
|
||||
cout << "Interpolating...\n";
|
||||
cout.precision (4);
|
||||
|
||||
// temporary buffer
|
||||
GpuMat d_buf;
|
||||
|
||||
// intermediate frame color components (GPU memory)
|
||||
GpuMat d_rNew, d_gNew, d_bNew;
|
||||
|
||||
GpuMat d_newFrame;
|
||||
|
||||
vector<Mat> frames;
|
||||
frames.reserve(1.0f / timeStep + 2);
|
||||
|
||||
frames.push_back(frame0Color);
|
||||
|
||||
// compute interpolated frames
|
||||
for (float timePos = timeStep; timePos < 1.0f; timePos += timeStep)
|
||||
{
|
||||
// interpolate blue channel
|
||||
interpolateFrames(d_b, d_bt, d_fu, d_fv, d_bu, d_bv, timePos, d_bNew, d_buf);
|
||||
// interpolate green channel
|
||||
interpolateFrames(d_g, d_gt, d_fu, d_fv, d_bu, d_bv, timePos, d_gNew, d_buf);
|
||||
// interpolate red channel
|
||||
interpolateFrames(d_r, d_rt, d_fu, d_fv, d_bu, d_bv, timePos, d_rNew, d_buf);
|
||||
|
||||
GpuMat channels[] = {d_bNew, d_gNew, d_rNew};
|
||||
merge(channels, 3, d_newFrame);
|
||||
|
||||
Mat newFrame;
|
||||
d_newFrame.download(newFrame);
|
||||
|
||||
frames.push_back(newFrame);
|
||||
|
||||
cout << timePos * 100.0f << "%\r";
|
||||
}
|
||||
cout << setw (5) << "100%\n";
|
||||
|
||||
frames.push_back(frame1Color);
|
||||
|
||||
int currentFrame;
|
||||
currentFrame = 0;
|
||||
|
||||
Mat flowFieldForward;
|
||||
Mat flowFieldBackward;
|
||||
|
||||
getFlowField(fu, fv, flowFieldForward);
|
||||
getFlowField(bu, bv, flowFieldBackward);
|
||||
|
||||
imshow("Forward flow", flowFieldForward);
|
||||
imshow("Backward flow", flowFieldBackward);
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
|
||||
bool qPressed = false;
|
||||
while (!qPressed)
|
||||
{
|
||||
int key = toupper(waitKey(10));
|
||||
switch (key)
|
||||
{
|
||||
case 27:
|
||||
qPressed = true;
|
||||
break;
|
||||
case 'A':
|
||||
if (currentFrame > 0)
|
||||
--currentFrame;
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
break;
|
||||
case 'S':
|
||||
if (currentFrame < frames.size() - 1)
|
||||
++currentFrame;
|
||||
|
||||
imshow("Interpolated frame", frames[currentFrame]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
render(*arr, RenderMode::TRIANGLES);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user