mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 13:47:32 +08:00
Improve the documentation for cv::Affine3.
This commit is contained in:
parent
f5862dacb6
commit
a2869109f0
@ -2629,7 +2629,7 @@ public:
|
||||
|
||||
/** @overload
|
||||
initializes an empty SVD structure and then calls SVD::operator()
|
||||
@param src decomposed matrix.
|
||||
@param src decomposed matrix. The depth has to be CV_32F or CV_64F.
|
||||
@param flags operation flags (SVD::Flags)
|
||||
*/
|
||||
SVD( InputArray src, int flags = 0 );
|
||||
@ -2642,7 +2642,7 @@ public:
|
||||
different matrices. Each time, if needed, the previous u,`vt` , and w
|
||||
are reclaimed and the new matrices are created, which is all handled by
|
||||
Mat::create.
|
||||
@param src decomposed matrix.
|
||||
@param src decomposed matrix. The depth has to be CV_32F or CV_64F.
|
||||
@param flags operation flags (SVD::Flags)
|
||||
*/
|
||||
SVD& operator ()( InputArray src, int flags = 0 );
|
||||
@ -2658,18 +2658,18 @@ public:
|
||||
SVD::compute(A, w, u, vt);
|
||||
@endcode
|
||||
|
||||
@param src decomposed matrix
|
||||
@param src decomposed matrix. The depth has to be CV_32F or CV_64F.
|
||||
@param w calculated singular values
|
||||
@param u calculated left singular vectors
|
||||
@param vt transposed matrix of right singular values
|
||||
@param flags operation flags - see SVD::SVD.
|
||||
@param vt transposed matrix of right singular vectors
|
||||
@param flags operation flags - see SVD::Flags.
|
||||
*/
|
||||
static void compute( InputArray src, OutputArray w,
|
||||
OutputArray u, OutputArray vt, int flags = 0 );
|
||||
|
||||
/** @overload
|
||||
computes singular values of a matrix
|
||||
@param src decomposed matrix
|
||||
@param src decomposed matrix. The depth has to be CV_32F or CV_64F.
|
||||
@param w calculated singular values
|
||||
@param flags operation flags - see SVD::Flags.
|
||||
*/
|
||||
|
@ -55,7 +55,72 @@ namespace cv
|
||||
//! @{
|
||||
|
||||
/** @brief Affine transform
|
||||
@todo document
|
||||
*
|
||||
* It represents a 4x4 homogeneous transformation matrix \f$T\f$
|
||||
*
|
||||
* \f[T =
|
||||
* \begin{bmatrix}
|
||||
* R & t\\
|
||||
* 0 & 1\\
|
||||
* \end{bmatrix}
|
||||
* \f]
|
||||
*
|
||||
* where \f$R\f$ is a 3x3 rotation matrix and \f$t\f$ is a 3x1 translation vector.
|
||||
*
|
||||
* You can specify \f$R\f$ either by a 3x3 rotation matrix or by a 3x1 rotation vector,
|
||||
* which is converted to a 3x3 rotation matrix by the Rodrigues formula.
|
||||
*
|
||||
* To construct a matrix \f$T\f$ representing first rotation around the axis \f$r\f$ with rotation
|
||||
* angle \f$|r|\f$ in radian (right hand rule) and then translation by the vector \f$t\f$, you can use
|
||||
*
|
||||
* @code
|
||||
* cv::Vec3f r, t;
|
||||
* cv::Affine3f T(r, t);
|
||||
* @endcode
|
||||
*
|
||||
* If you already have the rotation matrix \f$R\f$, then you can use
|
||||
*
|
||||
* @code
|
||||
* cv::Matx33f R;
|
||||
* cv::Affine3f T(R, t);
|
||||
* @endcode
|
||||
*
|
||||
* To extract the rotation matrix \f$R\f$ from \f$T\f$, use
|
||||
*
|
||||
* @code
|
||||
* cv::Matx33f R = T.rotation();
|
||||
* @endcode
|
||||
*
|
||||
* To extract the translation vector \f$t\f$ from \f$T\f$, use
|
||||
*
|
||||
* @code
|
||||
* cv::Vec3f t = T.translation();
|
||||
* @endcode
|
||||
*
|
||||
* To extract the rotation vector \f$r\f$ from \f$T\f$, use
|
||||
*
|
||||
* @code
|
||||
* cv::Vec3f r = T.rvec();
|
||||
* @endcode
|
||||
*
|
||||
* Note that since the mapping from rotation vectors to rotation matrices
|
||||
* is many to one. The returned rotation vector is not necessarily the one
|
||||
* you used before to set the matrix.
|
||||
*
|
||||
* If you have two transformations \f$T = T_1 * T_2\f$, use
|
||||
*
|
||||
* @code
|
||||
* cv::Affine3f T, T1, T2;
|
||||
* T = T2.concatenate(T1);
|
||||
* @endcode
|
||||
*
|
||||
* To get the inverse transform of \f$T\f$, use
|
||||
*
|
||||
* @code
|
||||
* cv::Affine3f T, T_inv;
|
||||
* T_inv = T.inv();
|
||||
* @endcode
|
||||
*
|
||||
*/
|
||||
template<typename T>
|
||||
class Affine3
|
||||
@ -66,45 +131,127 @@ namespace cv
|
||||
typedef Matx<float_type, 4, 4> Mat4;
|
||||
typedef Vec<float_type, 3> Vec3;
|
||||
|
||||
//! Default constructor. It represents a 4x4 identity matrix.
|
||||
Affine3();
|
||||
|
||||
//! Augmented affine matrix
|
||||
Affine3(const Mat4& affine);
|
||||
|
||||
//! Rotation matrix
|
||||
/**
|
||||
* The resulting 4x4 matrix is
|
||||
*
|
||||
* \f[
|
||||
* \begin{bmatrix}
|
||||
* R & t\\
|
||||
* 0 & 1\\
|
||||
* \end{bmatrix}
|
||||
* \f]
|
||||
*
|
||||
* @param R 3x3 rotation matrix.
|
||||
* @param t 3x1 translation vector.
|
||||
*/
|
||||
Affine3(const Mat3& R, const Vec3& t = Vec3::all(0));
|
||||
|
||||
//! Rodrigues vector
|
||||
/**
|
||||
* Rodrigues vector.
|
||||
*
|
||||
* The last row of the current matrix is set to [0,0,0,1].
|
||||
*
|
||||
* @param rvec 3x1 rotation vector. Its direction indicates the rotation axis and its length
|
||||
* indicates the rotation angle in radian (using right hand rule).
|
||||
* @param t 3x1 translation vector.
|
||||
*/
|
||||
Affine3(const Vec3& rvec, const Vec3& t = Vec3::all(0));
|
||||
|
||||
//! Combines all contructors above. Supports 4x4, 4x3, 3x3, 1x3, 3x1 sizes of data matrix
|
||||
/**
|
||||
* Combines all constructors above. Supports 4x4, 3x4, 3x3, 1x3, 3x1 sizes of data matrix.
|
||||
*
|
||||
* The last row of the current matrix is set to [0,0,0,1] when data is not 4x4.
|
||||
*
|
||||
* @param data 1-channel matrix.
|
||||
* when it is 4x4, it is copied to the current matrix and t is not used.
|
||||
* When it is 3x4, it is copied to the upper part 3x4 of the current matrix and t is not used.
|
||||
* When it is 3x3, it is copied to the upper left 3x3 part of the current matrix.
|
||||
* When it is 3x1 or 1x3, it is treated as a rotation vector and the Rodrigues formula is used
|
||||
* to compute a 3x3 rotation matrix.
|
||||
* @param t 3x1 translation vector. It is used only when data is neither 4x4 nor 3x4.
|
||||
*/
|
||||
explicit Affine3(const Mat& data, const Vec3& t = Vec3::all(0));
|
||||
|
||||
//! From 16th element array
|
||||
//! From 16-element array
|
||||
explicit Affine3(const float_type* vals);
|
||||
|
||||
//! Create identity transform
|
||||
//! Create an 4x4 identity transform
|
||||
static Affine3 Identity();
|
||||
|
||||
//! Rotation matrix
|
||||
/**
|
||||
* Rotation matrix.
|
||||
*
|
||||
* Copy the rotation matrix to the upper left 3x3 part of the current matrix.
|
||||
* The remaining elements of the current matrix are not changed.
|
||||
*
|
||||
* @param R 3x3 rotation matrix.
|
||||
*
|
||||
*/
|
||||
void rotation(const Mat3& R);
|
||||
|
||||
//! Rodrigues vector
|
||||
/**
|
||||
* Rodrigues vector.
|
||||
*
|
||||
* It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
|
||||
*
|
||||
* @param rvec 3x1 rotation vector. The direction indicates the rotation axis and
|
||||
* its length indicates the rotation angle in radian (using the right thumb convention).
|
||||
*/
|
||||
void rotation(const Vec3& rvec);
|
||||
|
||||
//! Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix;
|
||||
/**
|
||||
* Combines rotation methods above. Supports 3x3, 1x3, 3x1 sizes of data matrix.
|
||||
*
|
||||
* It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
|
||||
*
|
||||
* @param data 1-channel matrix.
|
||||
* When it is a 3x3 matrix, it sets the upper left 3x3 part of the current matrix.
|
||||
* When it is a 1x3 or 3x1 matrix, it is used as a rotation vector. The Rodrigues formula
|
||||
* is used to compute the rotation matrix and sets the upper left 3x3 part of the current matrix.
|
||||
*/
|
||||
void rotation(const Mat& data);
|
||||
|
||||
/**
|
||||
* Copy the 3x3 matrix L to the upper left part of the current matrix
|
||||
*
|
||||
* It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
|
||||
*
|
||||
* @param L 3x3 matrix.
|
||||
*/
|
||||
void linear(const Mat3& L);
|
||||
|
||||
/**
|
||||
* Copy t to the first three elements of the last column of the current matrix
|
||||
*
|
||||
* It sets the upper right 3x1 part of the matrix. The remaining part is unaffected.
|
||||
*
|
||||
* @param t 3x1 translation vector.
|
||||
*/
|
||||
void translation(const Vec3& t);
|
||||
|
||||
//! @return the upper left 3x3 part
|
||||
Mat3 rotation() const;
|
||||
|
||||
//! @return the upper left 3x3 part
|
||||
Mat3 linear() const;
|
||||
|
||||
//! @return the upper right 3x1 part
|
||||
Vec3 translation() const;
|
||||
|
||||
//! Rodrigues vector
|
||||
//! Rodrigues vector.
|
||||
//! @return a vector representing the upper left 3x3 rotation matrix of the current matrix.
|
||||
//! @warning Since the mapping between rotation vectors and rotation matrices is many to one,
|
||||
//! this function returns only one rotation vector that represents the current rotation matrix,
|
||||
//! which is not necessarily the same one set by `rotation(const Vec3& rvec)`.
|
||||
Vec3 rvec() const;
|
||||
|
||||
//! @return the inverse of the current matrix.
|
||||
Affine3 inv(int method = cv::DECOMP_SVD) const;
|
||||
|
||||
//! a.rotate(R) is equivalent to Affine(R, 0) * a;
|
||||
@ -113,7 +260,7 @@ namespace cv
|
||||
//! a.rotate(rvec) is equivalent to Affine(rvec, 0) * a;
|
||||
Affine3 rotate(const Vec3& rvec) const;
|
||||
|
||||
//! a.translate(t) is equivalent to Affine(E, t) * a;
|
||||
//! a.translate(t) is equivalent to Affine(E, t) * a, where E is an identity matrix
|
||||
Affine3 translate(const Vec3& t) const;
|
||||
|
||||
//! a.concatenate(affine) is equivalent to affine * a;
|
||||
@ -136,6 +283,7 @@ namespace cv
|
||||
template<typename T> static
|
||||
Affine3<T> operator*(const Affine3<T>& affine1, const Affine3<T>& affine2);
|
||||
|
||||
//! V is a 3-element vector with member fields x, y and z
|
||||
template<typename T, typename V> static
|
||||
V operator*(const Affine3<T>& affine, const V& vector);
|
||||
|
||||
@ -178,7 +326,7 @@ namespace cv
|
||||
//! @cond IGNORED
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
// Implementaiton
|
||||
// Implementation
|
||||
|
||||
template<typename T> inline
|
||||
cv::Affine3<T>::Affine3()
|
||||
@ -212,6 +360,7 @@ template<typename T> inline
|
||||
cv::Affine3<T>::Affine3(const cv::Mat& data, const Vec3& t)
|
||||
{
|
||||
CV_Assert(data.type() == cv::traits::Type<T>::value);
|
||||
CV_Assert(data.channels() == 1);
|
||||
|
||||
if (data.cols == 4 && data.rows == 4)
|
||||
{
|
||||
@ -276,11 +425,12 @@ void cv::Affine3<T>::rotation(const Vec3& _rvec)
|
||||
}
|
||||
}
|
||||
|
||||
//Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix;
|
||||
//Combines rotation methods above. Supports 3x3, 1x3, 3x1 sizes of data matrix;
|
||||
template<typename T> inline
|
||||
void cv::Affine3<T>::rotation(const cv::Mat& data)
|
||||
{
|
||||
CV_Assert(data.type() == cv::traits::Type<T>::value);
|
||||
CV_Assert(data.channels() == 1);
|
||||
|
||||
if (data.cols == 3 && data.rows == 3)
|
||||
{
|
||||
@ -295,7 +445,7 @@ void cv::Affine3<T>::rotation(const cv::Mat& data)
|
||||
rotation(_rvec);
|
||||
}
|
||||
else
|
||||
CV_Assert(!"Input marix can be 3x3, 1x3 or 3x1");
|
||||
CV_Assert(!"Input matrix can only be 3x3, 1x3 or 3x1");
|
||||
}
|
||||
|
||||
template<typename T> inline
|
||||
|
@ -92,7 +92,7 @@ Except of the plain constructor which takes a list of elements, Matx can be init
|
||||
float values[] = { 1, 2, 3};
|
||||
Matx31f m(values);
|
||||
@endcode
|
||||
In case if C++11 features are avaliable, std::initializer_list can be also used to initizlize Matx:
|
||||
In case if C++11 features are avaliable, std::initializer_list can be also used to initialize Matx:
|
||||
@code{.cpp}
|
||||
Matx31f m = { 1, 2, 3};
|
||||
@endcode
|
||||
|
Loading…
Reference in New Issue
Block a user